
S.A.R.A. Documentation
Release 0.2

Salvatore Mesoraca

May 30, 2018

Contents

1 Introduction 1
1.1 S.A.R.A.’s Submodules . 1
1.2 Bugs . 3

2 Install 5
2.1 Generic Instructions . 5

3 Kernel Configuration 7

4 Kernel Parameters 9

5 Userspace Tools Manpages 11
5.1 saractl manual page . 11
5.2 wxprot.conf manual page . 13
5.3 sara-xattr manual page . 14
5.4 sara-test manual page . 15
5.5 sara.h manual page . 17

i

ii

CHAPTER 1

Introduction

S.A.R.A. (S.A.R.A. is Another Recursive Acronym) is a stacked Linux Security Module that aims to collect heteroge-
neous security measures, providing a common interface to manage them. As of today it consists of one submodule:

• WX Protection

The kernel-space part is complemented by its user-space counterpart: saractl1. A test suite for WX Protection, called
sara-test3, is also available. You can also visit the official home page of S.A.R.A.4.

At the time of writing S.A.R.A. has been proposed for upstreaming, but it’s still out of tree.

1.1 S.A.R.A.’s Submodules

1.1.1 WX Protection

WX Protection aims to improve user-space programs security by applying:

• W^X enforcement

• W!->X (once writable never executable) mprotect restriction

• Executable MMAP prevention

All of the above features can be enabled or disabled both system wide or on a per executable basis through the use of
configuration files managed by saractl1.

It is important to note that some programs may have issues working with WX Protection. In particular:

• W^X enforcement will cause problems to any programs that needs memory pages mapped both as writable and
executable at the same time e.g. programs with executable stack markings in the PT_GNU_STACK segment.

1 saractl
3 sara-test
4 Homepage

1

https://github.com/smeso/saractl
https://github.com/smeso/sara-test
https://smeso.it/sara

S.A.R.A. Documentation, Release 0.2

• W!->X mprotect restriction will cause problems to any program that needs to generate executable code at
run time or to modify executable pages e.g. programs with a JIT compiler built-in or linked against a non-PIC
library.

• Executable MMAP prevention can work only with programs that have at least partial RELRO support. It’s
disabled automatically for programs that lack this feature. It will cause problems to any program that uses
dlopen or tries to do an executable mmap. Unfortunately this feature is the one that could create most problems
and should be enabled only after careful evaluation.

To extend the scope of the above features, despite the issues that they may cause, they are complemented by
/proc/PID/attr/sara/wxprot interface and Trampoline emulation. It’s also possible to override the centralized con-
figuration via Extended filesystem attributes.

At the moment, WX Protection (unless specified otherwise) should work on any architecture supporting the NX bit,
including, but not limited to: x86_64, x86_32 (with PAE), ARM and ARM64.

Parts of WX Protection are inspired by some of the features available in PaX.

W^X enforcement

W^X means that a program can’t have a page of memory that is marked, at the same time, writable and executable.
This also allow to detect many bad behaviours that make life much more easy for attackers. Programs running with
this feature enabled will be more difficult to exploit in the case they are affected by some vulnerabilities, because the
attacker will be forced to make more steps in order to exploit them. This feature also blocks accesses to /proc/*/mem
files that would allow to write the current process read-only memory, bypassing any protection.

W!->X (once writable never executable) mprotect restriction

“Once writable never executable” means that any page that could have been marked as writable in the past won’t ever
be allowed to be marked (e.g. via an mprotect syscall) as executable. This goes on the same track as W^X, but is much
stricter and prevents the runtime creation of new executable code in memory. Obviously, this feature does not prevent
a program from creating a new file and mmapping it as executable, however, it will be way more difficult for attackers
to exploit vulnerabilities if this feature is enabled.

Executable MMAP prevention

This feature prevents the creation of new executable mmaps after the dynamic libraries have been loaded. When used
in combination with W!->X mprotect restriction this feature will completely prevent the creation of new executable
code from the current thread. Obviously, this feature does not prevent cases in which an attacker uses an execve to
start a completely new program. This kind of restriction, if needed, can be applied using one of the other LSM that
focuses on MAC. Please be aware that this feature can break many programs and so it should be enabled after careful
evaluation.

/proc/PID/attr/sara/wxprot interface

The procattr interface can be used by a thread to discover which WX Protection features are enabled and/or to tighten
them: protection can’t be softened via procattr. The interface is simple: it’s a text file with an hexadecimal number
in it representing enabled features (more information can be found in the Flags values section). Via this interface it
is also possible to perform a complete memory scan to remove the write permission from pages that are both writable
and executable.

