

Welcome to satellite-populate’s documentation!

Contents:

	Satellite-Populate
	Installation

	Features

	Satellite versions

	Credits

	Usage
	Commands

	Hostname and Credentials

	Decorator

	The YAML data file

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	History
	0.1.3 (2017-01-13)

	0.1.2 (2017-01-12)

	0.1.0 (2017-01-10)

	satellite_populate
	satellite_populate package

Indices and tables

	Index

	Module Index

	Search Page

Satellite-Populate

[image: https://img.shields.io/pypi/v/satellite-populate.svg]
 [https://pypi.python.org/pypi/satellite-populate][image: https://img.shields.io/travis/SatelliteQE/satellite-populate.svg]
 [https://travis-ci.org/SatelliteQE/satellite-populate][image: Documentation Status]
 [https://satellite-populate.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/satelliteqe/satellite-populate/]Populate and Validate the System using YAML

	Free software: GNU General Public License v3

	Documentation: https://satellite-populate.readthedocs.io.

Installation

To install latest released version:

pip install satellite-populate

To install from github master branch:

pip install https://github.com/SatelliteQE/satellite-populate/tarball/master

For development:

fork https://github.com/SatelliteQE/satellite-populate/ to YOUR_GITHUB
clone your repo locally
git clone git@github.com:YOUR_GITHUB/satellite-populate.git
cd satellite-populate

add upstream remote
git remote add upstream git@github.com:SatelliteQE/satellite-populate.git

create a virtualenv
mkvirtualenv satellite-populate
workon satellite-populate

install for development (editable)
pip install -r requirements.txt

Testing if installation is good:

$ satellite-populate --test
satellite_populate.base - INFO - ECHO: Hello, if you can see this it means that I am working!!!

Features

YAML based actions

Data population definition goes to YAML file e.g office.yaml in the following
example we are going to create 2 organizations and 2 admin users using lists:

vars:

 org_names:
 - Dunder Mifflin
 - Wernham Hogg

 user_list:
 - firstname: Michael
 lastname: Scott

 - firstname: David
 lastname: Brent

actions:

 - model: Organization
 with_items: org_names
 register: default_orgs
 data:
 name: "{{ item }}"
 label: org{{ item.replace(' ', '') }}
 description: This is a satellite organization named {{ item }}

 - model: User
 with_items: user_list
 data:
 admin: true
 firstname: "{{ item.firstname }}"
 lastname: "{{ item.lastname }}"
 login: "{{ '{0}{1}'.format(item.firstname[0], item.lastname) | lower }}"
 password:
 from_factory: alpha
 organization:
 from_registry: default_orgs
 default_organization:
 from_registry: default_orgs[loop_index]

On the populate file you can define CRUD actions such as create, delete, update
if action: is not defined, the default will be create.

And also there is special actions and custom actions explained later.

Populate Satellite With Entities

Considering office.yaml file above you can populate satellite system with the
command line:

$ satellite-populate office.yaml -h yourserver.com --output=office.yaml -v

In the above command line -h stands for --hostname, --output is the
output file which will be written to be used to validate the system, and -v is
the verbose level.

To see the list of available arguments please run:

satellite-populate --help

Validate if system have entities

Once you run satellite-populate you can use the outputted file to validate the system.
as all the output files are named as validation_<name>.yaml in office example you can run:

$ satellite-populate validation_office.yaml -v

Using that validation file the system will be checked for entities existence, read-only.
The Validation file exists because during the population dynamic data is generated such as
passwords and strings from_factory and also some entities can be deleted or updated
so validation file takes care of it.

Special actions

Some builtin special actions are:

	assertion

	echo

	register

	unregister

In the following example we are going to run a complete test case using
actions defined in YAML file, if validation fails system returns status 0
which can be used to automate tests:

A TEST CASE USING SPECIAL ACTIONS
Create a plain vanilla activation key
Check that activation key is created and its "unlimited_hosts"
attribute defaults to true

- action: create
 log: Create a plain vanilla activation key
 model: ActivationKey
 register: vanilla_key
 data:
 name: vanilla
 organization:
 from_registry: default_orgs[0]

- action: assertion
 log: >
 Check that activation key is created and its "unlimited_hosts"
 attribute defaults to true
 operation: eq
 register: vanilla_key_unlimited_hosts
 data:
 - from_registry: vanilla_key.unlimited_hosts
 - true

- action: echo
 log: Vanilla Key Unlimited Host is False!!!!
 level: error
 print: true
 when: vanilla_key_unlimited_hosts == False

- action: echo
 log: Vanilla Key Unlimited Host is True!!!!
 level: info
 print: true
 when: vanilla_key_unlimited_hosts

- action: register
 data:
 you_must_update_vanilla_key: true
 when: vanilla_key_unlimited_hosts == False

Custom actions

And you can also have special actions defined in a custom populator.

