

 Navigation

 	
 index

 	
 next |

 	Sake Documentation 0.2.2 documentation

Sake Documentation

Sake [https://github.com/sakeproject/sake] is a C# language enabled make system and is used to build the projects that comprise the ASP.NET 5 [https://github.com/aspnet] stack. Sake uses a custom build of the Spark view engine, and additional insight into working with Sake can be gained from reviewing Spark [https://github.com/SparkViewEngine/spark].

Note

I pronounce “Sake” as rhyming with “make”. This seems to make the most sense, whether you consider “Sake” to be a blend of “CS make”, or “Spark make”, and it avoids confusion when discussing it along with psake (PowerShell make), which is pronounced as the Japanese rice wine.

Note

Sake was created by Louis DeJardin. I was not a contributor to the Sake project, and this documentation is based on trial and error, review of the Sake source code and Spark documentation, and looking at Sake’s use in the ASP.NET 5 projects.

See also

Source code for the samples is available on github [https://github.com/jeffogata/sake-docs/tree/master/docs/samples].

Contents

	Getting Started

	Working with Sake
	Element Tags and C#

	Targets

	Extending Sake

	Examples
	Console Example

	Help Example

	MSBuild Example

 Copyright 2015, Jeff Ogata.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sake Documentation 0.2.2 documentation

Getting Started

To get started with Sake, create the following two files:

The build.cmd file checks for and downloads NuGet if needed, installs the Sake NuGet package if needed, and finally executes Sake specifying makefile.shade as the build file.

@echo off
cd %~dp0

SETLOCAL
SET NUGET_VERSION=latest
SET CACHED_NUGET=%LocalAppData%\NuGet\nuget.%NUGET_VERSION%.exe

IF EXIST "%CACHED_NUGET%" goto copynuget
echo Downloading latest version of NuGet.exe...

IF NOT EXIST "%LocalAppData%\NuGet" md "%LocalAppData%\NuGet"
@powershell -NoProfile -ExecutionPolicy unrestricted -Command "$ProgressPreference = 'SilentlyContinue'; Invoke-WebRequest 'https://dist.nuget.org/win-x86-commandline/%NUGET_VERSION%/nuget.exe' -OutFile '%CACHED_NUGET%'"

:copynuget
IF EXIST .nuget\nuget.exe goto restore
md .nuget
copy "%CACHED_NUGET%" .nuget\nuget.exe > nul

:restore
IF EXIST packages\Sake goto run
.nuget\NuGet.exe install Sake -ExcludeVersion -Source https://www.nuget.org/api/v2/ -Out packages

:run
packages\Sake\tools\Sake.exe -f makefile.shade

makefile.shade is a Spark view engine template file that specifies a default build target and writes Hello world! to the console.

#default
 @{
 Log.Info("Hello world!");
 }

Note

Andrew Stanton-Nurse has a Sublime 3 package that adds colorization for .shade files: Sublime-Sake [https://github.com/anurse/Sublime-Sake]

Note

The Spark view engine supports template files using off-side rule formatting where indentation denotes structure, as in Python, Jade, and Haml. These files have a .shade file extension to differentate them from .spark template files, which use opening and closing tags for structure.

Run the build:

>build.cmd
Attempting to gather dependencies information for package 'Sake.0.2.2' with respect to project 'packages', targeting 'Any,Version=v0.0'
Attempting to resolve dependencies for package 'Sake.0.2.2' with DependencyBehavior 'Lowest'
Resolving actions to install package 'Sake.0.2.2'
Resolved actions to install package 'Sake.0.2.2'
Adding package 'Sake.0.2.2' to folder 'packages'
Added package 'Sake.0.2.2' to folder 'packages'
Successfully installed 'Sake 0.2.2' to packages
info: Hello world!

The build file will restore the Sake nuget package and write out the log message.

Congratulations! You’ve created your first Sake build.

 Copyright 2015, Jeff Ogata.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sake Documentation 0.2.2 documentation

Working with Sake

	Element Tags and C#

	Targets

	Extending Sake

 Copyright 2015, Jeff Ogata.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sake Documentation 0.2.2 documentation

 	Working with Sake

Element Tags and C#

.shade files use an offside-rule format, like Python, Jade, or Haml, which means that indentation determines structure. .shade templates can contain a mix of element tags and C# code. The concept of element tags in a .shade file makes sense when you consider that .shade files are templates processed by the Spark view engine into a dynamically generated class. Originally, these classes would have been used to generate a response in a web site (think Razor and .cshtml files); Sake repurposes Spark to process .shade template files into classes that run a build.

