
rxos Documentation
Release 1.0rc1

Outernet Inc

September 23, 2016

Contents

1 Documentation 3

i

ii

rxos Documentation, Release 1.0rc1

rxOS is a Linux-based operating system (and also the system image) that is used in Outernet’s Lantern and Lighthosue
Mk 2 products, both based on Raspberry Pi 3 and CHIP.

rxOS is built on top of Buildroot and constists of two parts:

• Linux kernel image with early userspace

• rootfs image

Contents 1

http://buildroot.org/

rxos Documentation, Release 1.0rc1

2 Contents

CHAPTER 1

Documentation

1.1 Getting stated with rxOS

This chapter is aimed towards DIY users that wish to deploy rxOS on the supported boards. If you purchased a
rxOS-powered device from Outernet, you may wish to skip ahead to How rxOS works.

A DIY build based on Raspbian is not covered in this guide. For instructions on how to set up an Outernet L-band
receiver using Raspbian, you should look at the Outernet L-band on Raspberry Pi guide.

1.1.1 Raspberry Pi

In order to build a Raspberry Pi receiver, you will need the following:

• Raspberry Pi 3

• 4GB (or larger) microSD card (8GB and larger is recommended)

• RTL-SDR USB dongle

• LNA

• patch antenna

The RTL-SDR radio dongle, LNA, and antenna, can be purchased through Outernet either individually or as a kit.

You will also need a Raspberry Pi image, which can be downloaded from archive.outernet.is/images/rxOS-Raspberry-
Pi.

Flashing the image

In order to use this image you will need to flash it to an SD card.

Windows

Obtain Win32 Disk Imager. Open the program (it will ask for administrative privileges), select the image file and
destination drive, and click on “Write”.

Warning: Be careful not to select your system drive as the destination drive.

3

http://outernet-l-band-on-raspberry-pi.readthedocs.io/en/latest/
https://outernet.is/products
https://archive.outernet.is/images/rxOS-Raspberry-Pi/
https://archive.outernet.is/images/rxOS-Raspberry-Pi/
https://archive.outernet.is/images/rxOS-Raspberry-Pi/2.0a1-201608151712/

rxos Documentation, Release 1.0rc1

Linux

Insert the card into the card reader. Find out the what your SD card’s device node is by using the dmesg | tail
command. Let’s say the device node is /dev/sdb1.

Warning: Be absolutely sure it’s the correct device node. ddwill not ask any questions, and will happily overwrite
anything you give it. If you are unusure, it’s best to ask on a Linux forum about how to find out whether you have
the right device node.

Make sure the SD card is not mounted if you have an automouter.:

$ sudo umount -f /dev/sdb1

To write the image to the card:

$ sudo dd if=sdcard.img of=/dev/sdb1 bs=16m

Mac OSX

Insert the card into the card reader. Find out what your SD card’s device node is by using the diskutil list
command. Let’s say the device node is /dev/disk4.

Warning: Be absolutely sure it’s the correct device node. ddwill not ask any questions, and will happily overwrite
anything you give it. If you are unusre, it’s best to ask on an OSX forum about how to find out whether you have
the right device node.

You need to unmount the disk:

$ diskutil unmountDisk /dev/disk4

Finally you can write the image:

$ dd if=sdcard.img of=/dev/disk4 bs=16m

Connecting the hardware

Once the image is done, put the SD card into the SD card slot. Connect the antenna to the LNA, and then connect the
LNA to the RTL-SDR dongle. Finally, plug the RTL-SDR dongle into one of the available ports on the Raspberry Pi.

Power the Raspberry Pi on and continue to The first steps.

1.1.2 C.H.I.P

In order to build a CHIP-based receiver, you will need the following:

• CHIP

• RTL-SDR USB dongle

• LNA

• patch antenna

• microUSB cable with data connection

4 Chapter 1. Documentation

rxos Documentation, Release 1.0rc1

• (optional) USB hub, if you wish to connect both the RTL-SDR dongle and some other device, like USB storage

• (optional) UARD USB adapter, if you wish to monitor the boot loader output

• (optional) USB Ethernet adapter for wired network connection

The RTL-SDR radio dongle, LNA, and antenna, can be purchased through Outernet either individually or as a kit.

You will also need a CHIP image, which can be downloaded from archive.outernet.is/images/rxOS-Raspberry-Pi.

Flashing the image

At this time, CHIP can only be flashed from a Linux machine, either a virtual machine or a native install.

Serial console

It helps to have access to a serial console. You will need an UART-USB or similar adapter. The UART pins are located
on the U14 pin header on the inside, near the microUSB connector, marked as UART-TX and UART-RX. If the board
is powered from a source other than the PC to which the UART is connected, remember to also plug in the ground
lead to one of the pins marked as GND on the CHIP (one is conveniently provided right next to the UART pins).

Preparing the system

To access CHIP as a normal user, you will need to set up the udev rules so that the device has appropriate permis-
sions when plugged in. Download the 99-chip.rules file. Edit the file with your favorite editor, and change all
referneces to plugdev to your username. Alternatively, you can add your user to the plugdev group.

Reload the udev rules with this command:

$ sudo udevadm control --reload-rules

Next we need to set up the software. Using your systme’s package manager, install the following software (possible
package names are specified in parenthesis):

• build tools (see note below)

• git (git)

• dd (coreutils)

• lsusb (usbutils)

• fel (sunxi-tools)

• mkimage (uboot-tools)

• fastboot (android-tools or android-tools-fastboot)

• img2simg (android-tools, simg2img, or android-tools-fsutils)

Note: Here are some commands for installing build tools on different distros:

Ubuntu/Debian and derivatives:

$ sudo apt-get install build-essential

Fedora:

1.1. Getting stated with rxOS 5

https://outernet.is/products
https://archive.outernet.is/images/rxOS-CHIP/

rxos Documentation, Release 1.0rc1

$ sudo yum groupinstall "Development Tools" "Development Libraries"

Arch Linux:

$ sudo pacman -Sy base-devel

Opensuse:

$ sudo zypper install --type pattern devel_basis

We will need to clone a few Git repositories which contain non-standard tools that are not commonly available as
packages (yet):

$ git clone https://github.com/Outernet-Project/CHIP-tools.git
$ git clone https://github.com/Outernet-Project/sunxi-tools.git

We need to compile these tools so run a few more commands:

$ cd CHIP-tools
$ make
$ CHIP_TOOLS=$(pwd)
$ cd ../sunxi-tools
$ make
$ FEL=$(pwd)

Don’t close the terminal just yet.

