

say

It’s been almost fifty years since C introduced printf() and the basic
formatted printing of positional parameters. Isn’t it time for an upgrade?
You betcha!

say evolves Python’s print
statement/function, format function/method, and % string
interpolation operator with simpler, higher-level facilities. For example,
it provides direct template formatting, a feature
Python finally provided in Python 3.6. In addition:

	DRY, Pythonic, inline string templates that piggyback
Python’s well-proven format() method, syntax, and underlying engine.

	A single output mechanism that works the same way across
Python 2 or Python 3.

	A companion fmt() object for string formatting.

	Higher-order line formatting such as line numbering,
indentation, and line-wrapping built in. You can get substantially
better output
formatting with almost no additional code.

	Convenient methods for common formatting items such as titles, horizontal
separators, and vertical whitespace.

	Easy styled output, including ANSI colors and user-defined styles
and text transforms.

	Easy output to one or more files, without additional code or complexity.

	Super-duper template/text aggregator objects for easily building,
reading, and writing multi-line texts.

	Usage

	Indentation and Wrapping

	Prefixes and Suffixes

	The Value Proposition

	Titles, Rules, and Spacing

	Colors and Styles

	Where and When You Like

	Encodings and Unicode

	Text and Templates

	Iterpolators and Exceptions

	Python 3

	Alternatives

	Notes

	To-Dos

	API Reference

	Installation

	Change Log

Usage

from say import *

x = 12
nums = list(range(4))
name = 'Fred'

say("There are {x} things.")
say("Nums has {len(nums)} items: {nums}")
say("Name: {name!r}")

yields:

There are 12 things.
Nums has 4 items: [0, 1, 2, 3]
Name: 'Fred'

Or if you want the resulting string, rather than to print the string:

>>> fmt("{name} has {x} things and {len(nums)} numbers.")
'Fred has 12 things and 4 numbers.'

At this level, say is basically a simpler, nicer recasting of:

from __future__ import print_function

print("There are {0} things.".format(x))
print("Nums has {0} items: {1}".format(len(nums), nums))
print("Name: {0!r}".format(name))
s = "{0} has {1} things and {2} numbers.".format(name, x, len(nums))

(The import and
numerical sequencing of {} format specs is required to make pure-Python
code work correctly from Python 2.6 forward from
a single code base.)

But say and fmt read so much nicer! They are clear, simplem
and direct, and don’t separate the place where the value
should appear from the value.

Full expressions are are supported within the format braces ({}). Whatever
variable names or expressions are found therein will be evaluated in the context
of the caller.

The more items that are being printed, and the complicated the format
invocation, the more valuable this simple inline specification becomes.

But say isn’t just replacing positional templates with inline templates.
It also works in a variety of ways to up-level the output-generation task.
For example:

say.title('Discovered')
say("Name: {name:style=blue}", indent='+1')
say("Age: {age:style=blue}", indent='+1')

[image: _images/00000745.png]
Prints a nicely formatted text block, with a proper title and indentation,
and just the variable information in blue.

Indentation and Wrapping

Indentation is a common way to display data hierarchically. say will
help you manage it. For example:

say('ITEMS')
for item in items:
 say(item, indent=1)

will indent the items by one indentation level (by default, each indent
level is four spaces, but
you can change that with the indent_str option).

If you want to change the default indentation level:

say.set(indent=1) # to an absolute level
say.set(indent='+1') # strings => set relative to current level

...

say.set(indent=0) # to get back to the default, no indent

Or you can use a with construct:

with say.settings(indent='+1'):
 say(...)

 # anything say() emits here will be auto-indented +1 levels

anything say() emits here, after the with, will not be indented +1

Note

If using a string to indicate relative indent levels offends your sense of
dimensionality or strict typing, there is a class Relative that does the same
thing in a more formal way. indent='+2' and indent=Relative(+2) are identical.

If you have a lot of data or text to print, and it would normally create
super-long, difficult-to-read lines, you can easily wrap it:

say("This is a really long...blah blah blah", wrap=40)

Will automatically wrap the text to the given width
using Python’s standard textwrap module.
Feel free to use indentation and wrapping together.

Prefixes and Suffixes

Every line can be given a prefix or suffix, if desired. For example:

with say.settings(prefix='> '):
 say('this')
 say('that')

Will give what text email and Markdown consider a quoted block look:

> this
> that

Or if you’d like some text to be quoted with blue quotes:

say(text, prefix=styled('> ', 'blue'))

And if you like your output numbered:

say.set(prefix=numberer())
say('this\nand\nthat')

yields:

1: this
2: and
3: that

You can instantiate different numberers for different files, and if you
like, use the start keyword argument to start a numberer on
a designated value.

