

 Navigation

 	
 index

 	
 next |

 	Scaner 1.7 documentation

Welcome to Scaner’s documentation!

Contents:

	What is Scaner?
	Architecture

	More

	Installation
	Building Scaner

	Running Scaner

	API Schema
	Schemes

	API Usage
	POST /tweets

	GET /tweets

	GET /tweets/{tweetId}/metrics

	GET /tweets/{tweetId}/history

	GET /users

	GET /users/{userId}/metrics

	GET /users/{userId}/network

	GET /communities

	Adding more tweets for the same topic

	Metrics
	Direct metrics

	Indirect metrics

	Metrics Usage
	Searching for Relevant Tweets and Users

	Tweet Ratio

	Influence

	Follow Relation

	Relevance

	Demo

 Copyright 2016, A. Pascual Saavedra.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Scaner 1.7 documentation

What is Scaner?

SCANER: Social Context Analysis aNd Emotion Recognition is a platform to collect and analyse social context, i.e context of users and content in social media.

The platform is able to extract and process social media information data from Twitter, allowing us to analyse and process different metrics from tweets and users. To perform the test of the platform, it includes models of users and tweets. It creates the appropriate relationships between users and their related tweets, it calculates their influences and makes this information available through a REST API.

Architecture

The modular architecture of Scaner allows retrieving, storing and processing large amounts of information. The independent task system and API further contribute to decouple the modules in the platform.

	OrientDB stores all the amount of data that we needed and easily edges the information to create graphs.

	The crawler has been able to extract the necessarry information from Twitter, being only limited by the Twitter API rate limit. Scaner uses bitter [https://github.com/balkian/bitter] to implement this task.

	The task manager process all this information.

[image: _images/overview.png]

More

For more information visit http://scaner.readthedocs.io/en/latest/

Acknowledgement

This development has been partially funded by the European Union through the MixedEmotions Project (project number H2020 655632), as part of the RIA ICT 15 Big data and Open Data Innovation and take-up programme.

[image: MixedEmotions Logo]
 [http://mixedemotions-project.eu][image: _images/eu-flag.jpg]
 [http://ec.europa.eu/research/participants/portal/desktop/en/opportunities/index.html][image: GSI Logo]

 Copyright 2016, A. Pascual Saavedra.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Scaner 1.7 documentation

Installation

Scaner requires docker and docker-compose to work. You can download Docker here [https://docs.docker.com/engine/installation/]

Docker-compose can be easily installed through pip.

$ pip install docker-compose

Building Scaner

First of all, you need to clone the Github repository:

$ git clone git@github.com:gsi-upm/scaner
$ cd scaner

Once cloned, we need to build the docker image:

$ docker-compose build

Then, it is necessary to populate OrientDB schema.

$./populate_schema.sh

Running Scaner

Now the image is ready to run:

$ docker-compose up

 Copyright 2016, A. Pascual Saavedra.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Scaner 1.7 documentation

API Schema

Base URL: /api/v1, Version: 1.0.0

Default request content-types: application/json

Default response content-types: application/json

Schemes

Tag: users

	API call
	Description

	GET /users/{userId}
	Obtain information of a particular user

	GET /users/{userId}/emotion
	Obtain the emotion of a user

	GET /users/{userId}/sentiment
	Obtain the sentiment of a user

	GET /users/{userId}/metrics
	Obtain the metrics of a user

	GET /users
	Obtain list of available users

	GET /users/{userId}/network
	Obtain social network of a user

Tag: tweets

	API call
	Description

	GET /tweets/{tweetId}
	Obtain information of a particular tweet

	DELETE /tweets/{tweetId}
	Delete a tweet from the database

	GET /tweets/{tweetId}/history
	Obtain the history of a particular tweet

	GET /tweets/{tweetId}/sentiment
	Obtain the sentiment of a tweet

	GET /tweets/{tweetId}/emotion
	Obtain the emotion of a tweet

	GET /tweets/{tweetId}/metrics
	Obtain the metrics of a tweet

	GET /tweets
	Obtain list of available tweets

	POST /tweets
	Add a tweet to the database

Tag: topics

	API call
	Description

	GET /topics
	Obtain list of available topics

	GET /topics/{topicId}
	Obtain information of a particular topic

	GET /topics/{topicId}/network
	Obtain social network of a topic

Tag: tasks

	API call
	Description

	GET /tasks
	Obtain the list of tasks

	GET /tasks/{taskId}
	Obtain the status of a particular task

Tag: communities

	API call
	Description

	GET /communities/{communityId}
	Obtain information of a particular community

	GET /communities/{communityId}/emotion
	Obtain the emotion of a community

	GET /communities/{communityId}/sentiment
	Obtain the sentiment of a community

	GET /communities
	Obtain list of available communities

	GET /communities/{communityId}/users
	Obtain users that conforms a community

 Copyright 2016, A. Pascual Saavedra.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Scaner 1.7 documentation

