

Welcome to s3workers’s documentation!

Contents:

	s3workers
	Features

	Credits

	Installation
	Stable release

	From sources

	Usage
	To use s3workers from the command line (CLI)

	To use s3workers in a project

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

Indices and tables

	Index

	Module Index

	Search Page

s3workers

[image: https://img.shields.io/pypi/v/s3workers.svg]
 [https://pypi.python.org/pypi/s3workers][image: https://img.shields.io/travis/bradrf/s3workers.svg]
 [https://travis-ci.org/bradrf/s3workers][image: Documentation Status]
 [https://s3workers.readthedocs.io/en/latest/?badge=latest][image: Updates]
 [https://pyup.io/repos/github/bradrf/s3workers/]Helper to simplify concurrent access to object scanning in AWS S3 buckets.

	Free software: MIT license

	Documentation: https://s3workers.readthedocs.io.

Simplest install method is via pip install s3workers (see installation [http://s3workers.readthedocs.io/en/latest/installation.html#installation] for other methods).

Features

S3workers provides faster list and delete operations on S3 buckets by opening up simultaneous
connections to issue distinct sets of shared prefix queries. Effectively, this splits up the query
space into 36 independent queries (26 alpha and 10 numeric prefixes). For example, a request to list
all objects in the myfancy/ bucket would result in concurrent list queries to S3 for everything
from myfancy/a... through myfancy/b... and everything from myfancy/0... through
myfancy/9..., all at the same time, reporting and collating the results locally.

Selection

The default output of s3workers is to simply list (or delete) all objects found at the prefix
requested. However, often it is advantageous to restrict the output to only those matching certain
criteria. The --select option provides the ability for evaluating matches using any normal
Python operators or builtins against one or more of the following variables provided to the selector
for each object found:

	name: The full S3 key name, everything except the bucket name (string)

	size: The number of bytes as used by the S3 object (integer).

	md5: The MD5 hash of the S3 object (string).

	last_modified: The timestamp indicating the last time the S3 object was changed (string).

Reduction

In cases where aggregation of some kind is desired, s3workers provides the ability to execute
reduction logic against an accumulator value. For example, to produce a sum of the size of all
selected S3 objects or to even group the size according to MD5 values. See the usage output for
examples. In all cases, the same variables provided by selection are also provided when reducing.

Usage

For more help and examples of selection and reduction abilities, check out the usage [http://s3workers.readthedocs.io/en/latest/usage.html#usage].

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project
template.

Installation

Stable release

To install s3workers, run this command in your terminal:

$ pip install s3workers

This is the preferred method to install s3workers, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for s3workers can be downloaded from the Github repo [https://github.com/bradrf/s3workers].

You can either clone the public repository:

$ git clone git://github.com/bradrf/s3workers

Or download the tarball [https://github.com/bradrf/s3workers/tarball/master]:

$ curl -OL https://github.com/bradrf/s3workers/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use s3workers from the command line (CLI)

$ s3workers --help

Usage: s3workers [OPTIONS] COMMAND S3_URI

 Perform simple listing, collating, or deleting of many S3 objects at the
 same time.

 Examples:

 List empty objects:
 s3workers list --select 'size == 0' s3://mybucket/myprefix

 Report total of all non-empty objects:
 s3workers list --select 'size > 0' --reduce 'accumulator += size' s3://mybucket/myprefix

 Total size group by MD5:
 s3workers list --accumulator '{}' --reduce 'v=accumulator.get(md5,0)+size; accumulator[md5]=v' s3://mybucket/myprefix

Options:
 --version Show the version and exit.
 -c, --config-file PATH Configuration file [default:
 /Users/brad/.s3tailrc]
 -r, --region [us-east-1|us-west-1|us-gov-west-1|ap-northeast-2|ap-northeast-1|sa-east-1|eu-central-1|ap-southeast-1|ca-central-1|ap-southeast-2|us-west-2|us-east-2|ap-south-1|cn-north-1|eu-west-1|eu-west-2]
 AWS region to use when connecting
 -l, --log-level [debug|info|warning|error|critical]
 set logging level
 --log-file FILENAME write logs to FILENAME
 --concurrency INTEGER set number of workers processing jobs
 simultaneously [default: 36]
 --select TEXT provide comparisons against object name,
 size, md5, or last_modified to limit
 selection
 --reduce TEXT provide reduction logic against the
 accumulator value for all selected objects
 --accumulator TEXT provide a different initial accumulation
 value for the reduce option [default: 0]
 -h, --help Show this message and exit.