Protections that prevent the runtime creation of executable code can be troublesome for all those programs that actually
need to do it e.g. programs shipping with a JIT compiler built-in. This feature can be use to run the JIT compiler with
few restrictions while enforcing full WX Protection in the rest of the program.

2 Chapter 1. Introduction

S.A.R.A. Documentation, Release 0.2

The preferred way to access this interface is via libsara2. If you don’t want it as a dependency, you can just statically
link it in your project or copy/paste parts of it. To make things simpler libsara is the only part of S.A.R.A. released
under CC0 - No Rights Reserved license.

Extended filesystem attributes

When this functionality is enabled, it’s possible to override WX Protection flags set in the main configuration via
extended attributes, even when S.A.R.A.’s configuration is in “locked” mode. If the user namespace is also enabled,
its attributes will override settings configured via the security namespace. The xattrs currently in use are:

• security.sara.wxprot

• user.sara.wxprot

They can be manually set to the desired value as a decimal, hexadecimal or octal number. When this functionality
is enabled, S.A.R.A. can be easily used without the help of its userspace tools. Though the preferred way to change
these attributes is sara-xattr which is part of saractl1.

Trampoline emulation

Some programs need to generate part of their code at runtime. Luckily enough, in some cases they only generate
well-known code sequences (the trampolines) that can be easily recognized and emulated by the kernel. This way WX
Protection can still be active, so a potential attacker won’t be able to generate arbitrary sequences of code, but just
those that are explicitly allowed. This is not ideal, but it’s still better than having WX Protection completely disabled.

In particular S.A.R.A. is able to recognize trampolines used by GCC for nested C functions and libffi’s trampolines.
This feature is available only on x86_32 and x86_64.

Flags values

Flags are represented as a 16 bit unsigned integer in which every bit indicates the status of a given feature:

Feature Value
W!->X Heap 0x0001
W!->X Stack 0x0002
W!->X Other memory 0x0004
W^X 0x0008
Don’t enforce, just complain 0x0010
Be Verbose 0x0020
Executable MMAP prevention 0x0040
Force W^X on setprocattr 0x0080
Trampoline emulation 0x0100
Children will inherit flags 0x0200

1.2 Bugs

Please report any issue to the relevant issue tracker:

• saractl

• libsara
2 libsara

1.2. Bugs 3

https://github.com/smeso/saractl/issues
https://github.com/smeso/libsara/issues
https://github.com/smeso/libsara

S.A.R.A. Documentation, Release 0.2

• sara-test

• kernel

4 Chapter 1. Introduction

https://github.com/smeso/sara-test/issues
https://github.com/smeso/sara/issues

CHAPTER 2

Install

As of today S.A.R.A. it’s still out of tree, so, if you want to use it, you’ll need to use a patched kernel image or patch
the kernel yourself.

2.1 Generic Instructions

The stable patch releases can be found here. The releases are signed with the following PGP key:
0xD7286260BBF31719A2759FA485F0580B9DACBE6E. To apply the patches change the working directory
to that of your kernel sources and enter the usual patch command:

$ cd kernel-sources/
$ patch -p1 < ../sara.patch

where ../sara.patch is the path to the uncompressed and PGP-verified patch.

To install saractl you can use pip:

$ pip install saractl

Or you can manually download the latest archive from here, check its PGP signature, extract it and install it by simply
running:

$ python3 setup.py install

You we’ll need at least Python 3.4. Some saractl’s functionalities depend on pyelftools, pythonprctl and
pyxattr. You may want to install them too, but they are optional. Alternatively you can download the sources
tarball from here too.

To install the other userspace tools just download the latest GitHub releases from the links below and follow the
instructions in their README file. Please, always remeber to check PGP signatures.

• libsara

• sara-test

5

https://github.com/smeso/sara/releases/latest
https://pypi.python.org/pypi/saractl
https://github.com/smeso/saractl/releases/latest
https://github.com/smeso/libsara/releases/latest
https://github.com/smeso/sara-test/releases/latest

S.A.R.A. Documentation, Release 0.2

6 Chapter 2. Install

CHAPTER 3

Kernel Configuration

CONFIG_SECURITY_SARA - Enable S.A.R.A.

This selects S.A.R.A. LSM, which aims to collect heterogeneous security measures providing a common
interface to manage them. This LSM will always be stacked with the selected primary LSM and other
stacked LSMs.