Lets say you have this python module in your project, properly available on
PYTHONPATH:

from satellite_populate.api import APIPopulator

class MyPopulator(APIPopulator):
 def action_writeinfile(self, rendered_data, action_data):
 with open(rendered_data['path'], 'w') as output:
 output.write(rendered_data['content'])

Now go to your test.yaml and write:

config:
 populator: mine
 populators:
 mine:
 module: mypath.mymodule.MyPopulator

actions:

 - action: writeinfile
 path: /tmp/test.txt
 content: Hello World!!!

and run:

$ satellite-populate test.yaml -v

Decorator for test cases

Having a data_file like:

actions:
 - model: Organization
 register: organization_1
 data:
 name: My Org

Then you can use in decorators:

@populate_with('file.yaml')
def test_case_(self):
 'My Org exists in system test anything here'

And getting the populated entities inside the test_case:

@populate_with('file.yaml', context_name='my_context')
def test_case_(self, my_context=None):
 assert my_context.organization_1.name == 'My Org'

You can also set a customized context wrapper to the
context_wrapper argument::

 def my_custom_context_wrapper(result):
 # create an object using result
 my_context = MyResultContext(result)
 return my_context

 @populate_with('file.yaml', context_name='my_context',
 content_wrapper=my_custom_context_wrapper)
 def test_case_(self, my_context=None):
 # assert with some expression using my_context object returned
 # my_custom_context_wrapper
 assert some_expression

NOTE:

That is important that ``context`` argument always be declared using
either a default value ``my_context=None`` or handle in ``**kwargs``
Otherwise ``py.test`` may try to use this as a fixture placeholder.

if context_wrapper is set to None, my_context will be the pure unmodified
result of populate function.

Satellite versions

This code is by default prepared to run against Satellite latest version
which means the use of the latest master from nailgun repository.

If you need to run this tool in older versions e.g: to tun upgrade tests, you
have to setup nailgun version.

You have 2 options:

Manually

before installing satellite-populate install specific nailgun version as
the following list.

	Satellite 6.1.x:

pip install -e git+https://github.com/SatelliteQE/nailgun.git@0.28.0#egg=nailgun
pip install satellite-populate

	Satellite 6.2.x:

pip install -e git+https://github.com/SatelliteQE/nailgun.git@6.2.z#egg=nailgun
pip install satellite-populate

	Satellite 6.3.x (latest):

pip install -e git+https://github.com/SatelliteQE/nailgun.git#egg=nailgun
pip install satellite-populate

Docker

If you need to run satellite-populate in older Satellite versions you can
use the docker images so it will manage the correct nailgun version to
be used with that specific system version.

https://hub.docker.com/r/satelliteqe/satellite-populate/

First pull image from Docker Hub:

docker pull satelliteqe/satellite-populate:latest

Change :latest to specific tag. e.g: :6.1 or :6.2

Test it:

docker run satelliteqe/satellite-populate --test

Then run:

docker run -v $PWD:/datafiles satelliteqe/satellite-populate /datafiles/theoffice.yaml -v -h server.com

You must map your local folder containing datafiles

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Usage

This section explains Satellite Populate data populate.

Contents

	Usage
	Commands

	Hostname and Credentials

	Decorator

	The YAML data file
	config

	vars

	Actions
	CRUD
	create

	update

	delete

	OTHER
	echo

	register

	unregister

	assertion

	CUSTOM

	Dynamic Data

	The internal registry

Commands

Using $ satellite-populate you can run the populate and validate commands.
That commands are used to read data description from YAML file and
populate the system or validate populated entities.

Having test_data.yaml with the following content.

vars:
 org_label_suffix = inc
actions:
 - model: Organization
 log: The first organization...
 register: org_1
 data:
 name: MyOrg
 label: MyOrg{{org_label_suffix}}

To populate the system

(satellite_env)[you@host]$ satellite-populate test_data.yaml -v -o validation_data.yaml
2017-01-04 04:31:17 - satellite_populate.base - INFO - CREATE: The first organization...
2017-01-04 04:31:19 - satellite_populate.base - INFO - search: Organization {'query': {'search': 'name=MyOrg,label=MyOrg'}} found unique item
2017-01-04 04:31:19 - satellite_populate.base - INFO - create: Entity already exists: Organization 36
2017-01-04 04:31:19 - satellite_populate.base - INFO - registry: org_1 registered

To validate the system use the file generated by population validation_data.yaml

(satellite_env)[you@host]$ satellite-populate validation_data.yaml
(satellite_env)[you@host]$ echo $?
0 # system validated else 1

Use $ satellite-populate --help for more info

Hostname and Credentials

Pass -h –hostname, -p –password, -u –username to the command, or this
arguments to decorator:

@populate_with(data, username='x', password='y', hostname='server.com')

NOTE:

“validation data can also be included in config section”

Decorator

Other way to use populate is via decorator, it is useful to decorate a test_case
forcing a populate or validate operation to be performed.