Working with Element Tags

Sake comes with a standard set [https://github.com/sakeproject/sake/tree/master/src/Sake.Library/Shared] of element tags, like exec and log, and you can also create your own Custom Element Tags. A .shade file will also use element tags from Spark, like use and macro. See the Spark elements reference [https://github.com/SparkViewEngine/spark/wiki/Elements-Reference] for more information.

Note

I have not tried to use all of the Spark elements in a Sake build file, and some may not make sense to use in a build file, or may not work as described in the Spark documentation.

The following .shade file illustrates the basics of working with element tags and can be run using the build.cmd file from Getting Started. Sake requires at least one target, so we define one here named #default. Targets are explained in detail later in the documentation.

Interesting things to note:

	Strings are delimited with single or double quotes.

	Element tags that are not indented run before targets.

-// example of a single-line comment

-/*
 example of a
 multi-line comment
*/

log warn="This executes first."

#default
 log info='Hello world'

log warn="This also executes before the target."

Running the file above produces the following output:

warn: This executes first.
warn: This also executes before the target.
info: Hello world

Working with C#

C# code can be used as a code block, delimited with @{ and }:

@{
 var message = "Hello world!";
 Log.Info(message);
}

C# can also appear in element tags, delimited with ${ and }:

log info="The current date and time is ${DateTime.Now.ToString()}."

Note

Version 0.2.2 of Sake targets .NET 4.0, which corresponds to C# 4.

String Delimiters

As with element tags, strings in C# code can be delimited using either single or double quotes. This raises the interesting problem of working with char variables in C#. For example, the following code will generate an exception in a .shade file:

var tokens = "a,b,c".Split(',');

The ',' argument is treated as a string, and an exception will be thrown because Split expects a char. To work around this, cast to char:

var tokens = "a,b,c".Split((char)',');

Namespaces

The use element is analogous to the using directive in C#. In the example below, Console and Directory do not need to be fully qualified because the System and System.IO namespaces are specified by the use elements:

use namespace="System"
use namespace="System.IO"

#default
 @{
 Console.WriteLine(Directory.GetCurrentDirectory());
 }

The following .shade file shows the basics of working with C# in Sake, and also how you can work with both C# and tags in the same build file.

use namespace="System"

#default

 @{
 var now = DateTime.Now;

 Console.WriteLine("Hello world using C#!");
 }

 log info="Hello world using tags! It is ${now.ToString()}"

This produces the following output:

>build.cmd
Hello world using C#!
info: Hello world using tags! It is 11/14/2015 12:24:29 PM

 Copyright 2015, Jeff Ogata.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sake Documentation 0.2.2 documentation

 	Working with Sake

Targets

Sake build steps are organized into targets. Targets are defined in a .shade file as an element starting with a # and can be set up to be dependent on each other.

An example .shade file illustrating the topics presented in this page appears at the end of the page. Be sure to review the build.cmd file as it changes slightly to pass a target to Sake.

Default Target

The first target in a .shade file is the default target. If Sake is executed without specifying a target, the default target is executed.

Dependencies

To indicate that a target target-b depends on target-a to run before it, add .target-a to the declaration of target-b:

#target-b .target-a

For example:

#target-a
 log info='target a'

#target-b .target-a
 log info='target b'

#target-c .target-b
 log info='target c'

When run specifying target-c, the following output is produced:

>build.cmd target-c
info: target a
info: target b
info: target c

Dependencies can also be specified from the predecessor by using the target attribute:

#target-1 target="target-2"
 log info='target 1'

#target-2 target="target-3"
 log info='target 2'

#target-3
 log info='target 3'

Running target-3 executes target-1 and target-2 as expected:

>build.cmd target-3
info: target 1
info: target 2
info: target 3

Multiple Dependencies

To specify multiple dependencies, list them in order in the definition of the target:

#target-x
 log info='target x'

#target-y
 log info='target y'

#target-z .target-y .target-x
 log info='target z'

Note that .target-y appears before .target-x in the dependency list, and when target-z is run, target-y is run before target-x:

>build.cmd target-z
info: target y
info: target x
info: target z

Example

build.cmd

@echo off
cd %~dp0

SETLOCAL
SET NUGET_VERSION=latest
SET CACHED_NUGET=%LocalAppData%\NuGet\nuget.%NUGET_VERSION%.exe

IF EXIST "%CACHED_NUGET%" goto copynuget
echo Downloading latest version of NuGet.exe...