Aother common prefixing scenario is needing to use one prefix on the
first line, but a second prefix on the remainder of lines. The Python
REPL uses this scheme, for example, with the prefix strings '>>> '
and '... '. If you’d like that scheme, just:

say(text, prefix=first_rest('>>> ', '... '))

The Value Proposition

While it’s easy enough to add a few spaces to the format string of any print
statement or function in order to achieve a little indentation, it’s easy to
mistakenly type too many or too few spaces, or to forget to type them in some
format strings. If you’re indenting strings that themselves may contain
multiple lines, the simple print approach breaks because it won’t take
multi-line strings into account. Nor will it be integrated with line wrapping
or numbering or other formatting you also want.

say, however, simply and correctly handles these combined formatting
operations. Harder cases like multi-line strings are just as nicely and well
indented as simple ones–something not otherwise easily accomplished without
adding gunky, complexifying string manipulation code to every place in your
program that prints anything.

This starts to illustrate say’s “do the right thing” philosophy. So many
languages’ printing and formatting functions “output values” at a low level.
They may format basic data types, but they don’t provide straightforward ways to
do neat text transformations that rapidly yield correct, attractively-formatted
output. say does. Over time, say will provide even more high-level
formatting options. For now: indentation, wrapping, and line numbering.

Note

If you do find any errors in the way say handles formatting operations,
there’s an app for that [https://bitbucket.org/jeunice/say/issues]. Let’s fix
them once, in a common place, in reusable code–not spread around many different programs.

Titles, Rules, and Spacing

say defines a few convenience formatting functions:

say.title('Errors', char='-')
for i,e in enumerate(errors, start=1):
 say("{i:3}: {e['name'].upper()}")

might yield:

--------------- Errors ---------------

 1: I/O ERROR
 2: COMPUTE ERROR

A similar method hr produces just a horizontal line (“rule”), like
the HTML <hr> element. For either, one can optionally
specify the width (width), character repeated to make the line (char),
and vertical separation/whitespace above and below the item (vsep).
Good options for the repeated character might be be ‘-‘, ‘=’, or parts of the Unicode
box drawing character set [http://en.wikipedia.org/wiki/Box-drawing_character].

A final method, sep, creates a short left-aligned bar with optional
following text. It’s useful for creating logical subsections.:

say.sep("coffee")
say("I prefer coffee")
say.sep("tea", char="=", width=4)
say("I prefer tea")

Yields:

-- coffee
I prefer coffee

==== tea
I prefer tea

You can even define reusable styles for separators (and other say calls):

tilde_sep = dict(char="~", width=4)
say.sep("pass one", **tilde_sep)