Flashing

CHIP must be put into FEL mode before it can be flashed. To do this you will need a (relatively thin) paper clip, or a
twist tie with stripped ends (exposed wire). With the paper clip or twist tie, connect the pins marked as FEL and GND.
The FEL pin is located at the 4th position in the inside row towards the microUSB port. GND pin is located at the last
position in the same row as the FEL pin. Once the pins are connected, plug the CHIP into a USB port.

You should see a device node /dev/usb-chip. If you don’t see it, your udev rules may need a refresh, or you may need
to check the rules file for typos.

In the terminal where you set the software up, navigate to where you unpacked the flash files. Start the flash script:

$ cd path/to/firmware/directory
$ PATH="$PATH:$CHIP_TOOLS:$FEL" bash chip-flash.sh
[0.01] ===> Preparing the payloads
[0.01] Preparing the SPL binary
[0.01] Preparing the U-Boot binary
[0.30] Preparing sparse UBI image
[0.41] ===> Creating U-Boot script
[0.42] Writing script source
[0.42] Writing script image
[0.42] ===> Uploading payloads
[0.43] Waiting for CHIP in FEL mode...OK
[0.44] Executing SPL
[1.97] Uploading SPL
[8.86] Uploading U-Boot
[16.15] Uploading U-Boot script
[16.16] ===> Executing flash
[16.17] Waiting for fastboot.......OK
target reported max download size of 314572800 bytes

6 Chapter 1. Documentation

rxos Documentation, Release 1.0rc1

sending 'UBI' (204800 KB)...
OKAY [16.949s]
writing 'UBI'...
OKAY [44.200s]
finished. total time: 61.149s
resuming boot...
OKAY [0.000s]
finished. total time: 0.000s
[101.84] ===> Cleaning up
[101.86] ===> Done

!!! DO NOT DISCONNECT JUST YET. !!!

Your CHIP is now flashed. It will now boot and prepare the system.
Status LED will start blinking when it's ready.

As the message says, within about 2 minutes, the status LED will start blinking. At that point, you will be able to start
using your newly flashed CHIP.

Note on fastboot and virtual machines

If you are using a virtualmachine (e.g., VirtualBox or VMware), you should be aware that, during the flashing, when
the “Waiting for fastboot” message appears, the CHIP will change its USB ID. This means that the USB ID you
originally set up while it was in FEL mode will no longer apply, and the guest OS will loose the connection to CHIP.
This results in fastboot timeout.

Once fastboot times out, you should reconfigure your virtual machine manager to make the new USB ID available to
the guest.

Connecting the hardware

Connect the antenna to the LNA, and then connect the LNA to the RTL-SDR dongle. Finally, plug the RTL-SDR
dongle into the USB port on the CHIP.

Power the CHIP on and continue to The first steps.

1.1.3 The first steps

Once your receiver is all flashed and running, here are a few things you can do.

Access the web-based interface

rxOS ships with a web-based user interface called Librarian. This interface is available on port 80 at the receiver’s IP
address.

In the most common scenario, you will find a new WiFi access point named ‘Outernet’. If you connect to it, you will
be able to reach the web interface at 10.10.10.10 or librarian.outernet.

Note: If your browser interferes with ‘librarian.outernet’ domain name and takes you to search instead, you can either
prefix the ‘http://‘ bit or use any domain name like example.com to reach the receiver’s web interface.

You can get to the receiver a few different ways, which is documented in the Remote shell access section.

1.1. Getting stated with rxOS 7

https://github.com/Outernet-Project/librarian
http://10.10.10.10/
http://librarian.outernet/
http://

rxos Documentation, Release 1.0rc1

Plug in the external storage

rxOS-basd receivers support external storage devices to expand the storage available on the SD card or built-in NAND
flash. More about that can be read in the Using external storage devices.

Point the antenna

If you haven’t already, you will want to adjust the antenna’s pointing. Precise pointing is a topic that is outside the
scope of this guide.

1.1.4 What rxOS is and what it isn’t

This section is intended for people who have some familiarity with the Linux operating system. If you are not familiar
with Linux, you may have some trouble following along, but the information found in this section is not essential for
using an rxOS-based device so feel free to skip it.

Probably the most important thing to note is that rxOS is not a Linux distribution. This means that, among other things:

• it has no writable root filesystem

• it has no packages or package manager

• it has no build tools

• it has no system administration tools

Read-only root filesystem

From time to time, we are asked about customizing the rxOS-based receivers. While some of the configuration persists
across reboots, one should not expect to permanently modify the system outside of the short list of persistent files.

No packages

The rxOS image is built as a unit. It is one monolithic system and there is no notion of packages (nor there ever
will be). There are sets of add-on files that are added on top of the image via the root filesystem overlays (see Root
filesystem overlays for an in-depth treatment of the subject), but those are not packages that you install with package
managers such as apt and pacman.

No build tools

As mentioned under the previous heading, rxOS is built as a unit. It is built on a standard Intel PC and then flashed to
a device. Because of this there are no build tools on the device. Adding your own programs to the image is done by
rebuilding the image the same way it was originally built (a short guide on that topic can be found in the Building and
customizing the image chapter).

No sysadmin tools

Well, this isn’t entirely true. There are some tools for working with the system. What is missing, though, are things
that would normally alter the system configuration. E.g., there is no support for changing the init script order and state,
there are no system configuration tools, etc. The rxOS system is mainly intended to be left as is as much as possible,
and modification to the system are done at built time.