Having a data_file like:

actions:
 - model: Organization
 register: organization_1
 data:
 name: My Org

Then you can use in decorators:

@populate_with('file.yaml')
def test_case_(self):
 'My Org exists in system test anything here'

And getting the populated entities inside the test_case:

@populate_with('file.yaml', context_name='my_context')
def test_case_(self, my_context=None):
 assert my_context.organization_1.name == 'My Org'

You can also set a customized context wrapper to the
context_wrapper argument::

 def my_custom_context_wrapper(result):
 # create an object using result
 my_context = MyResultContext(result)
 return my_context

 @populate_with('file.yaml', context_name='my_context',
 content_wrapper=my_custom_context_wrapper)
 def test_case_(self, my_context=None):
 # assert with some expression using my_context object returned
 # my_custom_context_wrapper
 assert some_expression

And if you don’t want to have YAML file you can provide a dict:

data_in_dict = {
 'actions': [
 {
 'model': 'Organization',
 'register': 'organization_1',
 'data': {
 'name': 'My Organization 1',
 'label': 'my_organization_1'
 }
 },
]
}

@populate_with(data_in_dict, context_name='my_context', verbose=1)
def test_org_1(my_context=None):
 """a test with populated data"""
 assert my_context.organization_1.name == "MyOrganization1"

And finally it also accepts bare YAML string for testing purposes:

data_in_string = """
actions:
- model: Organization
 registry: organization_3
 data:
 name: My Organization 3
 label: my_organization_3
"""

@populate_with(data_in_string, context_name='context', verbose=1)
def test_org_3(context=None):
 """a test with populated data"""
 assert context.organization_3.name == "My Organization 3"
 assert context.organization_3.label == "my_organization_3"

NOTE:

“That is important that context_name argument always be declared
using either a default value my_context=None or handle in
**kwargs Otherwise py.test may try to use this as a fixture
placeholder. And if context_wrapper is set to None, my_context will be the pure unmodified
result of populate function.”

Decorating UnitTest setUp and test_cases:

class MyTestCase(TestCase):
 """
 This test populates data in setUp and also in individual tests
 """
 @populate_with(data_in_string, context_name='context')
 def setUp(self, context=None):
 self.context = context

 def test_with_setup_data(self):
 self.assertEqual(
 self.context.organization_3.name, "My Organization 3"
)

 @populate_with(data_in_dict, context_name='test_context')
 def test_with_isolated_data(self, test_context=None):
 self.assertEqual(
 test_context.organization_1.name, "My Organization 1"
)

The YAML data file

In the YAML data file it is possible to specify 3 sections, config, vars and actions.

config

The config may be used to define special behavior of populator and its keys are:

example:

config:
 verbose: 3
 populator: api
 populators:
 api:
 module: satellite_populate.api.APIPopulator
 cli:
 module: satellite_populate.cli.CLIPopulator

Config variables:

config:
 # Set verbosity to -v, -vv, -vvv, -vvvv, -vvvvv
 # int
 # range(0, 5)
 verbose: 1

 # define the default active populator name
 # str
 populator: foo

 # specify available populators
 # dict(<name>=dict(module='module_path'))
 populators:
 foo:
 module: mypack.mymodule.MyPopulatorClass
 other:
 module: otherpath.OtherClass

 # define the mode (override by argument)
 # str
 # choices: validate | populate
 mode: validate

 # http or https ? (override by argument)
 schema: http

 # Satellite system port (override by argument)
 port: 443

 # hostname (without scheme) (override by argument)
 hostname: server.com

 # Admin username (override by argument)
 username: admin

 # admin password (override by argument)
 password: changeme

 # User for ssh login (override by argument)
 ssh_user: root

 # Ssh auth (override by argument)
 # if None local ~/.ssh pub key is used
 # or password
 # or keyfile
 ssh_auth:
 password: 123456
 key_file: path/to/file.pub

 # raw search rules is a dict of rules
 # to force some transformations over nailgun
 # EntitySearchMixin
 # in the example below we are removing the password
 # field from search queries for User entity
 raw_search_rules:
 user:
 password:
 remove: true

 # In some cases a GPGKey is needed for nailgun
 gpgkey:
 content: skjfsdhbgbsdhbgsdjbg=
 docker_url: system.com:dockerport

 # inject following modules to context (import)
 add_to_context:
 path: os.path
 shortname: package.module.module.module.object
 # the above will available as {{ shortname }}

vars

Variables to be available in the rendering context of the YAML data
every var defined here is available to be referenced using Jinja syntax in
any action.

vars:
 admin_username: admin
 admin_password: changeme
 org_name_list:
 - company7
 - company8
 prefix: aaaa
 suffix: bbbb
 my_name: me

Actions

The actions is the most important section of the YAML, it is a list of actions
being each action a dictionary containing special keys depending on the action type.

Actions are executed in the defined order and order is very important because
each action can register its result to the internal registry to be referenced
later in any other action.