Yields:

~~~~ pass one






Note

The char parameter was until recently called sep, which
conflicted with another use of sep.  It has since been renamed.




Vertical Spacing

You don’t need to add explicit
newline characters here and there to achieve good
vertical spacing.  say.blank_lines(n) emits n blank lines. And just
about every say call also supports a vsep (vertical separation)
parameter.:

say('TITLE', vsep=(2,0)        # add 2 newlines before (none after)
say('=====', vsep=(0,2))       # add 2 newlines after (none before)
say('something else', vsep=1)  # add 1 newline before, 1 after








This Just In

A new capability is to differentially set the formatting parameters on
a method by method basis. For example, if you want to see titles
in green:

say.title.set(style='green')





You could long set such options on a call-by-call basis, but being
able to set the defaults just for specific methods allows you to
get more formatting in with fewer characters typed.  This capability
is available on a limited basis: primarily for format-specific calls
(blank_lines, hr, sep, and title) for now.


Note

title and sep now print out more vertical whitespace
than in previous versions.
This is a direct usage of this method-by-method
configurability. Basically, say.title.set(vsep=1) and
say.sep.set(vsep=(1,0)) now come baked-in.









          

      

      

    

  

    
      
          
            
  
Colors and Styles

say has built-in support for style-driven formatting. By default,
ANSI terminal colors and styles are automagically supported.

answer = 42

say("The answer is {answer:style=bold+red}")





This uses the ansicolors [https://pypi.python.org/pypi/ansicolors]
module, though with a slightly more permissive syntax. Available colors are
‘black’, ‘blue’, ‘cyan’, ‘green’, ‘magenta’, ‘red’, ‘white’, and ‘yellow’.
Available styles are ‘bold’, ‘italic’, ‘underline’, ‘blink’, ‘blink2’,
‘faint’, ‘negative’, ‘concealed’, and ‘crossed’. These styles can be
combined with a + or | character. Note, however, that not all styles
are available on every terminal.


Note

When naming a style within the template braces ({}) of format strings, you can quote the style name or not. fmt("{x:style=red+bold}") is equivalent to fmt("{x:style='red+bold'}").



You can define your own styles:

say.style(warning=lambda x: color(x, fg='red'))





Because styles are defined through executables (lambdas, usually), they can
include decisions or text transformations of arbitrary complexity.
For example:

say.style(redwarn=lambda n: color(n, fg='red', style='bold') if int(n) < 0 else n)
...
say("Result: {n:style=redwarn}")





That will display the number n in bold red characters, but only if it’s value is
negative. For positive numbers, n is displayed normally.

Or define a style where a message is surrounded by red stars:

say.style(stars=lambda x: fmt('*** ', style='red') + \
                          fmt(x,      style='black') + \
                          fmt(' ***', style='red'))
say.style(redacted=lambda x: 'x' * len(x))

message = 'hey'
say(message, style='stars')
say(message, style='redacted')





Yields:

*** hey ***
xxx





(with red stars)


Note

Style defining lambdas (or functions) take string arguments. If the string is logically a number, it must be then cast into an int, float, or whatever. The code must ultimate return a string.



You can also apply a style to the entire contents of a say or fmt invocation:

say("There is green everywhere!", style='green|underline')





Or try:

say.set(prefix=numberer(template=color('{n:>3}: ', fg='green')), \
        wrap=20)
say('a long paragraph with gobs of text', style='indigo')





This correctly puts the line numbers in green, wraps the lines to 20 characters,
and puts the text in indigo.

Styled formatting is an extremely powerful approach, giving the
same kind of flexibility and abstraction seen for styles in word processors and
CSS-based Web design. It will be further developed.
Plans already include replacing textwrap with an ANSI-savvy text wrapping
module, providing simpler ways to state complex formatting, and mechanisms
to auto-map styles into HTML output.





          

      

      

    

  

    
      
          
            
  
Where and Wen You Like

say is organized to put output to the place or places you want, and
to do so only when you want. The destinations and on/off status
can easily be changed.


Where

say() writes to a list of files. By default the list is just
standard output (sys.stdout). But with a simple configuration
call, it will write to different–even multiple–files:

say.set(files=[sys.stdout, "report.txt"])
say(...)   # now prints to both sys.stdout and report.txt





Note that you never even had to open "report.txt". It’s okay
if you pass in open file objects, but if you pass in strings, they’ll
be interpreted as file names of intended output files, and opened for
you (with UTF-8 encoding, even).

With the above lines, you’re now both writing program output as normal
and capturing it to a file for later inspection and use. Try that
with your normal print statement/function! It can be done…if you
double the number of print calls.

Note however that if you pass a file descriptor that you open yourself,
and you’re using Python 2, you are responsible for opening the file
in a way that supports a proper encoding–a detail that Python 3 handles
for you. Please see the Encodings and Unicode section for more details and
examples.

say does, by the by, also support the file argument in the same way
Python 3’s print() does. This is a less typical use, but is provided for
compatiblity for those converting from print() calls.

You can also define
your own targeted Say instances, for example for error reporting:

err = say.clone(files=[sys.stderr, 'error.txt'])
err("Failed with error {errcode}")  # writes in both places
say("something else")   # independent of err








When

Output is great, but sometimes you need to go silent.
If you want to stop printing for a while:

say.set(silent=True)  # no printing until set to False





Or transiently:

say(...stuff..., silent=not verbose) # prints iff bool(verbose) is True





Of course, you don’t have to print at all.