8 Chapter 1. Documentation

https://en.wikipedia.org/wiki/Linux

rxos Documentation, Release 1.0rc1

What good is all this?

While all of this may sound a bit limited, it has some advantages when it comes to use on embedded devices.

Writable file systems are susceptible to corruption. If a device is writing during power loss, the filesystem may be left
in a state that makes it impossible to boot up.

You can write files to the root filesystem when the system is up and running. This is done by overlaying a fake
filesystem in the system memory (RAM) on top of the otherwise read-only root filesystem. If there is a bug in the
software, this may sometimes cause the system to exhibit weird behavior. Having a read-only root filesystem allows
the user to power-cycle the device and go back to the known good state. Not having packages, build tools, and so on,
are design decisions along the same lines: the less modification you can make to the system, the better the chance of
being able to get back to the known good state.

Another reason rxOS is quite stripped down is that the image needs to be updated over-the-air (OTA). This puts a
restriction on the amount of bandwidth the image can use, so virtually all non-essential items have been stripped out.

1.2 How rxOS works

This section provides a high-level overview of how rxOS works.

1.2.1 The boot process

The boot process is divided into 3 stages:

• Hardware boot

• Early userspace init

• Userspace init

Storage contents

The are two types of storage devices used in rxOS, based on the target device. On Raspberry Pi, SD cards are used,
while on CHIP, the built-in NAND flash storage is used.

SD card boot partition contents

The first partition of the SD card is a 400MB FAT32 partition with the following contents:

• Raspberry Pi stage 2 bootloader (bootcode.bin)

• Raspberry Pi stage 3 bootloader (start.elf)

• Raspberry Pi fixup data (fixup.dat)

• device tree blob (bcm2710-rpi-3-b.dtb)

• kernel image with early userspace (kernel.img)

• main root filesystem image (root.sqfs)

• backup root filesystem image (backup.sqfs)

• original factory root filesystem image (factory.sqfs)

1.2. How rxOS works 9

rxos Documentation, Release 1.0rc1

NAND contents

The NAND contains the following:

• SPL (secondary program loader) partition

• SPL backup partition

• U-Boot bootloader partition

• U-Boot bootloader environment partition

• boot partition

– kernel image (zImage)

– device tree blob (sun5i-r8-chip.dtb)

• root filesystem partition

• backup root filesystem partition

• data partitions

Hardware boot

Before any of the rxOS-specific software is executed, there is a phase in which the base hardware is initialized and the
hardware-specific bootloaders are run.

Raspberry Pi boot

The first stage is the same for all Raspberry Pi devices, but it will be described here for completeness.

The ROM on the Raspberry Pi board contains the stage 1 bootloader (S1). When power is applied, VideoCore GPU
is activated, and S1 is executed on a small RISC core that is present on the board. The S1 bootloader mounts the SD
card, and loads S2, bootcode.bin, into the GPU’s L2 cache and executes it on the GPU.

S2 activates the SDRAM. It also understands ELF binaries, and loads S3, start.elf, from the SD card. S3 is also
known as GPU firmware, and this is what causes the rainbow splash (4 pixels that are blown up to full-scren) to be
displayed.

Note: If there is a rainbow splash on the screen but no further activity, it means that S3 has been loaded successfully
but kernel image did not boot.

S3 reads the firmware configuration file config.txt (if any), and then proceeds to split the RAM between GPU and
ARM CPU. S3 also loads a file called cmdline.txt if it exists, and will pass its contents as kernel command line. S3
finally enables the ARM CPU and loads the kernel image (kernel.img by default, configurable via config.txt),
which is executed on the ARM CPU.

Note: start.elf is actually a complete proprietary operating system known as VCOS (VideoCore OS).

The kernel image contains a minimal early userspace and its init script is executed.

10 Chapter 1. Documentation

rxos Documentation, Release 1.0rc1

CHIP boot

When the board receives power, code in the boot rom (BROM) is executed. This code will activate a small amount of
memory and load SPL from either the first NAND partition or its backup image on the second partition.

SPL’s job is to activate all of DRAM and load the U-Boot bootloader from the third partition.

When U-Boot is activated it reads the boot parameters from the U-Boot environment partition. By default, this will
cause U-Boot to mount the boot partition (labelled ‘linux’), and load the kernel image and the DTB from it.

Finally, the kernel image is executed.

The early userspace

Early userspace initialization happens within the init script in the root of the kernel’s initramfs. We will refer to this
script as EI for brevity (early init).

EI is generated from a template found in rxos/initramfs/init.*.in.sh file. The asterix in the name can be
either ‘nand’ or ‘sdcard’ depending on the target platform. The sources are thoroughly documented, so if you need to
know more than what’s presented here, you are welcome to peruse the sources.

It first mounts devtmpfs to /dev so that device nodes are accessible. It then mounts the boot partition in order to
access root filesystem images/partitions.

On Raspberry Pi, additional data partitions are created. For NAND-based boot, this step is skipped because the extra
partitions are programmed along with the base system when the NAND is flashed at the factory.

On Raspberry Pi, there are three possible candidates for the final userspace, and those are root.sqfs,
backup.sqfs, and factory.sqfs. On CHIP, there are two possible candidates, ubi0:root and
ubi0:root-backup.

A RAM disk with size configurable at build-time (default is 80 MiB) is created to serve as a write-enabled overlay
over the read-only root filesystem. The mount points for the SD card and devtmpfs are moved to /boot and /dev in
the target rootfs, respectively.

If overlay SquashFS images are found (named overlay-<name>.sqfs), they are laid over the root filesystem to
provide device-specific extension.

For each candidate root filesystem, EI mounts the image, and creates a write overlay using OverlayFS and the previ-
ously configured RAM disk. It then attempts to switch to the new root filesystem using BusyBox’s switch_root
command which executes the /sbin/init binary in the target root filesystem.