IF NOT EXIST "%LocalAppData%\NuGet" md "%LocalAppData%\NuGet"
@powershell -NoProfile -ExecutionPolicy unrestricted -Command "$ProgressPreference = 'SilentlyContinue'; Invoke-WebRequest 'https://dist.nuget.org/win-x86-commandline/%NUGET_VERSION%/nuget.exe' -OutFile '%CACHED_NUGET%'"

:copynuget
IF EXIST .nuget\nuget.exe goto restore
md .nuget
copy "%CACHED_NUGET%" .nuget\nuget.exe > nul

:restore
IF EXIST packages\Sake goto run
.nuget\NuGet.exe install Sake -ExcludeVersion -Source https://www.nuget.org/api/v2/ -Out packages

:run
packages\Sake\tools\Sake.exe -f makefile.shade %*

makefile.shade

use namespace="System"

#default
 log info='default'

#target-c .target-b
 log info='target c'

#target-a
 log info='target a'

#target-b .target-a
 log info='target b'

#target-3
 log info='target 3'

#target-1 target="target-2"
 log info='target 1'

#target-2 target="target-3"
 log info='target 2'

#target-x
 log info='target x'

#target-y
 log info='target y'

#target-z .target-y .target-x
 log info='target z'

 Copyright 2015, Jeff Ogata.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sake Documentation 0.2.2 documentation

 	Working with Sake

Extending Sake

.shade files containing functions, classes, or custom element tags can be imported into the primary build file. These files can be placed in a directory, which is then provided to Sake using the I argument. For example, the following command would run Sake with import files in a directory named imports:

Sake.exe -I imports -f makefile.shade %*

Custom Functions

Import files can contain C# functions and classes in a functions code block:

use namespace="System"
use namespace="System.Collections.Generic"

functions
 @{
 private List<CustomItem> _items = new List<CustomItem>();

 public void AddCustomItem(string name)
 {
 _items.Add(new CustomItem { Name = name });
 }

 public void PrintCustomItems()
 {
 foreach(var item in _items)
 {
 Console.WriteLine(item.Name);
 }
 }

 public class CustomItem
 {
 public string Name { get; set; }
 }
 }

These functions can be included in another .shade file using the import element:

use import="CustomFunctions"

#default
 @{
 AddCustomItem('foo');
 AddCustomItem('bar');
 AddCustomItem('baz');
 PrintCustomItems();
 }

Running this produces the following output:

>build.cmd
foo
bar
baz

Custom Element Tags

Import files can also be used to create custom element tags. To create a custom element, name the file with a leading underscore; the remainder of the file name will then be the element name. Within the file, default values for attributes can be specified, and any attribute values not provided with default values must be provided when the element is used.

The following simple example defines a default value of "Hello" for the greeting attribute. A value will be required for the name attribute when the element is used.

default greeting='Hello'

@{
 Log.Info(greeting + " " + name);
}

If the sample above is saved as _echo.shade, it can be used in a target like so:

#echotag
 echo name="Bob"

Running the echotag target produces the following output:

>build.cmd echotag
info: Hello Bob

To use a custom element in C# code, you can define a macro:

macro name='Echo' name='string' greeting='string'
 echo	

The macro can then be called as you would a C# function:

#echomacro
 @{
 Echo("Jack", "Good morning");
 }

Examples

The following files include the code samples in this page. The build.cmd file calls Sake specifying an import folder:

@echo off
cd %~dp0

SETLOCAL
SET NUGET_VERSION=latest
SET CACHED_NUGET=%LocalAppData%\NuGet\nuget.%NUGET_VERSION%.exe

IF EXIST "%CACHED_NUGET%" goto copynuget
echo Downloading latest version of NuGet.exe...