fmt() works exactly like say() and inherits most of its options,
but doesn’t print. (The C analogy: say : fmt :: printf
: sprintf.)




How

On occasion it can be valuable to use say but not its varaible
interpolation. The say.verbatim() method does this. All the
standard formmating applies, but {} variable templates will not
be filled in.







          

      

      

    

  

    
      
          
            
  
Encodings and Unicode

Character encodings remain a fractious and often exasperating part of IT.

If you are deal with more than ASCII characters with any regularity
whatsoever, for the love of God and all that is holy, use Python 3.
It has greatly superior support for Unicode characters, and will
generally make your life much eaiser.

say() and fmt() try to avoid encoding gotchas by working with
Unicode strings.

In Python 3, all strings are Unicode strings, and all files are inherently smart
enough to read and write to reasonable encodings needed to store Unicode strings
on disk. But in Python 2, there is a choice between str and unicode, and
most files are not smart enough to use rational encodings. Indeed, files that
appear to have an encoding attribute will not let you set that attribute,
and they will not enforce that encoding when doing file IO. !@#$%^&!!!

So if you must use Python 2:


	Use unicode strings whenever possible.


	If you use the basie str type, include only ASCII characters, not
encoded bytes from UTF-8 or whatever. If you don’t do this, any trouble results
be on your head.


	If say opens a file for you, it will do it with the codecs module
with a default encoding of UTF-8. If you have say
write to a file that you open, you must  use
codecs.open(), io.open(), or a similar mechanism that supports
proper encoding. Else errors will result.




say has a long history of trying to make Python 2 automatically “do the
right thing” even when basic Python 2 facilities do not. We have discovered,
like so many others before us, that was a fool’s errand. Python 2 is simply
ill-prepared for day-in, day-out use of Unicode characters that are all around
us in the modern global world. While say continues some of this with respect
to the default standard output (stdout) stream, many of the previous
back-bends to support auto-encoding have been withdrawn. If you choose to use
Python 2, you are responsible for opening files in a responsible,
encoding-friendly way.:

from codecs import open

with open('outfile.txt', 'w', encoding='utf-8') as f:
    say(u'Contains\u2012Unicode!', file=f)









          

      

      

    

  

    
      
          
            
  
Text and Templates

Often the job of output is not about individual text lines, but about creating
multi-line files such as scripts and reports. This often leads away from standard
output mechanisms toward template packages, but say has you covered here as
well.

from say import Text

# assume `hostname` and `filepath` already defined

script = Text()
script += """
    !#/bin/bash

    # Output the results of a ping command to the given file

    ping {hostname!r} >{filepath!r}
"""

script.write_to("script.sh")





Then script.sh will contain:

!#/bin/bash

# Output the results of a ping command to the given file

ping 'server1234.example.com' >'ping-results.txt'





Text objects are basically a list of text lines. In most cases, when you add
text (either as multi-line strings or lists of strings), Text will
automatically interpolate variables the same way say does. One can
simply print or
say Text objects, as their str() value is the full text you would
assume. Text objects have both text and lines properties which
can be either accessed or assigned to.

+= incremental assignment
automatically removes blank starting and ending lines, and any whitespace prefix
that is common to all of the lines (i.e. it will dedent any given text).
This ensures you don’t need to give up
nice Python program formatting just to include a template.

While += is a handy way of incrementally building text, it
isn’t strictly necessary in the simple example above; the
Text(...) constructor itself accepts a string or set of lines.

Other in-place operators are: |= for adding text while preserving leading white
space (no dedent) and &= adds text verbatim–without dedent or string
interpolation.

One can read_from() a file (appending the contents of the file to the given
text object, with optional interpolation and dedenting). One can also
write_to() a file. Use the append flag if you wish to add to rather than
overwrite the file of a given name, and you can set an output encoding if you
like (encoding='utf-8' is the default).

So far we’ve discussed Text objects almost like strings, but they also act
as lists of individual lines (strings). They are, for example,
indexable via [], and they are iterable.
Their len() is the number of lines they contain. One can
append() or extend() them with one or multiple strings, respectively.
append() takes a keyword parameter interpolate that controls whether
{} expressions in the string are interpolated. extend() additionally takes
a dedent flag that, if true, will
automatically remove blank starting and ending lines, and any whitespace prefix
that is common to all of the lines.

If t is a Text instance, str(t) will be the full string representing it.
If you wish to move from multiple lines to a single-line, joined string, ' '.join(t)
does the trick.

Text objects, unlike strings, are mutable. The replace(x, y) method will
replace all instances of x with y in situ. If given just one argument,
a dict, all the keys will be replaced with their corresponding values.

Text doesn’t have the full set of text-onboarding options seen in textdata [http://pypi.python.org/pypi/textdata], but it should suit many circumstances.
If you need more, textdata can be used alongside Text.

Finally, it’s possible to use a Text object like a file and write to it.
So:

t = Text()
say.set(files=[sys.stdout, t])

say('something')





will now append each thing said to both sys.stdout and t.

There is a related class Template that does not interpolate its
format variables when constructed, but rather when explicitly rendered. This
suits certain form-filling operations:

t = Template("Dear {name},\n\nWelcome to our club!\n")