CONFIG_SECURITY_SARA_DEFAULT_DISABLED - S.A.R.A. will be disabled at boot

If you say Y here, S.A.R.A. will not be enabled at startup. You can override this option at boot time via
“sara.enabled=[1|0]” kernel parameter or via user-space utilities. This option is useful for distro kernels.

CONFIG_SECURITY_SARA_NO_RUNTIME_ENABLE - S.A.R.A. can be turn on only at boot time

By enabling this option it won’t be possible to turn on S.A.R.A. at runtime via user-space utilities. How-
ever it can still be turned on at boot time via the “sara.enabled=1” kernel parameter. This option is
functionally equivalent to “sara.enabled=0” kernel parameter. This option is useful for distro kernels.

CONFIG_SECURITY_SARA_WXPROT - WX Protection: W^X and W!->X protections

WX Protection aims to improve user-space programs security by applying:

• W^X memory restriction

• W!->X (once writable never executable) mprotect restriction

• Executable MMAP prevention

See WX Protection.

Default action for W^X and W!->X protections

Choose the default behaviour of WX Protection when no config rule matches or no rule is loaded.

CONFIG_SECURITY_SARA_WXPROT_DEFAULT_FLAGS_ALL_COMPLAIN_VERBOSE -
Protections enabled but not enforced

All features enabled except “Executable MMAP prevention”, verbose reporting, but no actual
enforce: it just complains. Its numeric value is 0x3f. See Flags values.

7

S.A.R.A. Documentation, Release 0.2

CONFIG_SECURITY_SARA_WXPROT_DEFAULT_FLAGS_ALL_ENFORCE_VERBOSE -
Full protection, verbose

All features enabled except “Executable MMAP prevention”. The enabled features will be
enforced with verbose reporting. Its numeric value is 0x2f. See Flags values.

CONFIG_SECURITY_SARA_WXPROT_DEFAULT_FLAGS_ALL_ENFORCE - Full protection,
quiet

All features enabled except “Executable MMAP prevention”. The enabled features will be
enforced quietly. Its numeric value is 0xf. See Flags values.

CONFIG_SECURITY_SARA_WXPROT_DEFAULT_FLAGS_NONE - No protection at all

All features disabled. Its numeric value is 0. See Flags values.

CONFIG_SECURITY_SARA_WXPROT_EMUTRAMP - Enable emulation for some types of trampolines

Some programs and libraries need to execute special small code snippets from non-executable memory
pages. Most notable examples are the GCC and libffi trampolines. This features make it possible to
execute those trampolines even if they reside in non-executable memory pages. This features need to be
enabled on a per-executable basis via user-space utilities. See Trampoline emulation.

CONFIG_SECURITY_SARA_WXPROT_XATTRS_ENABLED - xattrs support enabled by default

If you say Y here it will be possible to override WX protection configuration via extended attributes in
the security namespace. Even when S.A.R.A.’s configuration has been locked. See Extended filesystem
attributes.

CONFIG_CONFIG_SECURITY_SARA_WXPROT_XATTRS_USER - ‘user’ namespace xattrs support enabled
by default

If you say Y here it will be possible to override WX protection configuration via extended attributes in the
user namespace. Even when S.A.R.A.’s configuration has been locked. See Extended filesystem attributes.

CONFIG_SECURITY_SARA_WXPROT_DISABLED - WX protection will be disabled at boot

If you say Y here WX protection won’t be enabled at startup. You can override this option via user-space
utilities or at boot time via “sara.wxprot_enabled=[0|1]” kernel parameter.

8 Chapter 3. Kernel Configuration

CHAPTER 4

Kernel Parameters

sara.enabled= Disable or enable S.A.R.A. at boot time.

If disabled this way, S.A.R.A. can’t be enabled again.

Format: { “0” | “1” }

See Kernel Configuration

0 – disable.

1 – enable.

Default value is set via kernel config option.

sara.wxprot_enabled= Disable or enable S.A.R.A. WX Protection at boot time.

Format: { “0” | “1” }

See Kernel Configuration

0 – disable.

1 – enable.

Default value is set via kernel config option.

sara.wxprot_default_flags= Set S.A.R.A. WX Protection default flags.

Format: <integer>

See Flags values

Default value is set via kernel config option.

sara.wxprot_xattrs_enabled= Enable support for security xattrs.

Format: { “0” | “1” }

See Kernel Configuration

0 – disable.

1 – enable.

9

S.A.R.A. Documentation, Release 0.2

Default value is set via kernel config option.

sara.wxprot_xattrs_user= Enable support for user xattrs.