API Usage

POST /tweets

	Example request:

	POST /api/v1/tweets/ HTTP/1.1
Host: localhost
'Content-Type': 'application/json',
'Accept': 'application/json'

	Example respond:

	HTTP/1.1 200 OK
'Content-Type':'application/json',
'Vary':'Accept'

 {
 "metadata": { "parameters": {},
 "url": "http://localhost:5000/api/v1/tweets"},
 "result": "Tweet added to DB."
 }

GET /tweets

	Example request:

	GET /api/v1/tweets?limit=1 HTTP/1.1
Host: localhost
'Accept': 'application/json'

	Example respond:

	 HTTP/1.1 200 OK
 'Content-Type':'application/json'
 'Vary':'Accept'

{
 "metadata": {
 "count": 20,
 "parameters": {

 },
 "url": "http://localhost:5000/api/v1/tweets"
 },
 "statuses": [
 {
 "created_at": "Mon Dec 15 23:29:35 +0000 2014",
 "entities": {
 "hashtags": [

],
 "symbols": [

],
 "urls": [
 {
 "display_url": "bit.ly/1AeESXb",
 "expanded_url": "http://bit.ly/1AeESXb",
 "indices": [
 19,
 41
],
 "url": "http://t.co/1JWX4VDvmz"
 }
],
 "user_mentions": [

]
 },
 "id": 000000000000,
 "id_str": "000000000000",
 "lang": "ja",
 "metadata": {
 "iso_language_code": "ja",
 "result_type": "recent"
 },
 "text": " http://t.co/1JWX4VDvmz",
 "timestamp_ms": 1418686175.0,
 "topics": [
 "bigdata"
],
 "user": {
 "created_at": "Tue Sep 02 01:27:55+0000 2014",
 "followers_count": 7254,
 "following": null,
 "friends_count": 7277,
 "id": 0000000000,
 "id_str": "0000000000",
 "lang": "ja",
 "protected": 0,
 "screen_name": "*******",
 "statuses_count": 9328
 }
 }
]
}

	Query parameters:

	
	query (f) fields: Comma-separated list of fields to retrieve e.g ‘screen_name’ ‘following’

	query (l) limit: Get only this many users per request by default limit is 20 tweets

	query (t) topic: Only retrieve users related to a certain topic e.g ‘LaboralKutxa’

	query (s) sort_by: Sort users using this criterion. Prepending a minus sign reverses the order. e.g. ‘- tweet_count’.

GET /tweets/{tweetId}/metrics

	Example request:

	GET /api/v1/tweets/{tweetId}/metrics HTTP/1.1
Host: localhost
'Content-Type': 'application/json'
'Accept': 'application/json'``

	Example respond:

	 HTTP/1.1 200 OK
 'Content-Type':'application/json'
 'Vary':'Accept'

{
 "metadata": {
 "parameters": {

 },
 "url": "http://localhost:5000/api/v1/tweets/0000000000000/metrics"
 },
 "result": {
 "complete": true,
 "date": "2016-12-07",
 "id": 0000000000000,
 "influence": 0.496603800169,
 "lastMetrics": true,
 "relevance": 0.10244804983,
 "timestamp": 1481107250.4926267,
 "topic": "bigdata"
 }
}

	Path parameters:

	
	path (t) tweetId (required):Tweet id to filter by

GET /tweets/{tweetId}/history

	Example request:

	GET /api/v1/tweets/{tweetId}/history HTTP/1.1
Host: localhost
'Content-Type': 'application/json',
'Accept': 'application/json'``

	Example respond:

	 HTTP/1.1 200 OK
 'Content-Type':'application/json'
 'Vary':'Accept'

{
 "metadata": {
 "parameters": {

 },
 "url": "http://localhost:5000/api/v1/tweets/000000000000000/history"
 },
 "result": [
 {
 "complete": true,
 "date": "2016-12-07",
 "id": 000000000000000,
 "influence": 0.496603800169,
 "lastMetrics": true,
 "relevance": 0.10244804983,
 "timestamp": 1481107250.4926267,
 "topic": "bigdata"
 },
 {
 "complete": true,
 "date": "2016-12-05",
 "id": 000000000000000,
 "influence": 0.0,
 "lastMetrics": false,
 "relevance": 0.0,
 "timestamp": 1480940543.4212337,
 "topic": "bigdata"
 }
]
}