If the switch is successful, early userspace initialization is complete and the userspace proper takes over.

If the switch is not successful, the next candidate is tried until no root filesystem candidates are left. If none of the root
filesystem images/partitions can be booted, EI starts an emergency shell where troubleshooting can be performed.

Note: Even if switch is successful, it does not mean the boot will succeed. Minimal checking is performed to ensure
that the root filesystem contains a path /sbin/init which an executable file or a symlink pointing to one, but
nothing beyond that is done. If the executable fails or does something that terminates the init process, kernel will panic
and boot will fail. In general, however, this is not quite realistic as long as valid images built for rxOS are used.

The userspace

Userspace initialization happens in the rootfs and is carried out by the init scripts in /etc/init.d. The init scripts
are executed synchronously in the lexical file name order.

1.2. How rxOS works 11

rxos Documentation, Release 1.0rc1

The userspace will start the WiFi hotspot, web and database servers, and Outernet applications. Any attached external
storage devices will also be mounted during this stage.

1.2.2 The early userspace

The early userspace consists of an init script and a minimal set of libraries and programs necessary to prepare the
system for the proper userspace initialization.

The early userspace is built by enabling the “User-provided options > System configuration > Create early userspace
cpio archive” option. This option is defined by a local package called ramfsinit. The package contains the file list
for the early userspace and the init script template.

During the early userspace initialization, the SD card’s boot partition is mounted. If the card contains any one-time
boot hooks, those are executed and immediately removed. The root filesystem images are found, and mounted, and the
init script finally switches to the mounted root filesystem (userspace proper). If no mountable root filesystem images
are found, init script drops into an emergency shell.

Boot hooks

Boot hooks are scripts in the early userspace image that perform pre-boot setup. One example of such a hook is
the selfpartition hook (provided by boothook-selfpartition local package) which prepares the data
persistence partitions on the Raspberry Pi SD card.

Hooks are looked up by hook-*.sh name pattern and are executed in a subshell every time rxOS boots. It is the
hook script’s job to determine wither they need to take action or not.

You can read more about boot hooks in Boot hooks.

Mounting the rootfs

On the SD card there are three root filesystem images. The rootfs.sqfs is the default root filesystem image.
backup.sqfs is the same image as the default one, and serves as a backup in case the first image is corrupted or
OTA update fails. Lastly, the factory.sqfs serves as a fallback image. The latter remains the same throughout
the device’s useful life (factory state).

Root filesystem images are loop-mounted read-only and are overlaid with a RAM disk that provides the write layer.
This provides protection against corruption resulting from partial writes and allows the user to reset the device to a
known state by power-cycling it.

The situation is similar for NAND flash, but the root filesystem is stored as UBI volumes, and there are only two
copies.

Emergency shell

Emergency shell is a minimal shell that can be used when troubleshooting boot issues. This is not a fully featured
environment such as the one typically found in desktop Linux distributions, so many familiar commands are missing
(e.g., no lspci, lsusb, htop, etc). All commands are available through the busybox binary at the root of the
early userspace RAM disk. Busybox documentation describes these commands (called ‘applets’), but one should have
in mind that not all Busybox features are enabled.

12 Chapter 1. Documentation

https://busybox.net/downloads/BusyBox.html

rxos Documentation, Release 1.0rc1

1.2.3 Remote shell access

rxOS only supports the following methods for remotely accessing the system:

- SSH over wireless hotspot (Pi3 and CHIP)
- SSH over Ethernet (Pi3)
- SSH over USB Ethernet (CHIP)
- Serial console over USB (CHIP)
- Serial console over UART (CHIP)

IP addresses

The following addresses are assigned to on-board network interfaces:

interface address
WiFi 10.0.0.1
USB Ethernet 10.10.10.10
Ethernet dynamic (DHCP)

Connecting to networks

rxOS-based receivers have several ways to network with other devices and networks.

Wireless hotspot

When a receiver is started, a wireless network is created automatically. The default network name (SSID) is “Outernet”
and is not password-protected.

USB Ethernet (CHIP only)

USB Ethernet connection is establish when the receiver is plugged in to a computer using the microUSB cable. As-
signment of IP address to the connected computer is automatic.

Ethernet connection (Raspberry Pi3 only)

The receiver can be connected to a router, and it will automatically obtain an IP address. Since this IP address is
dynamic, you will need to consult your router’s administrative interface, or use the wireless hotspot on the receiver to
find the IP address that was assigned.

SSH access

For SSH access, use port 22 and username outernet. The default password for the outernet user is outernet.

Note: Once you go through the setup wizard in the web inteface, the SSH user will change to the superuser credentials
that you set up during the wizard. Please adjust accordingly.

Root login is not enabled, but sudo can be used to gain full root access:

1.2. How rxOS works 13

rxos Documentation, Release 1.0rc1

[rxOS][outernet@rxos ~]$ sudo su
Password: ********
[rxOS][root@rxos /home/outernet]# _

USB serial console access (CHIP only)

USB serial console becomes available when the receiver is connected to a computer using a microUSB cable. Software
such as PuTTY, screen, or minicom, can be used to access this console. This console is log-in only and does not show
boot messages. For a more comprehensive console access, UART console is recommended.

UART console (CHIP only)

USB-UART adapter (not included) can be plugged into the UART pin headers on the CHIP to provide access to UART
console. Depending on the receiver design, the case may need to be removed to gain access the these pins. Software
such as PuTTY, screen, or minicom, can be used to access this console.

The UART console provides access to boot messages, and allows the user to interact with not just rxOS, but also the
U-Boot bootloader.

Changing the user password

User password can be changed using the passwd command:

[rxOS][outernet@rxos ~]$ passwd
Current password: *******
Enter new password: ******
Retype new password: ******

1.2.4 Using external storage devices

Over time, the storage on the SD card may become full. rxOS supports using external storage devices via the USB
ports. Only one external storage device can be used at a time.