The action type is defined in action key and available actions are:

CRUD

Crud actions takes a model argument, any from nailgun.entities is a valid model,
models are passed as CamelCasedName of the antity class, then, depending on
the populator being used, that CRUD action can be performed by API, CLI or UI.

List of possible variables for crud actions:

action name - create | delete | update
action: create

entity class
model: User

name to register
register: my_user

log message to output
log: Creating a new user

Must iterate a list to repeat the same action?
with_items:
 - item1
 - item2
 ...

The data to perform a search for the entity
data:

 # base types - int, str, list etc..
 name: Foo bar

 # from an available Python object
 url:
 from_object: somemodule.constants.REPO_URL

 # from a search in the system
 organization:
 from_search:
 model: Organization
 data:
 name: SomeCompanyName

 # from specific ID
 product:
 from_read:
 model: Product
 data:
 id: 1

 # from registered action
 user:
 from_registry: already_existing_user

 # from fauxfactory generator
 password:
 from_factory: alphanumeric

If needed specify data to be used only for search (in validation)
search_query:
 field: something

If needed custom options can be passed to nailgun search
search_options:
 filter: {}

 # should force a raw search or use attribute search?
 # note: some entities such as Organization will always be raw searched
 force_raw: true | false

Choose which populator to use for this specific action
NotImplementedYet
via: api | cli | ui | custom_populator

Should errors be silenced and None registered if error?
silent_errors: true | false

Run async?
NotImplementedYet
async: true | false
wait: other_action_register_name

Run only in the case of following condition
Python allowed, registered objects allowed
should be a Boolean operation
when: object_a == object_b and 1 > 0

create

Search for the new entity and creates if not found, else only register the object.

	If no action is informed create will be always the default

	In populate perform search then create

	In validate perform only search

Required variables:

	model: Nailgun Entity Class name

	data: a dictionary to search or populate the entity

Creating a simple Organization:

a list of dictionaries
actions:

 - model: Organization # the nailgun Entity class

 # The message to output in the log
 log: This is the first organization

 # The name which this object will be registered
 # to be referenced in other actions.
 register: my_organization

 # The data to search or populate the entity
 data:
 name: My Company
 label: mycompany

Creating 2 organizations and 2 users from lists and referencing objects from the registry:

vars:

 # a list with data for 2 users
 user_list:
 - firstname: Michael
 lastname: Scott
 - firstname: David
 lastname: Brent

 # a list of company names
 company_names:
 - Dunder Mifflin
 - Wernham Hogg

actions:

 # create all the organizations listed above
 - model: Organization

 # iterate specified list and repeats the action for each
 with_items: company_names

 # include the result in registry
 # if `with_items` is used, the registered object will be a list
 register: companies

 # give the data
 data:
 name: "{{item}}"
 label: "{{item.replace(' ', '')}}" # transform name in a valid label

 # Create one user as admin for each organization
 - model: User
 with_items: user_list
 data:
 admin: true
 # refer to loop iteration using `items` object
 firstname: "{{item.firstname}}"
 lastname: "{{item.lastname}}"

 # Use object methods and Jinja filters to transform data
 # the following gives us mscott and dbrent
 login: "{{ '{0}{1}'.format(item.firstname[0], item.lastname) | lower }}"

 # generate a random password using builtin fauxfactory
 password:
 from_factory: alpha

 # Set the organizations to existing list of orgs
 organization:
 from_registry: companies

 # Set as default org the same positioned in the loop
 default_organization:
 from_registry: companies[loop_index]

update

Get some existing entity and updates it with provided data.

	Executed only in populate mode

	In validate mode it only searches for updated entity

Required variables:

	model: Nailgun Entity Class name

	registry The name registry object

	data: a dictionary to search

Updating the product named old_name with new_name:

actions:
 - action: update
 model: Product
 register: some_product
 data:
 name: new_name
 search_query:
 name: old_name
 organization:
 from_search:
 model: Organization
 data:
 name: Default Organization

If the some_product already exists in registry you can omit the search:

actions:
 - action: update
 model: Product
 register: some_product
 data:
 name: new_name

delete

Deletes existing entity.

	Executed only in populate mode

	In validate mode it only searches for updated entity

Required variables:

	model: Nailgun Entity Class name

	registry The name registry object

	data: a dictionary to search

Deleting the product named new_name:

actions:
 - action: delete
 model: Product
 search_query:
 name: new_name
 organization:
 from_search:
 model: Organization
 data:
 name: Default Organization

If the some_product already exists in registry you can omit the search:

actions:
 - action: delete
 model: Product
 register: some_product

Note:

“delete action perform a DELETE call to the api and removes
the entity from the system, while unregister action only removes it
from runtime registry”

OTHER

This are other built-in actions

echo

Outputs a message to the LOG and also to stdout.