	Path parameters:

	
	path (t) tweetId (required):Tweet id to filter by

GET /users

	Example request:

	GET /api/v1/users?limit=3 HTTP/1.1
Host: localhost
'Content-Type': 'application/json'
'Accept': 'application/json'``

	Example respond:

	 HTTP/1.1 200 OK
 'Content-Type':'application/json'
 'Vary':'Accept'
{
 "metadata": {
 "count": 3,
 "parameters": {

 },
 "url": "http://localhost:5000/api/v1/users"
 },
 "users": [
 {
 "community": 1156,
 "created_at": "Mon Nov 10 16:10:39 +0000 2014",
 "followers_count": 7,
 "friends_count": 23,
 "id": 0,
 "id_str": "0",
 "lang": "ru",
 "protected": "0",
 "screen_name": "*****",
 "statuses_count": 38,
 "topics": [
 "bigdata"
]
 },
 {
 "community": 560,
 "created_at": "Mon Nov 10 19:57:30 +0000 2014",
 "followers_count": 3,
 "friends_count": 12,
 "id": 1,
 "id_str": "1",
 "lang": "ru",
 "protected": "0",
 "screen_name": "*****",
 "statuses_count": 56,
 "topics": [
 "bigdata"
]
 },
 {
 "community": 4,
 "created_at": "Sun Jan 17 16:12:59 +0000 2010",
 "followers_count": 936,
 "friends_count": 1154,
 "id": 2,
 "id_str": "2",
 "lang": "ja",
 "protected": "0",
 "screen_name": "****",
 "statuses_count": 20637,
 "topics": [
 "bigdata"
]
 }
]
}

	Query parameters:

	
	query (f) fields: Comma-separated list of fields to retrieve e.g ‘screen_name’ ‘following’

	query (l) limit: Get only this many users per request by default limit is 20 tweets

	query (t) topic: Only retrieve users related to a certain topic e.g ‘LaboralKutxa’

	query (s) sort_by: Sort users using this criterion. Prepending a minus sign reverses the order. e.g. ‘- tweet_count’.

GET /users/{userId}/metrics

	Example request:

	GET /api/v1/users/{userId}/metrics HTTP/1.1
Host: localhost
'Content-Type': 'application/json'
'Accept': 'application/json'``

	Example respond:

	 HTTP/1.1 200 OK
 'Content-Type':'application/json'
 'Vary':'Accept'

{
 "metadata": {
 "parameters": {},
 "url": "http://localhost:5000/api/v1/users/59390872/metrics"
 },
 "result": {
 "complete": true,
 "date": "2016-12-07",
 "followRelationScore": 0.140941982233,
 "followers": 43017,
 "following": 43445,
 "id": 59390872,
 "impact": 0.000002767175,
 "influence": 1,
 "influenceUnnormalized": 0.00499198376,
 "lastMetrics": true,
 "relevance": 2.105912,
 "statuses_count": 39233,
 "timestamp": 1481114116.3879638,
 "topic": "bigdata",
 "tweetRatio": 0.00015293248,
 "voice": 0.030976330457,
 "voice_r": 0.00000003215
 }
}

	Path parameters:

	
	path (t) userId (required):User id to filter by

GET /users/{userId}/network

	Example request:

	GET /api/v1/users/{userId}/network
HTTP/1.1 Host: localhost
'Content-Type': 'application/json'
'Accept': 'application/json'

	Example respond:

	

GET /communities

	Example request:

	GET /api/v1/communities/ HTTP/1.1
Host: localhost
'Content-Type': 'application/json'
'Accept': 'application/json'

	Example respond:

	 HTTP/1.1 200 OK
 'Content-Type':'application/json'
 'Vary':'Accept'

 {
 "communities": [
 {
 "emotion": "joy",
 "id": 0,
 "sentiment": "positive",
 "user_count": 12
 },
 {
 "emotion": "joy",
 "id": 1,
 "sentiment": "positive",
 "user_count": 32
 },
 {
 "emotion": "joy",
 "id": 2,
 "sentiment": "positive",
 "user_count": 8
 }
],
 "metadata": {
 "count": 3,
 "parameters": {

 },
 "url": "http://localhost:5000/api/v1/communities"
 }
}

	Query parameters:

	
	query (f) fields: Comma-separated list of fields to retrieve e.g ‘screen_name’ ‘following’

	query (l) limit: Get only this many users per request by default limit is 20 tweets

	query (t) topic: Only retrieve users related to a certain topic e.g ‘LaboralKutxa’

	query (s) sort_by: Sort users using this criterion. Prepending a minus sign reverses the order. e.g. ‘- tweet_count’.