To use s3workers in a project

import boto
import s3workers

manager = s3workers.Manager(3)

bucket = boto.connect_s3().get_bucket('mybucket')
progress = s3workers.S3KeyProgress()

def key_dumper(key):
 progress.write('%s %10d %s %s', key.last_modified, key.size, key.md5, key.name)

job = s3workers.S3ListJob(bucket, 'myprefix', None, key_dumper, progress.report)
manager.add_work(job)

manager.start_workers()
manager.wait_for_workers()

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/bradrf/s3workers/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

s3workers could always use more documentation, whether as part of the
official s3workers docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/bradrf/s3workers/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up s3workers for local development.

	Fork the s3workers repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/s3workers.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv s3workers
$ cd s3workers/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 s3workers tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/bradrf/s3workers/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_s3workers

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 s3workers	

 	
 	
 s3workers.cli	

 	
 	
 s3workers.jobs	

 	
 	
 s3workers.manager	

 	
 	
 s3workers.progress	

 	
 	
 s3workers.reducer	

 	
 	
 s3workers.work_queue	

 	
 	
 s3workers.worker	

Index

 A
 | F
 | I
 | J
 | M
 | R
 | S
 | W

A

 	
 	add_work() (s3workers.manager.Manager method)

 	
 	all_jobs_submitted() (s3workers.work_queue.WorkQueue method)

F

 	
 	finish() (s3workers.progress.S3KeyProgress method)

 	(s3workers.progress.SimpleProgress method)

I

 	
 	is_done() (s3workers.work_queue.WorkQueue method)

J

 	
 	Job (class in s3workers.jobs)

M

 	
 	Manager (class in s3workers.manager)

R

 	
 	reduce() (s3workers.reducer.Reducer method)

 	Reducer (class in s3workers.reducer)

 	report() (s3workers.progress.S3KeyProgress method)

 	(s3workers.progress.SimpleProgress method)

 	
 	run() (s3workers.jobs.Job method)

 	(s3workers.worker.Worker method)

S

 	
 	S3KeyProgress (class in s3workers.progress)

 	S3ListJob (class in s3workers.jobs)

 	s3workers (module)

 	s3workers.cli (module)

 	s3workers.jobs (module)

 	s3workers.manager (module)

 	s3workers.progress (module)

 	
 	s3workers.reducer (module)

 	s3workers.work_queue (module)

 	s3workers.worker (module)

 	SimpleProgress (class in s3workers.progress)

 	start_workers() (s3workers.manager.Manager method)

 	stop() (s3workers.jobs.Job method)

 	(s3workers.worker.Worker method)

 	stop_workers() (s3workers.manager.Manager method)

W

 	
 	wait_for_workers() (s3workers.manager.Manager method)

 	Worker (class in s3workers.worker)

 	
 	WorkQueue (class in s3workers.work_queue)

 	write() (s3workers.progress.S3KeyProgress method)

 	(s3workers.progress.SimpleProgress method)

History

0.3.0 (2017-01-01)

	Refactor/reorg code for usability/readability; add docs; add tests.

0.2.0 (2016-12-30)

	Minor fixes, adding docs, using common logging options.

0.1.0 (2016-12-28)

	First release on PyPI.