Required variables:

	log: The message to be logged

Examples:

actions:
 - action: echo
 log: Hello World
 - action: echo
 log: This an error
 level: error
 - action echo
 log: This message goes also to the stdout
 print: true
 - action: echo
 log: I can read variables, you are {{ env.USER }}

Which outputs:

2017-01-20 00:10:53 - satellite_populate.base - INFO - ECHO: Hello World
2017-01-20 00:10:53 - satellite_populate.base - ERROR - ECHO: This an error
2017-01-20 00:10:53 - satellite_populate.base - INFO - ECHO: This message goes also to the stdout
This message goes also to the stdout
2017-01-20 00:10:53 - satellite_populate.base - INFO - ECHO: I can read variables, you are root

register

Register variables to the runtime registry

Required variables:

	data: A dictionary

Examples:

- action: register
 data:
 name: Michael Scott
 preferred_organization:
 from_search:
 model: Organization
 data:
 name: My prefered Organization
 repo_url:
 from_object: "http://" + file.constants.REPO_BASE_URL

All variables registered above will be available for the next executed actions.

unregister

Removes variables from runtime register.

Required variables:

	data: A list of variable names

Examples:

- action: unregister
 data:
 - name
 - preferred_organization
 - repo_url

All variables unregistered above will be not available for the next executed actions.

Unregister is useful for actions using when: conditions.

assertion

Execute predefined assertion operations and fails the validation if assertion
returns False.

Required variables:

	operator: Logical operator mapped to a function returning Boolean

	data: A list of two elements to be tested

Built in operators:

	eq # the default

	ne

	gt

	lt

	gte

	lte

	identity

Examples:

- action: assertion
 log: Check if current user is root
 operator: eq
 data:
 - root
 - "{{ env.USER }}"

If returns False, the validation ends with exit code 1

Custom Populators can also include custom operators for assertion.

CUSTOM

And you can also have special actions defined in a custom populator.

Lets say you have this python module in your project, properly available on
PYTHONPATH:

from satellite_populate.api import APIPopulator

class MyPopulator(APIPopulator):
 def action_writeinfile(self, rendered_data, action_data):
 with open(rendered_data['path'], 'w') as output:
 output.write(rendered_data['content'])

Now go to your test.yaml and write:

config:
 populator: mine
 populators:
 mine:
 module: mypath.mymodule.MyPopulator

actions:

 - action: writeinfile
 path: /tmp/test.txt
 content: Hello World!!!

and run:

$ satellite-populate test.yaml -v

Dynamic Data

There are some ways to fetch dynamic data in action definitions, it depends
on the action type.

For any key you can use Jinja to provide a dynamic value as in:

value: "{{ get_something }}"
value: "{{ fauxfactory.gen_string('alpha') }}"
value: user_{{ item }}

For some actions you can provide a data key, that data is used to create
new entities and also to perform searches or build the action function.

Every data key accepts 4 special reference directives in its sub-keys.

	from_registry

Gets anything from registry:

data:
 organization:
 from_registry: default_org
 name:
 from_registry: my_name

	from_object

Gets any Python object available in the environment:

data:
 url:
 from_object:
 name: robottelo.constants.FAKE_0_YUM_REPO

	from_search

Perform a search and return its result:

data:
 organization:
 from_search:
 model: Organization
 data:
 name: Default Organization

	from_read

Perform a read operation, which is useful when we have unique data or id:

data:
 organization:
 from_read:
 model: Organization
 data:
 id: 1

The internal registry

Every action which returns a result can write its result to the registry, so
it is available to be accessed by other actions.

Provide a register unique name in action definition.

The actions that support register are:

	create

	update

	register

	assertion

All dynamic directives from_* supports the use of register

Example:

- action: create
 model: Organization
 register: my_org
 data:
 name: my_org

- model: User
 log: Creating user under {{ register.my_org.name }}
 data:
 organization:
 from_registry: my_org

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/SatelliteQE/satellite-populate/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

satellite-populate could always use more documentation, whether as part of the
official satellite-populate docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/SatelliteQE/satellite-populate/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up satellite_populate for local development.

	Fork the satellite-populate repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/satellite-populate.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv satellite-populate
$ cd satellite-populate/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 satellite-populate tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/SatelliteQE/satellite-populate/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_satellite_populate

History

0.1.3 (2017-01-13)

	Docker support

0.1.2 (2017-01-12)

	Fix decorators.