Adding more tweets for the same topic

Once Scaner has calculated the metrics for a certain topic, the tool
allows to retrieve instant information of relevance of a tweet in that
topic.

	Example request:

	POST /api/v1/tweets/ HTTP/1.1
Host: localhost
'Content-Type': 'application/json'
'Accept': 'application/json'``

	Example respond:

	 HTTP/1.1 200 OK
 'Content-Type':'application/json'
 'Vary':'Accept'

{
 "metadata": {
 "parameters": {

 },
 "url": "http://localhost:5000/api/v1/tweets"
 },
 "result": {
 "result": "Tweet added to DB",
 "topic": "bigdata",
 "tweet_relevance": "0.010244804983"
 }
}

 Copyright 2016, A. Pascual Saavedra.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Scaner 1.7 documentation

Metrics

Internally, metrics are classified in two different types: direct and indirect metrics.

Direct metrics

Direct metrics are directly obtainable from the extracted data, such as the number of followers
a user has. The Social Context Analysis module obtains direct metrics as soon as new
social media content is stored in the database, and these metrics are updated when new
information arrive. For instance, the Social Context module is configured to refetch general
information about users periodically, so these metrics would be updated as well.

Indirect metrics

Indirect metrics are obtained through data processing, for example User Influence. These
metrics are calculated periodically, as they have a high processing cost and require accessing
all the information in the database.

User relevance

We define the user relevance score based in the tweet rate, the user influence and follow relation score of each user.

Tweet Rate (TR) score

This metric measures the proportion of tweets related to the topic that a user posts or retweets.
Some of the topic-related users usually retweet tweets relevant to the topic originally posted by others, which means they play a role
of “filter” searching for valuable relevant tweets and sharing them with their followers.

User Influence (UI) score and Tweet Influence (TI) score

How much each tweet is paid attention to by others is measured according to the retweet and reply activities and the follow relation.
Based on this idea, we define not only the UI score of each user but also “tweet influence (TI) score” of each tweet.
The UI score of each user is calculated using the TI score of the user’s tweets and retweets, and the TI score of each tweet
is calculated using the UI score of users who pay attention to the tweet.

Follow Relation (FR) score

A reference graph consisting of user nodes and directed edges each of which connects two of the user nodes, called “follow relation graph”,
is created from the follow relation.

Tweet relevance

They describe a method for finding relevant tweets to the target topic.

Voice and Impact score calculation

In order to judge the relevance of each tweet to the target topic, we have the following assumptions about tweets relevant to
the topic (relevant tweets).

	The relevant tweets are posted or retweeted by the topic-related users.

	The relevant tweets are paid attention to (retweeted or replied to) by many topic-related users.

The Impact score is used for the estimation based on the first idea, and the Voice score is used for the estimation based on the second idea.

Tweet Ranking

The tweet relevance score of each tweet is calculated from the Voice score and the Impact score, then select the top-M tweets ranked
by the tweet relevance score as the tweets relevant to the target topic.

 Copyright 2016, A. Pascual Saavedra.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Scaner 1.7 documentation

Metrics Usage

Searching for Relevant Tweets and Users

Suppose we have 3 twitter users:
Manu, Alberto and Rodrigo. This three users are expressing
their opinions about a concrete topic in Twitter, i.e about nuclear
energy. They have published tweets concerning this topics and they
follow each other as it is shown in the following graph.

[image:]

(This data can easily be loaded in Scaner tool using “populate_db.py”
script).

Now let’s find more information about this data. The metrics used are
based on Noro et al. article [Noro et al, 2016].

	Tweet Ratio

	Influence

	Follow Relation

	Relevance

	Voice

	Impact

Tweet Ratio

To calculate Tweet ratio of each user Scaner takes the lapse of time of
the tweets data introduced and relations the number of tweets published
in that lapse with the number of tweets related to the topic that are in
the Scaner database.