Format: { “0” | “1” }

See Kernel Configuration

0 – disable.

1 – enable.

Default value is set via kernel config option.

10 Chapter 4. Kernel Parameters

CHAPTER 5

Userspace Tools Manpages

5.1 saractl manual page

5.1.1 Synopsys

saractl [options] <command> [command-specific options . . .]

5.1.2 Description

saractl is the userspace utility that manages S.A.R.A. LSM’s configurations.

5.1.3 Commands

load Load configurations. If a config is already present and up to date it won’t be loaded again (-s is ignored).

startup Load configurations for the first time at boot (-s is ignored).

enable Enable S.A.R.A.

disable Disable S.A.R.A.

status Get S.A.R.A. status.

lock Prevent changing the config until next reboot.

config_to_file Generate various binary formats to import the configuration without saractl (-s is ignored).

test Run some self-tests.

5.1.4 Options

-h, --help show this help message and exit

11

S.A.R.A. Documentation, Release 0.2

-v, --verbose Be verbose. For extra verbosity use multiple -v.

-q, --quiet Suppress any output.

-V, --version show program’s version number and exit

-c CONFIG_DIR, --config-dir CONFIG_DIR Specify config directory. Defaults to
“/etc/sara”

-S SECURITYFS, --securityfs SECURITYFS The mount point of the securityfs. De-
faults to “/sys/kernel/security”.

-s {main,wxprot}, –submodule {main,wxprot} Select the submodule you want to work with. Available
submodules: wxprot. Defaults to “main”.

-f, --force Force reload even if the config is already up to date (to use only after
the load command).

-F {binary,sh,c}, –output-format {binary,sh,c} Select the desired output format. Available formats:
“binary”, “sh” and “c”. Defaults to “binary” (to use only after the config_to_file command).

-o OUTPUT, --output OUTPUT Output file or directory. Defaults to “./output/” direc-
tory for “binary” format, “./output.sh” file for “sh” format and “./out-
put.c” file for “c” format (to use only after the config_to_file com-
mand).

5.1.5 Examples

Reload the config:

saractl load

Create a stand alone shell script to load the config:

saractl config_to_file -F sh -o ./script.sh

5.1.6 Config file

The main configuration file for saractl can be found in /etc/sara/main.conf. These are the available options:

sara_enabled=1 # enable S.A.R.A. LSM

sara_locked=0 # lock S.A.R.A. config
when it has been loaded

wxprot_enabled=1 # enable WX Protections

wxprot_emutramp_missing_default=none # default option to use
when emutramp is not
supported.
It can be set to "none"
or "mprotect".

wxprot_xattr_enabled=0 # enable security XATTRs
support

wxprot_xattr_user_allowed=0 # enable user XATTRs support

12 Chapter 5. Userspace Tools Manpages

S.A.R.A. Documentation, Release 0.2

5.1.7 Bugs

If you find any bugs, please report them at <https://github.com/smeso/saractl/issues>

5.1.8 See also

sara(7), wxprot.conf(5), sara-xattr(8) and <https://sara.smeso.it>

5.2 wxprot.conf manual page

5.2.1 Description

This man page describes the format of S.A.R.A.’s WX Protections configuration files. See sara(7) for an overview
of S.A.R.A. or saractl(8) for an overview of the program used to manage S.A.R.A’s configuration.

5.2.2 Format

The configuration format is line oriented. Comments starts with #, inline comments are supported. Every line is
made up of two parts seperated by a whitespace. The first part is the file path, in case it contains a whitespace
itself, the string can be enclosed in double quotes or escaped. The path can be terminated with a ‘*’ to make it
match every path that starts with the chosen prefix. The second part is the flags list. It’s a case in-sensitive and
comma separated list of the flags that need to be enabled. It can include whitespaces before or after the commas.
Files in the /etc/sara/wxprot.conf.d/ directory are read in lexycografical order and merged together at the end of
/etc/sara/wxprot.conf as if they were a single big file. In general, lines order doesn’t matter, the rule with the most
specific path has precedence. In case of multiple entries with exactly the same path, the first one has precedence and
others are discarded.

Flags

WXORX Prevents any page of memory from being marked as both writable and executable at the same time.