0.1.0 (2017-01-10)

	First release on PyPI.

satellite_populate

	satellite_populate package
	Submodules

	satellite_populate.api module

	satellite_populate.assertion_operators module

	satellite_populate.base module

	satellite_populate.cli module

	satellite_populate.commands module
	satellite-populate

	validate

	satellite_populate.constants module

	satellite_populate.decorators module

	satellite_populate.main module

	satellite_populate.utils module

	Module contents

satellite_populate package

Submodules

satellite_populate.api module

Implements API populator using Nailgun

	
class satellite_populate.api.APIPopulator(data, verbose=None, mode=None, config=None)

	Bases: satellite_populate.base.BasePopulator

Populates system using API/Nailgun

	
action_create(rendered_action_data, action_data, search, model, silent_errors)

	Creates new entity if does not exists or get existing
entity and return Entity object

	
action_delete(rendered_action_data, action_data, search, model, silent_errors)

	Deletes an existing entity

	
action_update(rendered_action_data, action_data, search, model, silent_errors)

	Updates an existing entity

	
add_and_log_error(action_data, rendered_action_data, search, e=None)

	Add to validation errors and outputs error

	
populate(rendered_action_data, action_data, search, action)

	Populates the System using Nailgun
based on value provided in action argument gets the
proper CRUD method to execute dynamically

	
validate(rendered_action_data, action_data, search, action)

	Based on action fields or using action_data[‘search_query’]
searches the system and validates the existence of all entities

satellite_populate.assertion_operators module

Implement basic assertions to be used in assertion action

	
satellite_populate.assertion_operators.eq(value, other)

	Equal

	
satellite_populate.assertion_operators.gt(value, other)

	Greater than

	
satellite_populate.assertion_operators.gte(value, other)

	Greater than or equal

	
satellite_populate.assertion_operators.identity(value, other)

	Identity check using ID

	
satellite_populate.assertion_operators.lt(value, other)

	Lower than

	
satellite_populate.assertion_operators.lte(value, other)

	Lower than or equal

	
satellite_populate.assertion_operators.ne(value, other)

	Not equal

satellite_populate.base module

Base module for satellite_populate
reads the YAML definition and perform all the rendering and basic actions.

	
class satellite_populate.base.BasePopulator(data, verbose=None, mode=None, config=None)

	Bases: object

Base class for API and CLI populators

	
action_assertion(rendered_action_data, action_data)

	Run assert operations

	
action_echo(rendered_action_data, action_data)

	After message is echoed to log, check if needs print

	
action_register(rendered_action_data, action_data)

	Register arbitrary items to the registry

	
action_unregister(rendered_action_data, action_data)

	Remove data from registry

	
add_modules_to_context()

	Add modules dynamically to render context

	
add_rendered_action(action_data, rendered_action_data)

	Add rendered action to be written in validation file

	
add_to_registry(action_data, result, append=True)

	Add objects to the internal registry

	
build_raw_query(data, action_data)

	Builds nailgun raw_query for search

	
build_search(rendered_action_data, action_data, context=None)

	Build search data and returns a dict containing elements

	data
Dictionary of parsed rendered_action_data to be used to i
nstantiate an object to searched without raw_query.

	options
if search_options are specified it is passed to
.search(**options)

	searchable
Returns boolean True if model inherits from EntitySearchMixin, else
alternative search must be implemented.

if search_query is available in action_data it will be used instead
of rendered_action_data.

	
build_search_options(data, action_data)

	Builds nailgun options for search
raw_query:
Some API endpoints demands a raw_query, so build it as in example:
{‘query’: {‘search’:’name=name,label=label,id=28’}}

force_raw:
Returns a boolean if action_data.force_raw is explicitly specified

	
config

	Return config dynamically because it can be overwritten by
user in datafile or by custom populator

	
crud_actions

	Return a list of crud_actions, actions that gets data
and perform nailgun crud operations so custom populators can
overwrite this list to add new crud actions.

	
execute(mode=None)

	Iterates the entities property described in YAML file
and parses its values, variables and substitutions
depending on mode execute populate or validate

	
from_factory(action_data, context)

	Generates random content using fauxfactory

	
from_read(action_data, context)

	Gets fields and perform a read to return Entity object
used when ‘from_read’ directive is used in YAML file

	
from_search(action_data, context)

	Gets fields and perform a search to return Entity object
used when ‘from_search’ directive is used in YAML file

	
get_search_result(model, search, unique=False, silent_errors=False)

	Perform a search

	
load_raw_search_rules()

	Reads default search rules then update first with
custom populator defined rules and then user defined in datafile.

	
populate(rendered_action_data, raw_entity, search_query, action)

	Should be implemented in sub classes

	
populate_modelname(rendered_action_data, action_data, search_query, action)

	Example on how to implement custom populate methods
e.g: def populate_organization
This method should take care of all validations and errors.

	
raw_search_rules

	Subclasses of custom populators can extend this rules

	
render(action_data, action)

	Takes an entity description and strips ‘data’ out to
perform single rendering and also handle repetitions defined
in with_items

	
render_action_data(data, context)

	Gets a single action_data and perform inplace template
rendering or reference evaluation depending on directive being used.

	
render_assertion_data(action_data, rendered_action_data)

	Render items on assertion data

	
resolve_result(data, from_where, k, v, result)

	Used in from_search and from_object to get specific
attribute from object e.g: name. Or to invoke a method when
attr is a dictionary of parameters.

	
set_gpgkey()

	Set gpgkey

	
validate(rendered_action_data, raw_entity, search_query, action)

	Should be implemented in sub classes

	
validate_modelname(rendered_action_data, action_data, search_query, action)

	Example on how to implement custom validate methods
e.g:: def validate_organization
This method should take care of all validations and errors.

satellite_populate.cli module

To be implemented: a populator using CLI

satellite_populate.commands module

This module contains commands to interact with satellite populator
and validator.