Let’s calculate Rodrigo’s tweet ratio. To do so we choose two intervals
of time to measure (t0 y t1). In t0 Rodrigo had 300 tweets
in his timeline. In t1 Rodrigo had 333 tweets. Of this 33 new
tweets, 3 of them are related to nuclear energy topic and that is the
data in Scaner. So the tweet Ratio was:

import numpy as np

statuses_count_t0 = 300
statuses_count_t1 = 333
tweets_in_scaner = 3

#TWEET RATIO
TR = tweets_in_scaner/(statuses_count_t1-statuses_count_t0)
TR

0.09090909090909091

Influence

To find out the influence of users and tweet in this data we need to
create three matrix: on one hand with the number of tweets created by
the users, on the other, with the retweets and replies and the last
matrix with the replies and the tweets created, retweeted or replied by
the followers of the users. Then Scaner calculate the influence. This
influence is normalized assigning 1 to the maximum influence value.

For our example above, Rodrigo would be the most influence user, so
Rodrigo’s influence is 1. The influence vector calculated. We could
observe that the second most influent was Alberto, that is because
Alberto has retweeted a tweet from Rodrigo.

[UI_Rodrigo UI_Manu UI_Alberto]
UI_vector = np.array([1, 0.6, 0.8])
UI_vector

array([1. , 0.6, 0.8])

To find out the influence of each tweet the process is the same, the
matrix are the same and the results are correlated to the user
influence.

Follow Relation

Follow Relation shows information about the amount of follows an user
has. We can see in the graph that Alberto has the most amount of Follows
arrows, so the follow relation is 1 for Alberto. The follow Relation of
Rodrigo is the lowest. That’s because Rodrigo has only one user in the
data that follow him. Let’s probe this suposition calculating Scaner
Follow Relation vector:

[FR_Rodrigo FR_Manu FR_Alberto]
FR_vector = np.array([0.54054,0.7702, 1])
FR_vector

array([0.54054, 0.7702 , 1.])

Relevance

User Relevance

User relevance is calculated with a ponderated sum of the previous ones.
Each metric has a weight depending its importance. For example, user
relevance of Rodrigo will be:

w_tr = 0.4
w_i = 0.4
w_fr = 0.2
user_relevance = TR**w_tr + UI_vector[0]**w_i + FR_vector[0]**w_fr
user_relevance

1.9674710190829381

Voice

The voice of an user is calculated according to the quantity of tweets
and retweets the user has. There are two types of this score, voice of
tweets, and voice of retweets. The calculation of both are equivalent.
Here we are going to calculate the voice of Manuel in nuclear energy
topic:

Tweet = 1
sigma = 1
TI = 0.37500000161 # Calculated together with Manuel user influence
Sumatorio_tweets = 1
Voice_tweet = (1/(1+1))*1*TI
Voice_tweet

0.187500000805

Impact

The impact score is calculated related to the user influence and the
interactions of the user in the tweets collected (Related interactions:
retweets and replies). For example the impact score of Alberto would be:

UI_Alberto = 0.8 #Calculated above
d = 0.15 # Dumping factor
Relate_Alberto = 1 # Alberto has retweeted one tweet
Sigma = 1 # Smoothing parameter
Number_tweets = 4
IMPACT = (UI_Alberto/(Relate_Alberto+Sigma))*(1-d) + (UI_Alberto/4)*d
IMPACT

0.37

Tweet relevance

Tweet relevance is the main phase of Scaner. The porpuse of this score
is to find the relevance of a new introduced tweet in Scaner
instantaneously based on the scores calculated above. This score allow
us to rank the new tweets in real time. Let’s make an easy example.

Imagine that we introduce another tweet retweeted by Alberto. We don’t
need to recalculate the tweet influence score of this new tweet. We
calculate the tweet relevance as follows:

Voice_retweet_Alberto = 0.5
VR_t = 0.5
IR_t = 0.37
alpha = 0.4
Tweet_relevance = alpha*VR_t + (1-alpha)*IR_t
Tweet_relevance

0.42200000000000004

Noro, T., Ru, F., Xiao, F., & Tokuda, T. 2016. Searching for relevant
based on topic- related user activities. Journal of Web Engineering, 15
(3&4), 249-276,.

 Copyright 2016, A. Pascual Saavedra.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Scaner 1.7 documentation

Demo

There is a demo available on http://scaner-demo.cluster.gsi.dit.upm.es/, this demo has a sintetic dataset. You can explore all the posibilities of the Scaner API.

[image: _images/scaner-api.png]

 Copyright 2016, A. Pascual Saavedra.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Scaner 1.7 documentation

Index

 Copyright 2016, A. Pascual Saavedra.
 Created using Sphinx 1.3.5.