for name in 'Joe Jane Jeremey'.split():
    print t.render()









          

      

      

    

  

    
      
          
            
  
Iterpolators and Exceptions

You may want to write your own functions that take strings
and interpolate {}
format templates in them. The easy way is:

from say import caller_fmt

def ucfmt(s):
    return caller_fmt(s).upper()





If ucfmt() had used fmt(), it would not have worked. fmt() would
look for interpolating values within the context of ucfmt() and, not finding
any, probably raised an exception. But using caller_fmt() it looks into the
context of the caller of ucfmt(), which is exactly where those values would
reside. Voila!

And example of how this can work–and a useful tool in its own right–is FmtException.
If you want to have comprehensible error messages when something goes wrong, you
could use fmt():

if bad_thing_has_happened:
    raise ValueError(fmt("Parameters {x!r} or {y!r} invalid."))





But if you define your own exceptions, consider subclassing FmtException:

class InvalidParameters(FmtException, ValueError):
    pass

...

if bad_thing_has_happened:
    raise InvalidParameters("Parameters {x!r} or {y!r} invalid.")





You’ll save a few characters, and the code will be simpler and more comprehensible.





          

      

      

    

  

    
      
          
            
  
Python 3

Say works virtually the same way in Python 2 and Python 3. This can simplify
software that should work across the versions, without the hassle
of from __future__ import print_function.

say attempts to mask some of the quirky complexities of the 2-to-3 divide,
such as string encodings and codec use. In general, things work best if
you use Unicode strings any time you need to use non-ASCII characters.
In Python 3, this is automatic.





          

      

      

    

  

    
      
          
            
  
Alternatives


	ScopeFormatter [http://pypi.python.org/pypi/ScopeFormatter]
provides variable interpolation into strings. It is amazingly
compact and elegant. Sadly, it only interpolates Python names, not full
expressions. say has full expressions, as well as a framework for
higher-level printing features beyond ScopeFormatter’s…um…scope.


	interpolate [https://pypi.python.org/pypi/interpolate] is
similar to say.fmt(), in that it can
interpolate complex Python expressions, not just names.
Its i % "format string" syntax is a little odd, however, in
the way that it re-purposes Python’s earlier "C format string" % (values)
style % operator. It also depends on the native print statement
or function, which doesn’t help bridge Python 2 and 3.


	Even simpler are invocations of % or format()
using locals(). E.g.:

name = "Joe"
print "Hello, %(name)!" % locals()
# or
print "Hello, {name}!".format(**locals())





Unfortunately this has even more limitations than ScopeFormatter: it
only supports local variables, not globals or expressions. And the
interpolation code seems gratuitous. Simpler:

say("Hello, {name}!")







	In the future, PEP 498 [https://www.python.org/dev/peps/pep-0498/]
may provided some of the auto-formatting of literal strings that
say does now.








          

      

      

    

  

    
      
          
            
  
Notes


	The say name was inspired by Perl’s say [http://perldoc.perl.org/functions/say.html],
but the similarity stops there.


	Automated multi-version testing managed with the wonderful
pytest [http://pypi.python.org/pypi/pytest],
pytest-cov [http://pypi.python.org/pypi/pytest-cov],
coverage [http://pypi.python.org/pypi/coverage],
and tox [http://pypi.python.org/pypi/tox].
Packaging linting with pyroma [https://pypi.python.org/pypi/pyroma].


	Successfully packaged for, and tested against, all late-model versions of
Python: 2.6, 2.7, 3.3, 3.4, 3.5, and 3.6 as well as
late models of PyPy and PyPy3.


	say has greater ambitions than just simple template printing. It’s
part of a larger rethinking of how output should be formatted.
say.Text, show [http://pypi.python.org/pypi/show], and quoter [http://pypi.python.org/pypi/quoter] are other down-payments on this
larger vision. Stay tuned.


	In addition to being a practical module in its own right, say is
testbed for options [http://pypi.python.org/pypi/options], a package
that provides high-flexibility option, configuration, and parameter
management.


	The author, Jonathan Eunice or
@jeunice on Twitter [http://twitter.com/jeunice]
welcomes your comments and suggestions. If you’re using say in your own
work, drop me a note and tell me how you’re using it, how you like it,
and what you’d like to see!







To-Dos


	Further formatting techniques for easily generating HTML output and
formatting non-scalar values.


	Complete the transition to per-method styling and more refined named
styles.


	Provide code that allows pylint to see that variables used inside
the say and fmt format strings are indeed thereby used.








          

      

      

    

  

    
      
          
            
  
API Reference


	
class say.Say(**kwargs)

	Say provides high-level printing functions. Instances are configurable
and callable.


	
__call__(*args, **kwargs)

	Primary interface. say(something)






	
__init__(**kwargs)

	Make a Say instance with the given options.






	
blank_lines(n, **kwargs)

	Output N blank lines (“vertical separation”). Unlike other methods, this
does not obey normal vertical separation rules, because it is about
explicit vertical separation. If it obeyed vsep, it would usually gild
the lily (double space).






	
but(**kwargs)

	Create a new instance whose options are chained to this instance’s
options (and thence to self.__class__.options). kwargs become the
cloned instance’s overlay options.






	
clone(**kwargs)

	Create a new instance whose options are chained to this instance’s
options (and thence to self.__class__.options). kwargs become the
cloned instance’s overlay options.






	
static escape(s)

	Double { and } characters in a string to ‘escape’ them so str.format
doesn’t treat them as template characters. NB This is NOT idempotent!
Escaping more than once (when { or } are present ) = ERROR.






	
fork(**kwargs)

	Create a new instance whose options are chained to this instance’s