The following table shows the supported disk formats and their characteristics.

format integrity check large disks power failure recovery
FAT32 Yes No No
NTFS No Yes Yes
ext2 1 Yes Yes No
ext3 1 Yes Yes Yes
ext4 1 Yes Yes Yes

FAT32 is the most common disk format for USB sticks and external hard drives. Although exFAT is becoming more
common with large-capacity devices, it is not supported by rxOS, so such devices should be reformatted using the
NTFS format (FAT32 formatting on Windows does not support large disks).

Linux users may use ext2, ext3 or ext4 format in addition to the other two.

Integrity check is prerformed on the disk where supported and an attempt is made to fix any problems with the on-disk
data. While FAT32 supports integrity checking, it is not as complete as running disk checks on Windows machines.

1Creation of disks in this format is only supported on Linux operating systems

14 Chapter 1. Documentation

rxos Documentation, Release 1.0rc1

Connecting an extrnal storage device

External storage devices can be simply plugged into one of the available USB ports.

Warning: Some external storage devices (and especially mechanical USB hard disks) draw a lot of electrical
current from the USB port and may cause Raspberry Pi to shut down. In such cases, a powered USB hub will be
required.

When the storage device is plugged in, it is checked for format. If the device uses an unsupported format, it is not used
and may be safely unplugged.

rxOS then mounts the disk to a temporary location to test that it can be mounted. If the test mount fails, the disk is
ignored and not used as external storage.

When the test mount is successful, rxOS will mount the disk as external storage and will redirect downloads to it.

Once the disk is mounted, reindexing of the content is started, and any content that already existed on the attached
disk becomes available after a while.

Note: Although it is possible to attach more than one storage device, only the last-attached device is used as external
storage. The other storage device is unmounted and may be unplugged.

Disconnecting the external storage device

External storage devices may be simply disconnected. Unmounting is done after the fact, unless the user interface
provides support for unmounting.

When a disk is disconnected, downloads are redirected to the internal storage on the SD card, and reindexing is started.
Any files that were present on the external storage device become unavailable afer a while.

Status LED indication

During storage hot-plug events, the status LED (green) indicates the status of the hot-plugging.

LED blinking slowly (0.5s interval) indicates that the storage mounting has started.

LED blinking fast (0.1s interval) indicates that the integrity check has started.

LED solid indicates that the storage device was mounted.

LED off indicates that the storage device was not mounted due to an error.

1.2.5 Storage layout

rxOS storage is highly compartmentalized to allow different pieces of the system and application code to utilize
different portions of the storage without stepping on each other. There are two types of storage used by rxOS:

• SD card (on Raspberry Pi)

• NAND flash (on CHIP)

The following table shows different portions of the storage on SD card and how they are used:

1.2. How rxOS works 15

rxos Documentation, Release 1.0rc1

Storage device Size Format Usage
1 Primary partition 200M FAT32 Boot files
2 Extended partition Receiver state
5 conf 24M ext4 Persistent system configuration
6 cache 600M ext4 Download cache
7 data 2G ext4 Application data
8 downloads rest ext4 Downloaded files

The following table shows different portions of the NAND flash storage and how they are used:

Storage device Size Format Usage
1 spl 4M raw Secondary program loader
2 spl-backup 4M raw SPL backup
3 uboot 4M raw U-Boot Bootloader
4 env 4M raw Bootloader settings
5 swap 400M raw (reserved for future use)
6 UBI Kernel and Receiver state
1 linux 64M ubifs Boot files
2 root 200M ubifs Root filesytem
3 root-backup 200M ubifs Backup root filesystem
4 conf 64M ubifs Persistent configuration
5 cache 600M ubifs Download cache
6 appdata 1G ubifs Application data
7 data rest ubifs Downloaded files

Boot files

Stores the boot files.

On Raspberry Pi, it contains the following files:

• Raspberry Pi 3 binary device tree

• Stage 2 and 3 bootloader

• start.elf

• Kernel image (kernel.img)

• Main and fallback rootfs SquashFS images (root.sqfs, backup.sqfs)

• Factory default SquashFS image (factory.sqfs)

On CHIP, it contains the following files:

• CHIP binary device tree

• Kernel image (zImage)

These files are read-only (except when updating the system).

Receiver state

The receiver state extended partition is split into 4 logical partitions. These partitions contain:

• persistent system configuration

• download cache

• application data

16 Chapter 1. Documentation

rxos Documentation, Release 1.0rc1

• downloads

Persistent system configuration

The init script that sets up configuration overrides maintains a list of configuration files that should be overridden based
on the contents of the config partition. The files from the config partition are symlinked to appropriate locations in the
rootfs.

Download cache

The download cache is a storage area for partial downloads. ONDD download cache is stored in a separate partition
to maximize control over the storage capacity.

Application data

Application data partition stores application configuration, databases, and other application state.

Downloaded files

Remaining space on the SD card is used for permanent storage of downloaded files.

1.2.6 OTA updates

rxOS supports secure automatic over-the-air updates (OTA updates).

When updated firmware is delivered into /updates/<platform name>/ directory, it is passed to pkgtool
which is an update package verfication tool. The update package contains the payload files, executable script (installer
script) that controls the update process, and a signature. The signature is checked by the pkgtool to ensure the
authenticity of the update package. Once the package is verified, the installer script is executed.

The installer script may contain arbitrary code, so udpate is just one of the many things it can be configured to do. In
this section, we will discuss a typical update process.

Normally, the payload for an update pakage consits of the root filesystem image and one or more of the optional extras:

• the pre-install script

• the post-install script

• kernel image

• DTB file

• firmware

• bootloader

• device-specific overlays

The update starts with a version check. If the version of the receiver’s firmware is the same or newer than the version
of the payload, installer aborts the update.

If pre-install script is present, it is executed first.

Next the payload is copied or flashed into appropriate location.