Commands included:

satellite-populate

A command to populate the system based in an YAML file describing the
entities:

$ satellite-populate file.yaml -h myhost.com -o /tmp/validation.yaml

validate

A command to validate the system based in an validation file generated by
the populate or a YAML file with mode: validation:

$ satellite-populate /tmp/validation.yaml

Use $ satellite-populate --help for more info

	
satellite_populate.commands.configure()

	Read satellite-populate settings file.

	
satellite_populate.commands.execute_populate(datafile, verbose, output, mode, scheme, port, hostname, username, password, report=True, enable_output=True)

	Populate using the data described in datafile:

satellite_populate.constants module

Default base config values

satellite_populate.decorators module

decorators for populate feature

	
satellite_populate.decorators.populate_with(data, context_name=None, context_wrapper=<function default_context_wrapper>, **extra_options)

	To be used in test cases as a decorator

Having a data_file like:

actions:
 - model: Organization
 register: organization_1
 data:
 name: My Org

Then you can use in decorators:

@populate_with('file.yaml')
def test_case_(self):
 'My Org exists in system test anything here'

And getting the populated entities inside the test_case:

@populate_with('file.yaml', context_name='my_context')
def test_case_(self, my_context=None):
 assert my_context.organization_1.name == 'My Org'

You can also set a customized context wrapper to the
context_wrapper argument:

def my_custom_context_wrapper(result):
 # create an object using result
 my_context = MyResultContext(result)
 return my_context

@populate_with('file.yaml', context_name='my_context',
 content_wrapper=my_custom_context_wrapper)
def test_case_(self, my_context=None):
 # assert with some expression using my_context object returned
 # my_custom_context_wrapper
 assert some_expression

NOTE:

That is important that ``context_name`` argument always be declared
using either a default value ``my_context=None`` or handle in
``**kwargs`` Otherwise ``py.test`` may try to use this as a fixture
 placeholder.

if context_wrapper is set to None, my_context will be the pure
unmodified result of populate function.

satellite_populate.main module

Point of entry for populate and validate used in scripts

	
satellite_populate.main.default_context_wrapper(result)

	Takes the result of populator and keeps only useful data
e.g. in decorators context.registered_name, context.config.verbose and
context.vars.admin_username will all be available.

	
satellite_populate.main.get_populator(data, **kwargs)

	Gets an instance of populator dynamically

	
satellite_populate.main.load_data(datafile)

	Loads YAML file as a dictionary

	
satellite_populate.main.populate(data, **kwargs)

	Loads and execute populator in populate mode

	
satellite_populate.main.save_rendered_data(result, filepath)

	Save the result of rendering in a new file to be used for
validation

	
satellite_populate.main.setup_yaml()

	Set YAML to use OrderedDict
http://stackoverflow.com/a/8661021

satellite_populate.utils module

	
class satellite_populate.utils.SmartDict(*args, **kwargs)

	Bases: dict

A Dict which is accessible via attribute dot notation

	
copy()

	

	
satellite_populate.utils.format_result(result)

	format result to show in logs

	
satellite_populate.utils.import_from_string(import_name, *args, **kwars)

	Try import string and then try builtins

	
satellite_populate.utils.remove_keys(data, *args, **kwargs)

	remove keys from dictionary
d = {‘item’: 1, ‘other’: 2, ‘keep’: 3}
remove_keys(d, ‘item’, ‘other’)
d -> {‘keep’: 3}
deep = True returns a deep copy of data.

	
satellite_populate.utils.remove_nones(data)

	remove nones from data

	
satellite_populate.utils.set_logger(verbose)

	Set logger verbosity used when client is called with -vvvvv

Module contents

This package contains tools to populate and validate the system

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 satellite_populate	

 	
 	
 satellite_populate.api	

 	
 	
 satellite_populate.assertion_operators	

 	
 	
 satellite_populate.base	

 	
 	
 satellite_populate.cli	

 	
 	
 satellite_populate.commands	

 	
 	
 satellite_populate.constants	

 	
 	
 satellite_populate.decorators	

 	
 	
 satellite_populate.main	

 	
 	
 satellite_populate.utils	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | N
 | P
 | R
 | S
 | V

A

 	
 	action_assertion() (satellite_populate.base.BasePopulator method)

 	action_create() (satellite_populate.api.APIPopulator method)

 	action_delete() (satellite_populate.api.APIPopulator method)

 	action_echo() (satellite_populate.base.BasePopulator method)

 	action_register() (satellite_populate.base.BasePopulator method)

 	action_unregister() (satellite_populate.base.BasePopulator method)

 	
 	action_update() (satellite_populate.api.APIPopulator method)

 	add_and_log_error() (satellite_populate.api.APIPopulator method)

 	add_modules_to_context() (satellite_populate.base.BasePopulator method)

 	add_rendered_action() (satellite_populate.base.BasePopulator method)

 	add_to_registry() (satellite_populate.base.BasePopulator method)