IF NOT EXIST "%LocalAppData%\NuGet" md "%LocalAppData%\NuGet"
@powershell -NoProfile -ExecutionPolicy unrestricted -Command "$ProgressPreference = 'SilentlyContinue'; Invoke-WebRequest 'https://dist.nuget.org/win-x86-commandline/%NUGET_VERSION%/nuget.exe' -OutFile '%CACHED_NUGET%'"

:copynuget
IF EXIST .nuget\nuget.exe goto restore
md .nuget
copy "%CACHED_NUGET%" .nuget\nuget.exe > nul

:restore
IF EXIST packages\Sake goto run
.nuget\NuGet.exe install Sake -ExcludeVersion -Source https://www.nuget.org/api/v2/ -Out packages

:run
packages\Sake\tools\Sake.exe -I imports -f makefile.shade %*

Save the makefile.shade file in the same folder as the build.cmd file:

use import="CustomFunctions"

#default
 @{
 AddCustomItem('foo');
 AddCustomItem('bar');
 AddCustomItem('baz');
 PrintCustomItems();
 }

#echotag
 echo name="Bob"

#echomacro
 @{
 Echo("Jack", "Good morning");
 }

macro name='Echo' name='string' greeting='string'
 echo	

Create an imports folder within the folder containing the build.cmd file and create the following files in it.

CustomFunctions.shade:

use namespace="System"
use namespace="System.Collections.Generic"

functions
 @{
 private List<CustomItem> _items = new List<CustomItem>();

 public void AddCustomItem(string name)
 {
 _items.Add(new CustomItem { Name = name });
 }

 public void PrintCustomItems()
 {
 foreach(var item in _items)
 {
 Console.WriteLine(item.Name);
 }
 }

 public class CustomItem
 {
 public string Name { get; set; }
 }
 }

_echo.shade:

default greeting='Hello'

@{
 Log.Info(greeting + " " + name);
}

 Copyright 2015, Jeff Ogata.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sake Documentation 0.2.2 documentation

Examples

Basic Sake examples will be included here. For comprehensive, real-world examples of Sake build files, see the ASP.NET 5 [https://github.com/aspnet] projects, particularly the Universe [https://github.com/aspnet/Universe] project.

	Console Example

	Help Example

	MSBuild Example

 Copyright 2015, Jeff Ogata.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sake Documentation 0.2.2 documentation

 	Examples

Console Example

This example shows custom functions used to write to the Console in different colors.

build.cmd:

@echo off
cd %~dp0

SETLOCAL
SET NUGET_VERSION=latest
SET CACHED_NUGET=%LocalAppData%\NuGet\nuget.%NUGET_VERSION%.exe

IF EXIST "%CACHED_NUGET%" goto copynuget
echo Downloading latest version of NuGet.exe...

IF NOT EXIST "%LocalAppData%\NuGet" md "%LocalAppData%\NuGet"
@powershell -NoProfile -ExecutionPolicy unrestricted -Command "$ProgressPreference = 'SilentlyContinue'; Invoke-WebRequest 'https://dist.nuget.org/win-x86-commandline/%NUGET_VERSION%/nuget.exe' -OutFile '%CACHED_NUGET%'"

:copynuget
IF EXIST .nuget\nuget.exe goto restore
md .nuget
copy "%CACHED_NUGET%" .nuget\nuget.exe > nul

:restore
IF EXIST packages\Sake goto run
.nuget\NuGet.exe install Sake -ExcludeVersion -Source https://www.nuget.org/api/v2/ -Out packages

:run
packages\Sake\tools\Sake.exe -I imports -f makefile.shade %*

Console.shade saved to the imports directory:

use namespace="System"
use namespace="System.IO"

functions
 @{
 void WriteLine(string text, string colorText)
 {
 ConsoleColor color;

 if (Enum.TryParse<ConsoleColor>(colorText, true, out color))
 {
 WriteLine(text, color);
 return;
 }

 WriteLine(text);
 }

 void WriteLine(string text = null, ConsoleColor? color = null)
 {
 if (text != null && color != null)
 {
 Console.ForegroundColor = color.Value;
 }

 Console.WriteLine(text);

 if (text != null && color != null)
 {
 Console.ResetColor();
 }
 }

 void Write(string text, string colorText)
 {
 ConsoleColor color;

 if (Enum.TryParse<ConsoleColor>(colorText, true, out color))
 {
 Write(text, color);
 return;
 }

 Write(text);
 }

 void Write(string text = null, ConsoleColor? color = null)
 {
 if (text != null && color != null)
 {
 Console.ForegroundColor = color.Value;
 }

 Console.Write(text);

 if (text != null && color != null)
 {
 Console.ResetColor();
 }
 }
 }

makefile.shade:

use namespace="System.Linq"
use import="Console"