 _images/eu-flag.jpg

_images/me.png
@ MixedEmotions

plugins.html

 Navigation

 		
 index

 		Scaner 1.7 documentation »

Developing new plugins

Each plugin represents a different analysis process.There are two types of files that are needed by senpy for loading a plugin:

Plugins Interface

		Definition file, has the ”.senpy” extension.

		Code file, is a python file.

Plugins Definitions

The definition file can be written in JSON or YAML, where the data representation consists on attribute-value pairs.
The principal attributes are:

		name: plugin name used in senpy to call the plugin.

		module: indicates the module that will be loaded

{
 "name" : "senpyPlugin",
 "module" : "{python code file}"
}

name: senpyPlugin
module: {python code file}

Plugins Code

The basic methods in a plugin are:

		__init__

		activate: used to load memory-hungry resources

		deactivate: used to free up resources

		analyse: called in every user requests. It takes in the parameters supplied by a user and should return a senpy Response.

Plugins are loaded asynchronously, so don’t worry if the activate method takes too long. The plugin will be marked as activated once it is finished executing the method.

F.A.Q.

If I’m using a classifier, where should I train it?

Training a classifier can be time time consuming. To avoid running the training unnecessarily, you can use ShelfMixin to store the classifier. For instance:

from senpy.plugins import ShelfMixin, SenpyPlugin

class MyPlugin(ShelfMixin, SenpyPlugin):
 def train(self):
 ''' Code to train the classifier
 '''
 # Here goes the code
 # ...
 return classifier

 def activate(self):
 if 'classifier' not in self.sh:
 classifier = self.train()
 self.sh['classifier'] = classifier
 self.classifier = self.sh['classifier']

 def deactivate(self):
 self.close()

You can speficy a ‘shelf_file’ in your .senpy file. By default the ShelfMixin creates a file based on the plugin name and stores it in that plugin’s folder.

I want to implement my service as a plugin, How i can do it?

This example ilustrate how to implement the Sentiment140 service as a plugin in senpy

class Sentiment140Plugin(SentimentPlugin):
 def analyse(self, **params):
 lang = params.get("language", "auto")
 res = requests.post("http://www.sentiment140.com/api/bulkClassifyJson",
 json.dumps({"language": lang,
 "data": [{"text": params["input"]}]
 }
)
)

 p = params.get("prefix", None)
 response = Results(prefix=p)
 polarity_value = self.maxPolarityValue*int(res.json()["data"][0]
 ["polarity"]) * 0.25
 polarity = "marl:Neutral"
 neutral_value = self.maxPolarityValue / 2.0
 if polarity_value > neutral_value:
 polarity = "marl:Positive"
 elif polarity_value < neutral_value:
 polarity = "marl:Negative"

 entry = Entry(id="Entry0",
 nif__isString=params["input"])
 sentiment = Sentiment(id="Sentiment0",
 prefix=p,
 marl__hasPolarity=polarity,
 marl__polarityValue=polarity_value)
 sentiment.prov__wasGeneratedBy = self.id
 entry.sentiments = []
 entry.sentiments.append(sentiment)
 entry.language = lang
 response.entries.append(entry)
 return response

Where can I define extra parameters to be introduced in the request to my plugin?

You can add these parameters in the definition file under the attribute “extra_params” : “{param_name}”. The name of the parameter has new attributes-value pairs. The basic attributes are:

		aliases: the different names which can be used in the request to use the parameter.

		required: this option is a boolean and indicates if the parameters is binding in operation plugin.

		options: the different values of the paremeter.

		default: the default value of the parameter, this is useful in case the paremeter is required and you want to have a default value.

"extra_params": {
 "language": {
 "aliases": ["language", "l"],
 "required": true,
 "options": ["es","en"],
 "default": "es"
 }
}

This example shows how to introduce a parameter associated with language.
The extraction of this paremeter is used in the analyse method of the Plugin interface.

lang = params.get("language")

Where can I set up variables for using them in my plugin?

You can add these variables in the definition file with the extracture of attribute-value pair.

Once you have added your variables, the next step is to extract them into the plugin. The plugin’s __init__ method has a parameter called info where you can extract the values of the variables. This info parameter has the structure of a python dictionary.

Can I activate a DEBUG mode for my plugin?

You can activate the DEBUG mode by the command-line tool using the option -d.

python -m senpy -d

Where can I find more code examples?

See: http://github.com/gsi-upm/senpy-plugins-community.

 © Copyright 2016, A. Pascual Saavedra.
 Created using Sphinx 1.3.5.