class’s options, then this instance’s current values, then any
difference values stated in kwwargs.






	
hr(**kwargs)

	Print a horizontal line. Like the HTML hr tag. Optionally
specify the width, character repeated to make the line, and vertical separation.

Good options for the separator may be ‘-‘, ‘=’, or parts of the Unicode
box drawing character set. http://en.wikipedia.org/wiki/Box-drawing_character






	
options = Options(styles={}, files=[<open file '<stdout>', mode 'w'>], style=None, end='\n', silent=False, sep=' ', indent_str='    ', prefix='', indent=0, vsep=None, wrap=None, file=Transient, suffix='')

	




	
sep(text='', **kwargs)

	Print a short horizontal line, possibly with some text following,
of the desired width. Useful as a separator for different parts
of output.






	
set(**kwargs)

	Permanently change the reciver’s settings to those defined in the kwargs.
An update-like function.






	
setfiles(files)

	Set the list of output files. files is a list. For each item, if
it’s a real file like sys.stdout, use it. If it’s a string, assume
it’s a filename and open it for writing.






	
settings(**kwargs)

	Open a context manager for a with statement. Temporarily change settings
for the duration of the with.






	
style(*args, **kwargs)

	Define a style.






	
title(name, **kwargs)

	Print a horizontal line with an embedded title.






	
verbatim(*args, **kwargs)

	Say, but without interpretation. Useful for just its text decoration
features.










	
class say.Fmt(**kwargs)

	A type of Say that returns its result, rather than writes it
to files.


	
__call__(*args, **kwargs)

	Primary interface. say(something)






	
__init__(**kwargs)

	




	
blank_lines(n, **kwargs)

	Output N blank lines (“vertical separation”). Unlike other methods, this
does not obey normal vertical separation rules, because it is about
explicit vertical separation. If it obeyed vsep, it would usually gild
the lily (double space).






	
but(**kwargs)

	Create a new instance whose options are chained to this instance’s
options (and thence to self.__class__.options). kwargs become the
cloned instance’s overlay options.






	
clone(**kwargs)

	Create a new instance whose options are chained to this instance’s
options (and thence to self.__class__.options). kwargs become the
cloned instance’s overlay options.






	
escape(s)

	Double { and } characters in a string to ‘escape’ them so str.format
doesn’t treat them as template characters. NB This is NOT idempotent!
Escaping more than once (when { or } are present ) = ERROR.






	
fork(**kwargs)

	Create a new instance whose options are chained to this instance’s
class’s options, then this instance’s current values, then any
difference values stated in kwwargs.






	
hr(**kwargs)

	Print a horizontal line. Like the HTML hr tag. Optionally
specify the width, character repeated to make the line, and vertical separation.

Good options for the separator may be ‘-‘, ‘=’, or parts of the Unicode
box drawing character set. http://en.wikipedia.org/wiki/Box-drawing_character






	
options = Options(files=Prohibited, styles={}, suffix='', sep=' ', indent_str='    ', prefix='', file=Transient, wrap=None, indent=0, style=None, end=None, silent=Prohibited, vsep=None)

	




	
sep(text='', **kwargs)

	Print a short horizontal line, possibly with some text following,
of the desired width. Useful as a separator for different parts
of output.






	
set(**kwargs)

	Permanently change the reciver’s settings to those defined in the kwargs.
An update-like function.






	
setfiles(files)

	Set the list of output files. files is a list. For each item, if
it’s a real file like sys.stdout, use it. If it’s a string, assume
it’s a filename and open it for writing.






	
settings(**kwargs)

	Open a context manager for a with statement. Temporarily change settings
for the duration of the with.






	
style(*args, **kwargs)

	Define a style.






	
title(name, **kwargs)

	Print a horizontal line with an embedded title.






	
verbatim(*args, **kwargs)

	Say, but without interpretation. Useful for just its text decoration
features.










	
class say.Text(data=None, interpolate=True, dedent=True)

	
	
__init__(data=None, interpolate=True, dedent=True)

	




	
append(line, callframe=None, interpolate=True)

	




	
copy()

	Make a copy.






	
extend(lines, callframe=None, interpolate=True, dedent=True)

	




	
insert(i, data, callframe=None, interpolate=True, dedent=True)

	




	
lines

	




	
re_replace(target, replacement)

	Regular expression replacement. Target is either compiled re object or
string that will be compiled into one. Replacement is either string or
function that takes re match object as a parameter and returns replacement
string.






	
read_from(filepath, interpolate=True, dedent=True, encoding='utf-8')

	Reads lines from the designated file, appending them to the end of the
given Text. By default, interpolates and dedents any {}
expressions.






	
render()

	Equivalent to __str__. For compatibility with Template
subclass.






	
replace(target, replacement=None)

	Replace all instances of the target string with the replacement string.
Works in situ, contra str.replace().






	
text

	




	
write(contents)

	Make it possible for Text objects to operate like file objects, and be written to.






	
write_to(filepath, append=False, encoding='utf-8')

	Write the Text instance’s contents to the given filepath.
:param filepath: Filepath to write to.
:param append: Whether to appened to the file (if it exists) or overwrite (default)
:param encoding: How to encode the contents (default utf-8)













          

      

      

    

  

    
      
          
            
  
Installation

To install or upgrade to the latest version:

pip install -U say





To easy_install under a specific Python version (3.3 in this example):

python3.3 -m easy_install --upgrade say





(You may need to prefix these with sudo to authorize
installation. In environments without super-user privileges, you may want to
use pip’s --user option, to install only for a single user, rather
than system-wide.)


Testing

If you wish to run the module tests locally, you’ll need to install
pytest and tox.  For full testing, you will also need pytest-cov