#default
 @{
 WriteLine();
 WriteLine(" Colors in ConsoleColor", "yellow");
 WriteLine(" ======================", "cyan");
 foreach(var color in Enum.GetValues(typeof(ConsoleColor)).Cast<ConsoleColor>())
 {
 Write(" ");
 WriteLine(color.ToString(), color);
 }
 WriteLine();
 WriteLine(" ======================", "cyan");
 WriteLine();
 }

Output:

[image: ../_images/console.jpg]

 Copyright 2015, Jeff Ogata.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Sake Documentation 0.2.2 documentation

 	Examples

Help Example

This example shows custom functions and classes used to enumerate the targets in the build and list them in the console. Targets have a description attribute, and this example allows for a group to be included in the description, separated from the actual target description using a | character. This example makes use of the Console Example to output text in color; include Console.shade in the imports folder if you aren’t using the source code from github [https://github.com/jeffogata/sake-docs/tree/master/docs/samples/examples/help].

build.cmd:

@echo off
cd %~dp0

SETLOCAL
SET NUGET_VERSION=latest
SET CACHED_NUGET=%LocalAppData%\NuGet\nuget.%NUGET_VERSION%.exe

IF EXIST "%CACHED_NUGET%" goto copynuget
echo Downloading latest version of NuGet.exe...

IF NOT EXIST "%LocalAppData%\NuGet" md "%LocalAppData%\NuGet"
@powershell -NoProfile -ExecutionPolicy unrestricted -Command "$ProgressPreference = 'SilentlyContinue'; Invoke-WebRequest 'https://dist.nuget.org/win-x86-commandline/%NUGET_VERSION%/nuget.exe' -OutFile '%CACHED_NUGET%'"

:copynuget
IF EXIST .nuget\nuget.exe goto restore
md .nuget
copy "%CACHED_NUGET%" .nuget\nuget.exe > nul

:restore
IF EXIST packages\Sake goto run
.nuget\NuGet.exe install Sake -ExcludeVersion -Source https://www.nuget.org/api/v2/ -Out packages

:run
packages\Sake\tools\Sake.exe -I imports -f makefile.shade %*

Help.shade saved to the imports directory:

use namespace="System"
use namespace="System.IO"
use namespace="System.Collections"
use namespace="System.Collections.Generic"
use import="Console"

functions
 @{
 void WriteHelp()
 {
 WriteHelpHeader();

 var groups = GetTargetGroups();

 WriteHelpGroups(groups);
 WriteHelpFooter();
 }

 void WriteHelpHeader()
 {
 WriteLine();
 Write("********************************", ConsoleColor.DarkGreen);
 Write(" HELP ", ConsoleColor.Green);
 WriteLine("********************************", ConsoleColor.DarkGreen);
 WriteLine();
 Write("This build script has the following build ");
 Write("targets", ConsoleColor.Green);
 WriteLine(" set up:");
 }

 TargetGroups GetTargetGroups()
 {
 var groups = new TargetGroups();

 foreach(var kvp in Targets)
 {
 var target = kvp.Value;
 var tokens = target.Description.Split((char)'|');

 if (tokens.Length == 2)
 {
 groups.Add(tokens[0], target.Name, tokens[1]);
 }
 else
 {
 groups.AddUngrouped(target.Name, target.Description);
 }
 }

 return groups;
 }

 void WriteHelpGroups(TargetGroups groups)
 {
 // write out any ungrouped targets first
 foreach(var target in groups.UngroupedItems)
 {
 WriteLine();
 Write(" ");
 Write(target.Name, ConsoleColor.Green);
 Write(" = ");
 WriteLine(target.Description);
 }

 // write out groups
 foreach(var group in groups)
 {
 WriteLine();
 Write(" ");
 WriteLine(group.Name, ConsoleColor.DarkGreen);

 foreach(var target in group.Targets)
 {
 Write(" > ");
 Write(target.Name, ConsoleColor.Green);
 Write(" = ");
 WriteLine(target.Description);
 }
 }
 }

 void WriteHelpFooter()
 {
 WriteLine();
 WriteLine(" For a complete list of build tasks, view makefile.shade.");
 WriteLine();
 WriteLine("**", ConsoleColor.DarkGreen);
 }

 public class TargetItem
 {
 public TargetItem(string name, string description)
 {
 Name = name;
 Description = description;
 }

 public string Name { get; private set; }

 public string Description { get; private set; }
 }

 public class TargetGroup
 {
 private readonly List<TargetItem> _targets;