_images/overview.png
Processing | Emotion
and Metrics | Annotation|

4
~OrientDE’
v

Message Broker

redis

Tasks for
Celery to
execute

Celery
. Workers

_static/minus.png

_images/example_graph.png
@ et

_images/scaner-api.png
SCANER API

MIT
tasks

topics
tweets

users

[BASE URL: /apiiv1 , API VERSION: 1.0.0]

swagger http://scaner cluster gsi dit upm es/api/v1/swagger json El

‘ShowHide

‘ShowHide

‘ShowHide

‘ShowHide

List Operations

List Operations

List Operations

List Operations

Explore

Expand Operations

Expand Operations

Expand Operations

Expand Operations

_static/up-pressed.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		Scaner 1.7 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, A. Pascual Saavedra.
 Created using Sphinx 1.3.5.

_static/file.png

_static/comment-close.png

_static/down.png

schema.html

 Navigation

 		
 index

 		Scaner 1.7 documentation »

Schema Examples

All the examples in this page use the the main schema.

Simple NIF annotation

Description

This example covers the basic example in the NIF documentation: http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html.

Representation

{
 "@context": "http://mixedemotions-project.eu/ns/context.jsonld",
 "@id": "http://example.com#NIFExample",
 "analysis": [
],
 "entries": [
 {
 "@id": "http://example.org#char=0,40",
 "@type": [
 "nif:RFC5147String",
 "nif:Context"
],
 "nif:beginIndex": 0,
 "nif:endIndex": 40,
 "nif:isString": "My favourite actress is Natalie Portman"
 }
]
}

Sentiment Analysis

Description

Representation

{
 "@context": "http://mixedemotions-project.eu/ns/context.jsonld",
 "@id": "me:Result1",
 "analysis": [
 {
 "@id": "me:SAnalysis1",
 "@type": "marl:SentimentAnalysis",
 "marl:maxPolarityValue": 1,
 "marl:minPolarityValue": 0
 }
],
 "entries": [
 {
 "@id": "http://micro.blog/status1",
 "@type": [
 "nif:RFC5147String",
 "nif:Context"
],
 "nif:isString": "Dear Microsoft, put your Windows Phone on your newest #open technology program. You'll be awesome. #opensource",
 "entities": [
],
 "suggestions": [
],
 "sentiments": [
 {
 "@id": "http://micro.blog/status1#char=80,97",
 "nif:beginIndex": 80,
 "nif:endIndex": 97,
 "nif:anchorOf": "You'll be awesome.",
 "marl:hasPolarity": "marl:Positive",
 "marl:polarityValue": 0.9,
 "prov:wasGeneratedBy": "me:SAnalysis1"
 }
],
 "emotionSets": [
]
 }
]
}

Suggestion Mining

Description

Representation

{
 "@context": "http://mixedemotions-project.eu/ns/context.jsonld",
 "@id": "me:Result1",
 "analysis": [
 {
 "@id": "me:SgAnalysis1",
 "@type": "me:SuggestionAnalysis"
 }
],
 "entries": [
 {
 "@id": "http://micro.blog/status1",
 "@type": [
 "nif:RFC5147String",
 "nif:Context"
],
 "prov:wasGeneratedBy": "me:SAnalysis1",
 "nif:isString": "Dear Microsoft, put your Windows Phone on your newest #open technology program. You'll be awesome. #opensource",
 "entities": [
],
 "suggestions": [
 {
 "@id": "http://micro.blog/status1#char=16,77",
 "nif:beginIndex": 16,
 "nif:endIndex": 77,
 "nif:anchorOf": "put your Windows Phone on your newest #open technology program"
 }
],
 "sentiments": [
],
 "emotionSets": [
]
 }
]
}

Emotion Analysis

Description

Representation

{
 "@context": "http://mixedemotions-project.eu/ns/context.jsonld",
 "@id": "me:Result1",
 "analysis": [
 {
 "@id": "me:EmotionAnalysis1",
 "@type": "onyx:EmotionAnalysis"
 }
],
 "entries": [
 {
 "@id": "http://micro.blog/status1",
 "@type": [
 "nif:RFC5147String",
 "nif:Context"
],
 "nif:isString": "Dear Microsoft, put your Windows Phone on your newest #open technology program. You'll be awesome. #opensource",
 "entities": [
],
 "suggestions": [
],
 "sentiments": [
],
 "emotions": [
 {
 "@id": "http://micro.blog/status1#char=0,109",
 "nif:anchorOf": "Dear Microsoft, put your Windows Phone on your newest #open technology program. You'll be awesome. #opensource",
 "prov:wasGeneratedBy": "me:EmotionAnalysis1",
 "onyx:hasEmotion": [
 {
 "onyx:hasEmotionCategory": "wna:liking"
 },
 {
 "onyx:hasEmotionCategory": "wna:excitement"
 }
]
 }
]
 }
]
}