and coverage. Then run one of these commands:

tox                # normal run - speed optimized
tox -e py27        # run for a specific version only (e.g. py27, py34)
tox -c toxcov.ini  # run full coverage tests





The provided tox.ini and toxcov.ini config files do not define
a preferred package index / repository. If you want to use them with
a specific (presumably local) index, the -i option will come in
very handy:

tox -i INDEX_URL











          

      

      

    

  

    
      
          
            
  
Change Log

1.6.4  (May 27, 2017)


Now uses the latest version of ansicolors, extending to the
full set of CSS color names and hex notations, in addition to the
traditional small set of ANSI color names.  So say('this',
style='peachpuff') or say('this', style='#663399') to your
heart’s content!

A future release will be needed to extend color name parsing to
other notations such as ANSI numeric and CSS rgb() spcs.

Also fixed a bug when wrapping, ANSI colors, and colored prefixes
are used together.




1.6.3  (May 26, 2017)


Adds a say.verbatim method. It provides all the standard say
formatting features, but does NOT interpolate variable expressions
in braces. Useful for managing pre-formatted text which might
contain expressions without the need for escaping.

Updated Python 2/3 compatibility strategy to be Python 3-centric.
Retired _PY3 flag for _PY2 flag, as Python 3 is now the default
assumption. That we now exclude 2.x with x < 6 and 3.x with x < 3
helps greatly. 2.6 and 2.7 make great reaches forward toward 3.x,
and 3.3 started to make strong reaches backwards.




1.6.1  (May 23, 2017)


Replaces textwrap module with ansiwrap. ANSI-colored or
styled text can now be correctly wrapped, prefixed, etc. say
version is bumped only slightly, but this marks a substantial
advance in ability to manage colored/styled text in a “just works”
way, which is the original premise of the package.




1.6.0  (May 19, 2017)


Withdrew support for backflip-level attempts to make Python 2
files behave with rational encodings. If say opens a file on
your behalf, it will do the rigtht thing. It will also try very
hard to do the right thing with respect to sys.stdout. But for
arbitrary files that you open, make sure they’re properly encoded.
Use codecs.open or io.open for that.

Reorganized some code. Added and reinstated tests. Bumped coverage
+1%, to 97%.

Added file parameter to say(), to make 1:1 compatible with
Python 3’s native print().




1.6.1  (May 15, 2017)


Updated mechanism for method-specific option setting. Still work
in progress, but code now much cleaner.

The experimental operator form of say  > has been
withdrawn. The operator style isn’t consonant with Python
philosophy, complicated the code base, and only partially worked.
Interesting idea, but experience suggests not worth the trouble.




1.5.0  (May 14, 2017)


Changed name of parameter sep in hr, title, and
sep methods because discovered it was conflating and
interfering with the sep parameter in the main options.  The
horizontal separator character that is repeated N times is now
addressed as char.




1.4.5  (March 22, 2017)


Added first_rest prefix helper. First line gets one prefix,
(all) subsequent lines get another. Prefix helpers reorganized
into their own submodule, show.prefixes.




1.4.4  (March 22, 2017)


Fixed problem with Unicode stream handling under Python 2. It has
slipped under the testing radar, given too many mocks and not
enough full-out integration testing. Oops!




1.4.3  (January 23, 2017)


Updates testing for early 2017 Python versions. Successfully
packaged for, and tested against, all late-model versions of
Python: 2.6, 2.7, 3.3, 3.4, 3.5, and 3.6, as well as PyPy 5.6.0
(based on 2.7.12) and PyPy3 5.5.0 (based on 3.3.5). Python 3.2
removed from official  support; no longer a current version of
Python and not  well-supported by testing matrix.




1.4.2  (September 15, 2015)


Tested with Python 3.5.0 final.




1.4.0  (September 8, 2015)


Added ability to set styles for some methods such as title,
hr, and sep as an overlay to class, object, and per-call
settings. This is a first delivery on what will become a general
feature over the next few releases. Added vertical spacing to
title and sep methods for nicer layouts.

Increased testing line coverage to 96%, improving several
routines’ robustness in the process.




1.3.12  (September 1, 2015)


Tweaks and testing for new version 1.4 of underlying options
module.

New options version returns support for Python 2.6.




1.3.9  (August 26, 2015)


Reorganized documentation structure. Updated some setup
dependencies.




1.3.5  (August 17, 2015)


Instituted integrated, multi-version coverage testing with tox,
pytest, pytest-cov, and coverage. Initial score: 86%.




1.3.4  (August 16, 2015)


Updated SayReturn logic, which was broken, in order to support
an upgrade of show




1.3.3  (August 16, 2015)


Added sep method for separators.

Some code cleanups and a few additional tests.å

Officially switched to YAML-format Change Log (CHANGES.yml)




1.3.2  (August 12, 2015)


Code cleanups.




1.3.1  (August 11, 2015)


Doc, config, and testing updates. Removed joiner module and
tests. May import that funcationality from quoter module in
future.

Python 2.6 currently unsupported due to issues with underlying
stuf module. Support may return, depending on compatibility
upgrades for future stuf releases.




1.3  (July 22, 2015)


Added Template class. A deferred-rendering version of Text




1.2.6  (July 22, 2015)


Configuration, testing matrix, and doc tweaks.




1.2.5  (December 29, 2014)


Fixed problem that was occuring with use of Unicode characters
when rendered inside the Komodo IDE, which set the sys.stdout
encoding to US-ASCII not UTF-8. In those cases, now
inserts a codec-based writer object to do the encoding.




1.2.4  (June 4, 2014)


Now testing for Python 3.3 and 3.4. One slight problem with them
when encoding to base64 or similar bytes-oriented output that did
not appear in earlier Python 3 builds. Examining.

Added gittip link as an experiment.




1.2.1  (October 16, 2013)


Fixed bug with quoting of style names/definitions.

Tweaked documentation of style definitions.