 public TargetGroup(string name)
 {
 _targets = new List<TargetItem>();
 Name = name;
 }

 public string Name { get; private set; }

 public List<TargetItem> Targets { get { return _targets; } }

 public TargetItem Add(string name, string description)
 {
 var item = new TargetItem(name, description);
 _targets.Add(item);
 return item;
 }
 }

 public class TargetGroups : IEnumerable<TargetGroup>
 {
 private readonly Dictionary<string, TargetGroup> _groups;
 private readonly List<TargetItem> _ungrouped;

 public TargetGroups()
 {
 _groups = new Dictionary<string, TargetGroup>();	
 _ungrouped = new List<TargetItem>();			
 }

 public List<TargetItem> UngroupedItems
 {
 get { return _ungrouped; }
 }

 public TargetGroup Add(string groupName, string itemName, string itemDescription)
 {
 var group = _groups.ContainsKey(groupName) ? _groups[groupName] : null;

 if (group == null)
 {
 group = new TargetGroup(groupName);
 _groups.Add(group.Name, group);
 }

 group.Add(itemName, itemDescription);

 return group;
 }

 public TargetItem AddUngrouped(string itemName, string itemDescription)
 {
 	var item = new TargetItem(itemName, itemDescription);
 _ungrouped.Add(item);
 return item;
 }

 System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
 {
 return this.GetEnumerator();
 }

 public IEnumerator<TargetGroup> GetEnumerator()
 {
 foreach(var kvp in _groups)
 {
 yield return kvp.Value;
 }
 }
 }
 }

makefile.shade:

use import="Console"
use import="Help"

#default description="Comprehensive|Performs a full clean, build and test"

#clean description="Build|Remove artifacts of a previous build"

#dnx description="Build|Check for and install DNX."

#restore description="Build|Restore packages for the project"

#build description="Build|Build the project"

#alltest description="Test|Run all tests"

#unittest description="Test|Run unit tests"

#inttest description="Test|Run integration tests"

#help description="Help|Displays a list of build commands"
 @{
 WriteHelp();
 }

Output:

[image: ../_images/help.jpg]

 Copyright 2015, Jeff Ogata.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Sake Documentation 0.2.2 documentation

 	Examples

MSBuild Example

The _build element that comes with Sake [https://github.com/sakeproject/sake/blob/master/src/Sake.Library/Shared/_build.shade] is written to use MSBuild 4.0. If your source code uses features of C# 5 or 6, this may not work. For example, when building an application that uses string interpolation, which was added in C# 6, the build fails indicating that $ is an unexpected character.

This example shows a custom element, based on _build, which uses MSBuild 14.0 (VS 2015, C# 6) or MSBuild 12.0 (VS 2012/13, C# 5).

The solution that this example builds can be found along with the other files on github [https://github.com/jeffogata/sake-docs/tree/master/docs/samples/examples/msbuild]. Note in the example makefile.shade, the output directory is relative the .csproj files.

build.cmd:

@echo off
cd %~dp0

SETLOCAL
SET NUGET_VERSION=latest
SET CACHED_NUGET=%LocalAppData%\NuGet\nuget.%NUGET_VERSION%.exe

IF EXIST "%CACHED_NUGET%" goto copynuget
echo Downloading latest version of NuGet.exe...

IF NOT EXIST "%LocalAppData%\NuGet" md "%LocalAppData%\NuGet"
@powershell -NoProfile -ExecutionPolicy unrestricted -Command "$ProgressPreference = 'SilentlyContinue'; Invoke-WebRequest 'https://dist.nuget.org/win-x86-commandline/%NUGET_VERSION%/nuget.exe' -OutFile '%CACHED_NUGET%'"

:copynuget
IF EXIST .nuget\nuget.exe goto restore
md .nuget
copy "%CACHED_NUGET%" .nuget\nuget.exe > nul

:restore
IF EXIST packages\Sake goto run
.nuget\NuGet.exe install Sake -ExcludeVersion -Source https://www.nuget.org/api/v2/ -Out packages

:run
packages\Sake\tools\Sake.exe -I imports -f makefile.shade %*

_msbuild.shade saved to the imports directory:

@{/*

build
 Executes msbuild to compile your project or solution

projectFile=''
 Required. Path to the project or solution file to build.

configuration='Release'
 Determines which configuration to use when building.