Credits

Development Lead

	Brad Robel-Forrest <brad@bitpony.com>

Contributors

None yet. Why not be the first?

s3workers

	s3workers package
	Submodules

	s3workers.cli module

	s3workers.jobs module

	s3workers.manager module

	s3workers.progress module

	s3workers.reducer module

	s3workers.work_queue module

	s3workers.worker module

	Module contents

s3workers package

Submodules

s3workers.cli module

s3workers.jobs module

	
class s3workers.jobs.Job

	Bases: object

	
run(*args, **kwargs)

	

	
stop()

	

	
class s3workers.jobs.S3ListJob(bucket, prefix, selector, key_handler, progress)

	Bases: s3workers.jobs.Job

Iterate through S3 objects invoking a callback for each

	Parameters:	
	bucket – the S3 bucket manager

	prefix – the key prefix to use when listing from the S3 bucket

	selector – optional callback to be evaluated for when an object is “interesting”

	key_handler – the callback to be invoked for each selected object (or all if no selector
provided)

	progress – the callback to be invoked for reporting progress through the listing

s3workers.manager module

	
class s3workers.manager.Manager(worker_count, stop_signals=[2, 15, 13], listen_for_unhandled_exceptions=True)

	Bases: object

Manage several worker threads and their shared job work queue.

	Parameters:	
	worker_count – number of worker threads to use (i.e. concurrency)

	stop_signals – list of signals to act on for automatically stopping workers

	listen_For_unhandled_exceptions – when enabled, automatically stop workers when an
exception is thrown and not processed (will call orignal handler)

	
add_work(job)

	Add a new job into the shared work queue.

	
start_workers()

	Tell workers to start listening and handling jobs posted to the shared work queue.

	
stop_workers(*_ignored)

	Immediately request that all workers stop pulling jobs off the shared work queue and stop
themselves.

Workers will finish jobs in progress but will stop accepting new ones and with terminate
themselves.

	
wait_for_workers(join_timeout=1)

	Wait for workers to finish all outstanding jobs in the shared work queue.

Should be called after all work has been submitted and the caller is ready to wait for all
workers to gracefully stop.

s3workers.progress module

	
class s3workers.progress.S3KeyProgress

	Bases: s3workers.progress.SimpleProgress

	
finish()

	

	
report(final=False)

	

	
write(msg, *args)

	

	
class s3workers.progress.SimpleProgress

	Bases: object

	
finish()

	

	
report(msg, *args)

	

	
write(msg, *args)

	

s3workers.reducer module

	
class s3workers.reducer.Reducer(reduction_string, accumulation_string='0')

	Bases: object

Execute reduction logic against an accumulator value.

This abstraction allows for a caller to perform a reduction of many values into one or a smaller
set. For example, to provide summation of values, collect interesting values into an array, or
produce grouped summations in a dictionary.

	Parameters:	
	reduction_string – exec’d to perform accumulation logic
(must set the accumulator during each call or nothing will aggregate)

	accumulation_string – eval’d to an initial value to accumulate the reduction results

	
reduce(name, size, md5, last_modified)

	

s3workers.work_queue module

	
class s3workers.work_queue.WorkQueue(*args)

	Bases: Queue.Queue

Simple wrapper to also provide ability to indicate when no more work is expected.

	
all_jobs_submitted()

	Indicate that no more work is expected on this queue.

	
is_done()

	Determine if there is more work expected on this queue.

s3workers.worker module

	
class s3workers.worker.Worker(work_queue)

	Bases: threading.Thread

Simple thread to continuously pull jobs off a work queue until told to stop or that no more
jobs will be submitted.

	Parameters:	work_queue – the job queue to query for work

	
run()

	Run until a stop is requested or there is no more work expected.

	
stop()

	Finish any job currently in progress and then terminate.

Module contents

 _static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

nav.xhtml

 Table of Contents

 		Welcome to s3workers's documentation!

 		s3workers

 		Features

 		Selection

 		Reduction

 		Usage

 		Credits

 		Installation

 		Stable release

 		From sources

 		Usage

 		To use s3workers from the command line (CLI)

 		To use s3workers in a project

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Fix Bugs

 		Implement Features

 		Write Documentation

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Tips

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