 	APIPopulator (class in satellite_populate.api)

B

 	
 	BasePopulator (class in satellite_populate.base)

 	build_raw_query() (satellite_populate.base.BasePopulator method)

 	
 	build_search() (satellite_populate.base.BasePopulator method)

 	build_search_options() (satellite_populate.base.BasePopulator method)

C

 	
 	config (satellite_populate.base.BasePopulator attribute)

 	configure() (in module satellite_populate.commands)

 	
 	copy() (satellite_populate.utils.SmartDict method)

 	crud_actions (satellite_populate.base.BasePopulator attribute)

D

 	
 	default_context_wrapper() (in module satellite_populate.main)

E

 	
 	eq() (in module satellite_populate.assertion_operators)

 	
 	execute() (satellite_populate.base.BasePopulator method)

 	execute_populate() (in module satellite_populate.commands)

F

 	
 	format_result() (in module satellite_populate.utils)

 	from_factory() (satellite_populate.base.BasePopulator method)

 	
 	from_read() (satellite_populate.base.BasePopulator method)

 	from_search() (satellite_populate.base.BasePopulator method)

G

 	
 	get_populator() (in module satellite_populate.main)

 	get_search_result() (satellite_populate.base.BasePopulator method)

 	
 	gt() (in module satellite_populate.assertion_operators)

 	gte() (in module satellite_populate.assertion_operators)

I

 	
 	identity() (in module satellite_populate.assertion_operators)

 	
 	import_from_string() (in module satellite_populate.utils)

L

 	
 	load_data() (in module satellite_populate.main)

 	load_raw_search_rules() (satellite_populate.base.BasePopulator method)

 	
 	lt() (in module satellite_populate.assertion_operators)

 	lte() (in module satellite_populate.assertion_operators)

N

 	
 	ne() (in module satellite_populate.assertion_operators)

P

 	
 	populate() (in module satellite_populate.main)

 	(satellite_populate.api.APIPopulator method)

 	(satellite_populate.base.BasePopulator method)

 	
 	populate_modelname() (satellite_populate.base.BasePopulator method)

 	populate_with() (in module satellite_populate.decorators)

R

 	
 	raw_search_rules (satellite_populate.base.BasePopulator attribute)

 	remove_keys() (in module satellite_populate.utils)

 	remove_nones() (in module satellite_populate.utils)

 	
 	render() (satellite_populate.base.BasePopulator method)

 	render_action_data() (satellite_populate.base.BasePopulator method)

 	render_assertion_data() (satellite_populate.base.BasePopulator method)

 	resolve_result() (satellite_populate.base.BasePopulator method)

S

 	
 	satellite_populate (module)

 	satellite_populate.api (module)

 	satellite_populate.assertion_operators (module)

 	satellite_populate.base (module)

 	satellite_populate.cli (module)

 	satellite_populate.commands (module)

 	satellite_populate.constants (module)

 	
 	satellite_populate.decorators (module)

 	satellite_populate.main (module)

 	satellite_populate.utils (module)

 	save_rendered_data() (in module satellite_populate.main)

 	set_gpgkey() (satellite_populate.base.BasePopulator method)

 	set_logger() (in module satellite_populate.utils)

 	setup_yaml() (in module satellite_populate.main)

 	SmartDict (class in satellite_populate.utils)

V

 	
 	validate() (satellite_populate.api.APIPopulator method)

 	(satellite_populate.base.BasePopulator method)

 	
 	validate_modelname() (satellite_populate.base.BasePopulator method)

 _static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		Welcome to satellite-populate's documentation!

 		Satellite-Populate

 		Installation

 		Features

 		YAML based actions

 		Populate Satellite With Entities

 		Validate if system have entities

 		Special actions

 		Custom actions

 		Decorator for test cases

 		Satellite versions

 		Manually

 		Docker

 		Credits

 		Usage

 		Commands

 		Hostname and Credentials

 		Decorator

 		The YAML data file

 		config

 		vars

 		Actions

 		Dynamic Data

 		The internal registry

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Tips

 		History

 		0.1.3 (2017-01-13)

 		0.1.2 (2017-01-12)

 		0.1.0 (2017-01-10)

 		satellite_populate

 		satellite_populate package

 		Submodules

 		satellite_populate.api module

 		satellite_populate.assertion_operators module

 		satellite_populate.base module

 		satellite_populate.cli module

 		satellite_populate.commands module

 		satellite_populate.constants module

 		satellite_populate.decorators module

 		satellite_populate.main module

 		satellite_populate.utils module

 		Module contents

_static/up.png

_static/up-pressed.png