1.2. How rxOS works 17

rxos Documentation, Release 1.0rc1

On CHIP, the root filesystem is flashed to its backup UBI volume and then the names of the backup and main root
filesystem volumes are swapped, so that the new root filesystem will get mounted on boot.

On Raspberry Pi 3, the root filesystem is copied into the boot partition just like the kernel image.

Once the installation is finished, the post-install script, if present, is invoked. This script performs any one-time
adjustments to the system before reboot.

The system is finally rebooted to complete the update.

This entire process happens automatically without user intervention.

1.2.7 Setting up for remote support

rxOS allows remote support channel to be set up by adding a simple text file on an USB stick and plugging it into the
receiver.

Note: Because of the security implicatins, remote support channel is only opened with full cooperation from Outernet,
and only trusted individuals and organizations (e.g., partners, clients) will are allowed to use this feature.

Configuration file

The remote access configuration file is named REMOTE (all-caps). The file contains configuration parameters in
NAME=’value’ format, exactly one parameter per line. The following table contains all the possible parameters and
their purpose. All parameters are optional except the KEY.

Pa-
rame-
ter

Example Meaning

PORT 9978 This value should be a port number issued by Outernet staff. If omitted, a port between
20000 and 30000 will be randomly selected.

HOST sup-
port.outernet.is

Domain name of the support server as specified by the Outernet staff. If omitted,
hub.outernet.is is used.

NAME john-
lantern

Name of the receiver. This helps the support staff identify the receiver. If omitted, the
default name ‘rxos’ is used.

SSID mywifi SSID (access point name) of the access point which should be used to connect to Internet.
If this is left blank, wireless connection is not used, and instead, it is assumed that the
receiver will gain access to Internet by some other means. PASSCODE parameter is
required when using SSID.

PASS-
CODE

some
secret

Passcode (password) of the wireless access point that should be used to connect to Internet.

KEY (gibber-
ish)

Access key that is used to establish a connection with the server and provided by the
Outernet staff.

Warning: Any and all values must be quoted using single quotes. Failure to do this may result in unexpected
behavior.

Warning: NEVER SHARE THE ACCESS KEY WITH ANYONE. You must ensure that the access key does not
fall into the wrong hands. If the key is misused by a malicious user, any receivers connected to the support server
or the networks they are on may get compromised.

18 Chapter 1. Documentation

rxos Documentation, Release 1.0rc1

Activating the support connection

To activate the support connection:

• power down the receiver

• put the REMOTE file onto USB storage device

• plug the USB storage device into the receiver

• power the reciever up

Deactivating the support connection

To deactivate the support connection:

• power down the receiver

• remove the USB storage device from the reciever (if you need to use the storage device again, delete the REMOTE
file from it)

• power the receiver up

How it works

When rxOS boots, if the appropriate configuration file and access key are found on the USB storage device, the net-
working is reconfigured (when using the SSID parameter) to access the Internet, and a SSH connection is established
with the remote support server allowing a tunnel from the specified PORT back to the SSH port on the receiver. The
Outernet staff then accesses the receiver using SSH through this tunnel (reverse SSH).

1.3 Building and customizing the image

This section provides information about building and customizing the rxOS image.

1.3.1 Build requirements

In order to build the rxOS firmware, you will need a Linux (virtual) machine.

For virtual machines, hardware virtualization (Hyper-V, etc) is highly recommended, as well as as much RAM as you
can spare.

You will need to have the following packages installed:

• Build tools 1

• bc

• git

• rsync

• unzip

• cpio

1 The build tools include compilers (e.g., gcc), standard libraries, and build automation tools (make, automake, autoconf, etc). In some Linux
distributions, there are packages that bundle these tools together (e.g., ‘build-essential’ on Ubuntu, or ‘base-devel’ on Arch Linux). If you are
unsure, try googling “build-essential equivalent for <distro name>”.

1.3. Building and customizing the image 19

rxos Documentation, Release 1.0rc1

• wget

• mercurial (hg)

Note: Here are some commands for installing build tools on different distros:

Ubuntu/Debian and derivatives:

$ sudo apt-get install build-essential

Fedora:

$ sudo yum groupinstall "Development Tools" "Development Libraries"

Arch Linux:

$ sudo pacman -Sy base-devel

Opensuse:

$ sudo zypper install --type pattern devel_basis

1.3.2 Building the firmware image

The build is broadly divided into three parts that are carried out in one sequence, driven by Buildroot.

• Linux kernel compilation

• Rootfs compilation

• Early userspace and kernel recompilation

During Linux kernel compilation, a kernel image is compiled with a dummy initramfs image (just an empty file).
Following the kernel, the root filesystem contents are compiled. Finally, the cpio archive for the early userspace is
created and linked into the kernel image.

In order to build the firmware, you should be familiar with Buildroot.

Before you build

Before you build, you need to clone the rxOS git repository:

$ git clone --recursive https://github.com/Outernet-Project/rxOS.git

The --recursive flag causes git to init and update any submodules. If you forgot it, you need two additional steps:

$ git submodule init
$ git submodule update

Selecting the board

rxOS build supports a few different target boards. These boards are selected using the BOARD variable in the makefile,
like this:

$ make BOARD=<boardname> [TARGET]

The boardname can be one of the following:

20 Chapter 1. Documentation

http://www.buildroot.org/docs.html

rxos Documentation, Release 1.0rc1

• rpi3: Raspberry Pi3

• chip: NTC C.H.I.P.

Shortcut scripts for making for specific targets are available at the root of the source tree. These scripts are named
after the respective target boards. For example, to bring up the configuration menu for Raspberry Pi 3:

$./rpi3 menuconfig

Note: In the rest of the documentation, you can replace make with the board script (e.g., ./rpi3) depending on the
board you wish to build for.

Starting the build

The build is initated by invoking make or make build.

To completely clean up the build and restart it from scratch, use make clean build. It is generally not needed to
do this, though. In most cases, a more efficient alternative is to call make rebuild-everything.

Customizing the build

To customize the build use make menuconfig, which brings up the Buildroot’s configuration menu.