Named Entity Recognition

Description

Representation

{
 "@context": "http://mixedemotions-project.eu/ns/context.jsonld",
 "@id": "me:Result1",
 "analysis": [
 {
 "@id": "me:NER1",
 "@type": "me:NERAnalysis"
 }
],
 "entries": [
 {
 "@id": "http://micro.blog/status1",
 "@type": [
 "nif:RFC5147String",
 "nif:Context"
],
 "nif:isString": "Dear Microsoft, put your Windows Phone on your newest #open technology program. You'll be awesome. #opensource",
 "entities": [
 {
 "@id": "http://micro.blog/status1#char=5,13",
 "nif:beginIndex": 5,
 "nif:endIndex": 13,
 "nif:anchorOf": "Microsoft",
 "me:references": "http://dbpedia.org/page/Microsoft",
 "prov:wasGeneratedBy": "me:NER1"
 },
 {
 "@id": "http://micro.blog/status1#char=25,37",
 "nif:beginIndex": 25,
 "nif:endIndex": 37,
 "nif:anchorOf": "Windows Phone",
 "me:references": "http://dbpedia.org/page/Windows_Phone",
 "prov:wasGeneratedBy": "me:NER1"
 }
],
 "suggestions": [
],
 "sentiments": [
],
 "emotionSets": [
]
 }
]
}

Complete example

Description

This example covers all of the above cases, integrating all the annotations in the same document.

Representation

{
 "@context": "http://mixedemotions-project.eu/ns/context.jsonld",
 "@id": "me:Result1",
 "analysis": [
 {
 "@id": "me:SAnalysis1",
 "@type": "marl:SentimentAnalysis",
 "marl:maxPolarityValue": 1,
 "marl:minPolarityValue": 0
 },
 {
 "@id": "me:SgAnalysis1",
 "@type": "me:SuggestionAnalysis"
 },
 {
 "@id": "me:EmotionAnalysis1",
 "@type": "me:EmotionAnalysis"
 },
 {
 "@id": "me:NER1",
 "@type": "me:NER"
 }
],
 "entries": [
 {
 "@id": "http://micro.blog/status1",
 "@type": [
 "nif:RFC5147String",
 "nif:Context"
],
 "nif:isString": "Dear Microsoft, put your Windows Phone on your newest #open technology program. You'll be awesome. #opensource",
 "entities": [
 {
 "@id": "http://micro.blog/status1#char=5,13",
 "nif:beginIndex": 5,
 "nif:endIndex": 13,
 "nif:anchorOf": "Microsoft",
 "me:references": "http://dbpedia.org/page/Microsoft",
 "prov:wasGeneratedBy": "me:NER1"
 },
 {
 "@id": "http://micro.blog/status1#char=25,37",
 "nif:beginIndex": 25,
 "nif:endIndex": 37,
 "nif:anchorOf": "Windows Phone",
 "me:references": "http://dbpedia.org/page/Windows_Phone",
 "prov:wasGeneratedBy": "me:NER1"
 }
],
 "suggestions": [
 {
 "@id": "http://micro.blog/status1#char=16,77",
 "nif:beginIndex": 16,
 "nif:endIndex": 77,
 "nif:anchorOf": "put your Windows Phone on your newest #open technology program"
 }
],
 "sentiments": [
 {
 "@id": "http://micro.blog/status1#char=80,97",
 "nif:beginIndex": 80,
 "nif:endIndex": 97,
 "nif:anchorOf": "You'll be awesome.",
 "marl:hasPolarity": "marl:Positive",
 "marl:polarityValue": 0.9,
 "prov:wasGeneratedBy": "me:SAnalysis1"
 }
],
 "emotions": [
 {
 "@id": "http://micro.blog/status1#char=0,109",
 "nif:anchorOf": "Dear Microsoft, put your Windows Phone on your newest #open technology program. You'll be awesome. #opensource",
 "prov:wasGeneratedBy": "me:EAnalysis1",
 "onyx:hasEmotion": [
 {
 "onyx:hasEmotionCategory": "wna:liking"
 },
 {
 "onyx:hasEmotionCategory": "wna:excitement"
 }
]
 }
]
 }
]
}

 © Copyright 2016, A. Pascual Saavedra.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/up.png

_static/down-pressed.png

_static/comment.png

_static/plus.png