outputDir=''
 Directs all compiler outputs into the target path. Note: this will be relative to the project files (not the solution file if building a solution).

extra=''
 Additional commandline parameters for msbuild

*/}

default configuration='Release'
default outputDir=''
default extra=''

use namespace="System"
use namespace="System.IO"
use namespace="System.Reflection"

var buildProgram=''

@{
 Assembly buildUtilities = null;
 string toolsVersion = null;

 try
 {
 buildUtilities = Assembly.Load("Microsoft.Build.Utilities.Core, Version=14.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a");
 toolsVersion = "14.0";
 }
 catch
 {
 buildUtilities = Assembly.Load("Microsoft.Build.Utilities.v12.0, Version=12.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a");
 toolsVersion = "12.0";
 }

 var helper = buildUtilities.GetType("Microsoft.Build.Utilities.ToolLocationHelper");
 var method = helper.GetMethod("GetPathToBuildTools", new Type[] { typeof(string) });
 var path = method.Invoke(helper, new object[] { toolsVersion }).ToString();

 buildProgram = Path.Combine(path, "msbuild.exe");
}

var OutDirProperty=''
set OutDirProperty='OutDir=${outputDir}${Path.DirectorySeparatorChar};' if='!string.IsNullOrWhiteSpace(outputDir)'

exec program="${buildProgram}" commandline='${projectFile} "/p:${OutDirProperty}Configuration=${configuration}" ${extra}'

makefile.shade:

#default .build

#clean
 msbuild projectFile="src/SakeMsBuild.sln" outputDir="../../output" extra="/t:Clean"

#build .clean
 msbuild projectFile="src/SakeMsBuild.sln" outputDir="../../output" extra="/t:Rebuild /m"

Output:

[image: ../_images/msbuild.jpg]

 Copyright 2015, Jeff Ogata.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Sake Documentation 0.2.2 documentation

Index

 Copyright 2015, Jeff Ogata.
 Created using Sphinx 1.3.1.

 _static/file.png

integrating-with-ci/index.html

 Navigation

 		
 index

 		Sake Documentation 0.2.2 documentation »

Integrating with CI Servers

Coming soon

 © Copyright 2015, Jeff Ogata.
 Created using Sphinx 1.3.1.

_static/comment.png

_static/ajax-loader.gif

_static/up-pressed.png

_images/help.jpg
This build script has the following build targets set up:
> default = Performs a full clean, build and test

clean = Remove artifacts of a previous build
dnx = Check for and install DNX.

restore = Restore packages for the project
build = Build the project

alltest = Run all tests
unittest = Run unit tests
> inttest = Run integration tests

> help = Displays a Tist of build commands

For a complete Tist of build tasks, view makefile.shade.

S D:\projects\sake.docs\docs\sanples\exanples\help>

_images/msbuild.jpg
Applicati

P cport:prompt. /warn:4 /
Jreference: "C:\Program Fi
foft\Framevork\ . NETFranev)
ly /filealign:5i2 /optimi

| . Jots \WininumRecommendedry|

NETFramework, Version=v4.|

Manage

samples > eamples > msbuild > output

uildLibrary.dil
BuildLibrary.

@mples\msbuildoutput\Sak

0 Warning(s)
0 Error(s)

Time Elapsed 00:00:00.82
PS D:\projects\sake.docs\docs\samples\

_static/down-pressed.png

license.html

 Navigation

 		
 index

 		Sake Documentation 0.2.2 documentation »

License

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

		Definitions.

“License” shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
“control” means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity
exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

“Object” form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, “submitted”
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

		Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

		Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

		Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

		You must give any other recipients of the Work or
Derivative Works a copy of this License; and

		You must cause any modified files to carry prominent notices
stating that You changed the files; and

		You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

		If the Work includes a “NOTICE” text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

		Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

		Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

		Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

		Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

		Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets “[]”
replaced with your own identifying information. (Don’t include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same “printed page” as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

 © Copyright 2015, Jeff Ogata.
 Created using Sphinx 1.3.1.

_static/comment-bright.png

_images/console.jpg
glu
Green
Cyan
Red
Magenta
vellow
white

S D:\projects\sake.docs\docs\sanples\exanple:

_static/down.png

search.html

 Navigation

 		
 index

 		Sake Documentation 0.2.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Jeff Ogata.
 Created using Sphinx 1.3.1.

_static/up.png

_static/minus.png

_static/comment-close.png

_static/plus.png