Updating the existing build

To update your local repository clone:

$ cd path/to/rxOS
$ git pull
$ git submodule update

Apply possibly updated build configuration:

$ make config

Rebuild starting from the linux kernel:

$ make rebuild-with-linux

Linux kernel compilation

The kernel is compiled using Buildroot’s build scripts. The kernel compilation can be controlled to some degree using
Buildroot’s Kernel menu. Any patches applied to the kernel can be found in rxos/patches/linux directory.

The kernel configuration is found in the rxos/configs/rxos_kernel_defconfig file.

The following files are generated during the build targeting the Raspberry Pi board:

zImage kernel image with linked initramfs
kernel.img kernel image with Raspberry-Pi-specific trailer

The kernel.img file is created by a post-image hook called rxos/scripts/add_trailer.sh. The script’s
source includes more information on what it does and why.

The following files are generated during the build targeting the CHIP board:

1.3. Building and customizing the image 21

rxos Documentation, Release 1.0rc1

zImage kernel image with linked initramfs

To restart the build from the kernel image compilation you can use the rebuild-with-linux target.

U-Boot compilation

The CHIP build will also generate a bootloader image, u-boot-dtb.bin and its derivative SPL images (secondary
program loader), sunxi-spl.bin and sunxi-spl-with-ecc.bin.

To recompile U-Boot, the uboot-dirclean target is used to clean the U-Boot build, and uboot-rebuild target
to rebuild it.

Rootfs compilation

The root filesystem image is created from a collection of packages, both from the Buildroot’s own package collec-
tion found in buildroot/package and the additional Outernet-provided packages found in rxos/package.
The Buildroot’s packages are selected using Buildroot’s Target packages configuration section. Outernet-provided
packages are selected in various sections within the User-provided options section of the Buildroot’s configuration
menu.

The rootfs format is SquashFS compressed using LZ4 algorithm. This can be changed in the Buildroot’s Target
filesystems menu.

To apply small changes to the root filesystem (e.g., a new package was added or an existing package was updated),
run make rebuild. Keep in mind that Buildroot does not track what files belong to what package. Because of this,
when removing packages, or when updating packages to version that no longer contain some of the files that they used
to contain, you may end up with stray files from the previous builds. If this happens, make clean build should
be used instead.

Early userspace

The early userspace is built last as it is built from pieces of the root filesystem. This is facilitated by the Outernet-
specific patches applied to the version of Buildroot used by rxOS.

The initial RAM disk (initramfs) image is build as a compressed cpio archive, and the list of files that end up in the final
initramfs image is controlled by several different packages, including the ramfsinit local package. The packages
each provide a template that points the kernel’s gen_init_cpio script to appropriate files in the root filesystem.

Known issues

The build scripts are still under development. In some cases, rebuild* targets may fail. If a rebuild target fails, try
falling back on another one (e.g., if rebuild fails, try rebuild-with-linux), and finally do a make clean
build.

Also, be sure to report any build issues so we can address them.

1.3.3 Boot hooks

Boot hooks are early userspace shell scripts (part of the initial RAM filesystem image) that are invoked by the init
script on each boot.

22 Chapter 1. Documentation

rxos Documentation, Release 1.0rc1

Boot hook local packages

Boot hooks are provided by local packages that are named boothook-*. A typical boot hook consists of the follow-
ing:

• initial RAM filesystem file list (to be added to the default set of files)

• hook script

Additionally, the package may select other packages that would become part of the root filesystem and used as the
source for the initial RAM filesystem file list, or provide configuration options for the hook script.

The initial RAM filesystem file list is mandatory and it must be installed in the $(BINARIES_DIR)/initramfs
directory. The file must contain at least a reference to the hook script and place the hook script into the root of the
initramfs.

There are no rules as to the naming of the initramfs list file, but a convention is to use the package name without the
boothook- prefix, and append .cpio.in extension. The file must also be declared as the initramfs list extension
by appending its name (just the name, not the full path) to INIT_CPIO_LISTS variable in the makefile. More
information about the initramfs list format can be found on landley.net.

By convention, we install the hook script into the same directory as the initramfs list, so that it can be accessed quickly
when needed for debugging and similar purposes, but this is not required.

Finally, the package is registered under the “System configuration” section in the rxOS’s master Config.in.

Simple boot hook example

For our example, we will create a simple hook script that shows a greeting with configurable name. Let’s call this
hook ‘greeter’.

We first need to create a directory for the hook.

$ mkdir -p rxos/local/boothook-greeter/src

Note that we have created not only the hook package directory, but also a src directory inside it. This is a typical
setup for local packages, where the src directory provides the source code.

Now let’s create the Config.in file for the hook package (do not copy this example as it is _not_ correctly format-
ted).

config BR2_PACKAGE_BUILDHOOK_GREETER
bool "Greet the user"
help

Greet the user using a configurable message.

if BR2_PACKAGE_BUILDHOOK_GREETER

config BR2_PACKAGE_BUILDHOOK_GREETER_MESSAGE
string "Greeting message"
default "Welcome to rxOS!"
help

Greeting message printed to the user during
boot.

endif # BR2_PACKAGE_BUILDHOOK_GREETER

We will also register this configuration. We edit the rxOS/Config.in file and modify the “System configuration”
menu.

1.3. Building and customizing the image 23

http://www.landley.net/writing/rootfs-howto.html

rxos Documentation, Release 1.0rc1

menu "System configuration"
...
source "$BR2_EXTERNAL/local/boothook-greeter/Config.in"
...

endmenu

Before we can write the matching makefile, we need the hook script itself. In the src directory, we create a file called
greeter.sh that looks like this:

#!/bin/sh
MESSAGE="%MSG%"
echo "

$MESSSAGE

"

The %MSG% is a placeholder that will be populated later in the makefile.

Note: The %NAME% syntax is just a convention. You can use whatever you like for your placeholders, and also any
technique for populating them. This is just an example of how we do it.