1.2.0  (September 30, 2013)


Added style definitions and convenient access to ANSI colors.




1.1.0  (September 24, 2013)


Line numbering now an optional way to format output.

Line wrapping is now much more precise. The wrap parameter now
specifies the line length desired, including however many
characters are consumed by prefix, suffix, and indentation.

Vertical spacing is regularized and much better tested. The
vsep option, previously available only on a few methods, is
now available everywhere. vsep=N gives N blank lines before
and after the given output statement. vsep=(M,N) gives M blank
lines before, and N blank lines after. A new Vertical class
describes vertical spacing behind the scenes.

Say no longer attempts to handle file encoding itself, but
passes this responsibility off to file objects, such as those
returned by io.open. This is cleaner, though it does remove
the whimsical possibility of automagical base64 and rot13
encodings. The encoding option is withdrawn as a result.

You can now set the files you’d like to output to in the same way
you’d set any other option (e.g. say.set(files=[...]) or
say.clone(files=[...])). “Magic” parameter handling is enabled
so that if any of the items listed are strings, then a file of
that name is opened for writing. Beware, however, that if you
manage the files option explicitly (e.g.
say.options.files.append(...)), you had better provide proper
open files. No magical interpretation is done then. The
previously-necessary say.setfiles() API remains, but is now
deprecated.

fmt() is now handled by Fmt, a proper subclass of Say,
rather than just through instance settings.

say() no longer returns the value it outputs. retvalue and
encoded options have therefore been withdrawn.




1.0.4  (September 16, 2013)


Had to back out part of the common __version__ grabbing. Not
compatible with Sphinx / readthedocs build process.




1.0.3  (September 16, 2013)


Added FmtException class

Tightened imports for namespace cleanliness.

Doc tweaks.

Added __version__ metadata common to module, setup.py, and
docs.




1.0.2  (September 14, 2013)


Added prefix and suffix options to say and fmt,
along with docs and tests.




1.0.1  (September 13, 2013)


Moved main documentation to Sphinx format in ./docs, and
hosted the long-form documentation on readthedocs.org.
README.rst now an abridged version/teaser for the module.




1.0  (September 27, 2013)


Cleaned up source for better PEP8 conformance

Bumped version number to 1.0 as part of move to semantic
versioning [http://semver.org], or at least enough of it so as
to not screw up Python installation procedures (which don’t seem
to understand 0.401 is a lesser version that 0.5, because 401 >
5).








          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | B
 | C
 | E
 | F
 | H
 | I
 | L
 | O
 | R
 | S
 | T
 | V
 | W
 


_


  	
      	__call__() (say.Fmt method)

      
        	(say.Say method)


      


  

  	
      	__init__() (say.Fmt method)

      
        	(say.Say method)


        	(say.Text method)


      


  





A


  	
      	append() (say.Text method)


  





B


  	
      	blank_lines() (say.Fmt method)

      
        	(say.Say method)


      


  

  	
      	but() (say.Fmt method)

      
        	(say.Say method)


      


  





C


  	
      	clone() (say.Fmt method)

      
        	(say.Say method)


      


  

  	
      	copy() (say.Text method)


  





E


  	
      	escape() (say.Fmt method)

      
        	(say.Say static method)


      


  

  	
      	extend() (say.Text method)


  





F


  	
      	Fmt (class in say)


  

  	
      	fork() (say.Fmt method)

      
        	(say.Say method)


      


  





H


  	
      	hr() (say.Fmt method)

      
        	(say.Say method)


      


  





I


  	
      	insert() (say.Text method)


  





L


  	
      	lines (say.Text attribute)


  





O


  	
      	options (say.Fmt attribute)

      
        	(say.Say attribute)


      


  





R


  	
      	re_replace() (say.Text method)


      	read_from() (say.Text method)


  

  	
      	render() (say.Text method)


      	replace() (say.Text method)


  





S


  	
      	Say (class in say)


      	sep() (say.Fmt method)

      
        	(say.Say method)


      


      	set() (say.Fmt method)

      
        	(say.Say method)


      


  

  	
      	setfiles() (say.Fmt method)

      
        	(say.Say method)


      


      	settings() (say.Fmt method)

      
        	(say.Say method)


      


      	style() (say.Fmt method)

      
        	(say.Say method)


      


  





T


  	
      	Text (class in say)


      	text (say.Text attribute)


  

  	
      	title() (say.Fmt method)

      
        	(say.Say method)


      


  





V


  	
      	verbatim() (say.Fmt method)

      
        	(say.Say method)


      


  





W


  	
      	write() (say.Text method)


  

  	
      	write_to() (say.Text method)


  







          

      

      

    

  _static/up-pressed.png





_static/up.png





_images/00000745.png
Discovered

Name: Fred
Age: 32





_static/ajax-loader.gif





nav.xhtml

    
      Table of Contents


      
        		
          say
        


        		
          Usage
        


        		
          Indentation and Wrapping
        


        		
          Prefixes and Suffixes
        


        		
          The Value Proposition
        


        		
          Titles, Rules, and Spacing
        


        		
          Colors and Styles
        


        		
          Where and When You Like
        


        		
          Encodings and Unicode
        


        		
          Text and Templates
        


        		
          Iterpolators and Exceptions
        


        		
          Python 3
        


        		
          Alternatives
        


        		
          Notes
        


        		
          To-Dos
        


        		
          API Reference
        


        		
          Installation
        


        		
          Change Log
        


      


    
  

_static/comment.png





_static/down-pressed.png





_static/comment-bright.png





_static/comment-close.png





_static/file.png





_static/minus.png





_static/down.png





_static/plus.png