STACK Prevents any page of memory in the stack from becoming executable if it could have been written in the past.
(Depends on WXORX)

HEAP Prevents any page of memory in the heap from becoming executable if it could have been written in the past.
(Depends on WXORX)

OTHER Prevents any other page of memory from becoming executable if it could have been written in the past.
(Depends on WXORX)

MPROTECT Enables WXORX, STACK, HEAP and OTHER

MMAP Prevents new executable mmap after the dynamic libraries have been loaded. (Depends on OTHER)

FULL Enables MPROTECT and MMAP.

EMUTRAMP Enables trampoline emulation, if trampoline emulation is missing, it’s changed to whatever is set in
“wxprot_emutramp_missing_default”. (Depends on MPROTECT and conflicts with any other EMUTRAMP*)

EMUTRAMP_OR_MPROTECT Like EMUTRAMP but, if trampoline emulation is missing, it’s changed to
MPROTECT. (Depends on MPROTECT and conflicts with any other EMUTRAMP*)

5.2. wxprot.conf manual page 13

https://github.com/smeso/saractl/issues
https://sara.smeso.it

S.A.R.A. Documentation, Release 0.2

EMUTRAMP_OR_NONE Like EMUTRAMP but, if trampoline emulation is missing, all the flags are replaced
with NONE. (Depends on MPROTECT and conflicts with any other EMUTRAMP*)

VERBOSE Verbosely report every violation. (Depends on WXORX)

COMPLAIN Don’t actually block anything. If VERBOSE is enabled too S.A.R.A will reports violations. (Depends
on WXORX)

TRANSFER Child tasks will inherit this task’s flags despite what is written in the configuration.

NONE Disables everything.

5.2.3 Examples

Enable full reporting, without enforcement, to any executable under /bin/:

/bin/* FULL,COMPLAIN,VERBOSE

Enable MPROTECT with verbose reporting on everything:

* MPROTECT,VERBOSE

5.2.4 See also

sara(7), saractl(8), sara-xattr(8) and <https://sara.smeso.it>

5.3 sara-xattr manual page

5.3.1 Synopsys

sara-xattr [options] <command> <filename> [flags]

5.3.2 Description

sara-xattr is the userspace utility that manages S.A.R.A. LSM’s extended attributes. The optional flags field is
used only with the set command. Flags format is the same of wxprot.conf(5)’s config files.

5.3.3 Commands

set Set specified xattr on a file.

get get xattr from a file

del delete xattr from a file

14 Chapter 5. Userspace Tools Manpages

https://sara.smeso.it

S.A.R.A. Documentation, Release 0.2

5.3.4 Options

-h, --help show this help message and exit

-v, --verbose Be verbose. For extra verbosity use multiple -v.

-q, --quiet Suppress any output.

-V, --version show program’s version number and exit

-c CONFIG_DIR, --config-dir CONFIG_DIR Specify config directory. Defaults to
“/etc/sara”

-S SECURITYFS, --securityfs SECURITYFS The mount point of the securityfs. De-
faults to “/sys/kernel/security”.

-s {wxprot}, –submodule {wxprot} Select the submodule you want to work with. Available submod-
ules: wxprot.

-u, --user Use user xattr namespace instead of the security namespace.

-b, --both Use both user and security xattr namespace.

5.3.5 Examples

Turn off WX Protections for an executable:

sara-xattr -s wxprot set /usr/bin/program none

Turn on all WX Protections for an executable:

sara-xattr -s wxprot set /usr/bin/program full,verbose

5.3.6 Bugs

If you find any bugs, please report them at <https://github.com/smeso/saractl/issues>

5.3.7 See also

sara(7), wxprot.conf(5), saractl(8), xattr(7) and <https://sara.smeso.it>

5.4 sara-test manual page

5.4.1 Synopsys

sara-test

5.4. sara-test manual page 15

https://github.com/smeso/saractl/issues
https://sara.smeso.it

S.A.R.A. Documentation, Release 0.2

5.4.2 Description

sara-test is a regression test tool for S.A.R.A. When S.A.R.A. is disabled the output should look like this:

These tests should pass even with SARA disabled:
wx_mappings: OK

nx_shellcode: OK
fake_trampoline_heap: OK

gcc_trampolines_working1: OK
gcc_trampolines_working2: OK

shm_mode_mprotect: OK

These tests should pass with SARA fully enabled:
anon_mmap_wx: VULNERABLE
file_mmap_wx: VULNERABLE

gnu_executable_stack: VULNERABLE
heap_mprotect: VULNERABLE

stack_mprotect: VULNERABLE
anon_mmap_mprotect: VULNERABLE
file_mmap_mprotect: VULNERABLE

shm_wxorx: VULNERABLE
shm_permissive_mode: VULNERABLE

shm_mode_change1: VULNERABLE
shm_mode_change2: VULNERABLE

text_mprotect: VULNERABLE
bss_mprotect: VULNERABLE

data_mprotect: VULNERABLE
mmap_exec: VULNERABLE

proc_mem_write: VULNERABLE
transfer: ERROR

fake_trampolines: ERROR

Tests for procattr interface:
correct_settings: VULNERABLE

procattr tests disabled

When S.A.R.A. is enabled the output should look like this:

These tests should pass even with SARA disabled:
wx_mappings: OK

nx_shellcode: OK
fake_trampoline_heap: OK

gcc_trampolines_working1: OK
gcc_trampolines_working2: OK

shm_mode_mprotect: OK

These tests should pass with SARA fully enabled:
anon_mmap_wx: OK
file_mmap_wx: OK

gnu_executable_stack: OK
heap_mprotect: OK

stack_mprotect: OK
anon_mmap_mprotect: OK
file_mmap_mprotect: OK

shm_wxorx: OK
shm_permissive_mode: OK

shm_mode_change1: OK
shm_mode_change2: OK

(continues on next page)

16 Chapter 5. Userspace Tools Manpages

S.A.R.A. Documentation, Release 0.2

(continued from previous page)

text_mprotect: OK
bss_mprotect: OK

data_mprotect: OK
mmap_exec: OK

proc_mem_write: OK
transfer: OK

fake_trampolines: OK

Tests for procattr interface:
correct_settings: OK
verbosity_change: OK
complain_change: OK

full_change_no_force: OK
force_wxorx: OK

Please note that, in case you are running on an architecture that lacks trampoline emulation, the results of the following
tests will be NOT AVAILABLE:

• fake_trampoline_heap

• gcc_trampolines_working1

• gcc_trampolines_working2

• fake_trampolines

If you get any result different from what is listed above please open an issue at <https://github.com/smeso/sara-test/
issues>.

5.4.3 Bugs

If you find any bugs, please report them at <https://github.com/smeso/sara-test/issues>

5.4.4 See also

sara(7), wxprot.conf(5), saractl(8) and <https://sara.smeso.it>

5.5 sara.h manual page

5.5.1 Synopsys

#include <sara.h>

5.5.2 Description

libsara can be used to query or change S.A.R.A.’s WX Protections flags. Please remember that protection can’t be
softened via this interface and you will only be allowed to add or remove a flag if and only if that action won’t make
the thread less secure. The VERBOSE flag can’t be changed and any attempt to do this will be silently ignored.
Any other violation will result in an error. Please always check the return value of set_wxprot_self_flags,
add_wxprot_self_flags and rm_wxprot_self_flags. A thread can only query its own flags, unless it

5.5. sara.h manual page 17

https://github.com/smeso/sara-test/issues
https://github.com/smeso/sara-test/issues
https://github.com/smeso/sara-test/issues
https://sara.smeso.it

S.A.R.A. Documentation, Release 0.2

has CAP_MAC_ADMIN. Also, it can only change its own flags, regardless of the capabilities it has. Be aware that,
while the flags change will only affect the current thread, the changes forced by SARA_FORCE_WXORX will affect
the whole process. For more information please see sara(7).

The <sara.h> header shall define the following:

SARA_ERROR
SARA_HEAP
SARA_STACK
SARA_OTHER
SARA_WXORX
SARA_COMPLAIN
SARA_VERBOSE
SARA_MMAP
SARA_FORCE_WXORX
SARA_EMUTRAMP
SARA_TRANSFER
SARA_NONE
SARA_MPROTECT
SARA_FULL

The following shall be declared as functions and may also be defined as macros. Function prototypes shall be provided.

int set_wxprot_self_flags(uint16_t flags);
int add_wxprot_self_flags(uint16_t flags);
int rm_wxprot_self_flags(uint16_t flags);
uint16_t get_wxprot_flags(pid_t pid);
uint16_t get_wxprot_self_flags(void);
int is_emutramp_active(void);

5.5.3 See also

sara(7), wxprot.conf(5), saractl(8), sara-xattr(8) and <https://sara.smeso.it>

18 Chapter 5. Userspace Tools Manpages

https://sara.smeso.it

	Introduction
	S.A.R.A.’s Submodules
	Bugs

	Install
	Generic Instructions

	Kernel Configuration
	Kernel Parameters
	Userspace Tools Manpages
	saractl manual page
	wxprot.conf manual page
	sara-xattr manual page
	sara-test manual page
	sara.h manual page