We also need a initramfs list file. We will assume that, as per convention, the hook script will be installed in
$(BINARIES_DIR)/initramfs. The list will be saved as src/init.cpio.in.

file /hook-greeter.sh %BINDIR%/initramfs/greeter.sh

Now we have all the files we need, so we can proceed to write the makefile.

Now let’s create the makefile. The makefile is called buildhook-greeter.mk and should be saved in the package
directory.

###
#
buildhook-greeter
#
###

BUILDHOOK_GREETER_VERSION = 1.0
BUILDHOOK_GREETER_LICENSE = GPLv3+
BUILDHOOK_GREETER_SITE = $(BR2_EXTERNAL)/local/buildhook-greeter/src
BUILDHOOK_GREETER_SITE_METHOD = local

(More stuff here soon...)

$(eval $(generic-package))

Thus far, it’s a typical Buildroot generic package makefile. (Assume that we will keep the code above and below the
‘More stuff’ comment in the snippets that follow.)

We first need to prepare the user-specified message. When a value is specified in the Buildroot’s menuconfig, it comes
with double-quotes around them so those need to be stripped out.

BUILDHOOK_GREETER_MSG = $(call qstrip,$(BR2_BUILDHOOK_GREETER_MESSAGE))

Now we define the install commands that will install the initramfs list and the hook script in appropriate places and
replace the placeholders with appropriate values.

24 Chapter 1. Documentation

http://bit.ly/1saNe4s

rxos Documentation, Release 1.0rc1

define BUILDHOOK_GREETER_INSTALL_TARGET_CMDS
install -Dm644 $(@D)/init.cpio.in \

$(BINARIES_DIR)/initramfs/greeter.cpio.in
sed -i 's|%BINDIR%|$(BINARIES_DIR)' \

$(BINARIES_DIR)/initramfs/greeter.cpio.in
install -Dm644 $(@D)/greeter.sh \

$(BINARIES_DIR)/initramfs/greeter.sh
sed -i 's|%MSG%|$(BUILDHOOK_GREETER_MSG)' \

$(BINARIES_DIR)/initramfs/greeter.sh
endef

Finally, we need to register the cpio list file:

INIT_CPIO_LISTS += greeter.cpio.in

This concludes our makefile. Now we can test whether it all works.

$ make boothook-greeter-rebuild

When we’re done, we can take a look at out/images/initramfs directory and inspect the results. If everything
is alright, we can include the hook in initramfs by enabling “User-provided options > System configuration > Greet
the user” option and setting the message.

Adding files to the initial RAM filesystem

If the hook script requires files that are not present in the stock initial RAM filesystem image, additional files can be
added via the cpio list file.

Modifying the hooks

When the hook is modified, and it’s time to rebuild the image, we need to do it like so:

$ make boothook-<hookname>-rebuild rebuild

Simply doing make rebuild will not update the hook as the package is marked as already installed.

1.3.4 Root filesystem overlays

rxOS supports customizing the base image using root filesystem overlays (henceforth we’ll refer to them simply as just
‘overlays’). Overlays are SquashFS images that contain a set of files and directories that either augment or override
the base root filesystem contents.

The benefit of using overlays as opposed to modified root filesystem images are:

• ability to receive OTA updates meant for the base root filesystem only while retaining the customization intact

• simpler build process as the full build environment is not needed for most simple overlays

• OTA update for the overlay itself does not consume too much bandwidth as overlays are typically small

There is no limit to the number of overlays that can be added to the system, though one should be mindful about RAM
usage as each overlay is loop-mounted.

1.3. Building and customizing the image 25

rxos Documentation, Release 1.0rc1

Creating an overlay image

To create an overlay image, we first prepare a directory with the image contents, and then convert it using squashfs-
tools. Only LZ4-compressed images are supported at the moment.

As an example, we will prepare an overlay that contains a single text file.

First prepare the work directory:

$ mkdir overlay && cd overlay

Next we create the directory where we will keep our text file and the text file itself:

$ mkdir -p opt/doc
$ echo 'Hello world!' >> opt/doc/hello.txt

Finally, we adjust the ownership of the directories:

$ sudo chown -R 0:0 opt/doc

Note: We are using numeric IDs for the user and group. Since user and group names on your system may not map to
the same IDs on rxOS, you should stick to using 0 for root, and 1000 for the outernet user.

We are now ready to create the SquashFS image:

$ cd .. # Exit overlay directory
$ mksquashfs overlay/ overlay-hello-1.0.sqfs -comp lz4 -Xhc

The output file name must be named overlay-<name>-<version>.sqfs because that is the pattern that the
init script looks for. The name should not contain any dashes or spaces. The version can be in the X.Y or X.Y.Z
format and the following suffixes are supported:

• aN - alpha version N

• bN - beta version N

• rcN - release candidate N

Here are some examples of valid version numbers:

• 1.0a2 - second alpha version for 1.0 release

• 2.0b1 - first beta version for 2.0 release

• 3.1 - third major, fist minor release

• 1.3.002 - first major, third minor, second patch release

• 5.1rc2 - second release candidate for 5.1 release

Adding binary executables to overlays

Binary executables have to be compiled for the rxOS target platform(s). While you can create binaries any way you
prefer, the simplest approach is to use the rxOS build itself to generate the binary files.

The advantage of this method is that the build-related tooling is already set up. Disadvantages are that it is time
consuming as it requires a complete rxOS build and that you are limited to packages that are in the build (or you have
to create new ones for 3rd party packages that are not available in the build).

26 Chapter 1. Documentation

rxos Documentation, Release 1.0rc1

Warning: This method uses the buildroot package infrastructure to create the binaries. Because buildroot pack-
ages do not maintain a list of files that belong to them, if a package you wish to compile overwrites a file from
another package, the overwritten file will be competely removed from the output directory. If this happens, your
build will be left in an inconsistent state, and you will need to rebuild the original package to which the overwritten
file belongs, or, if you are not sure which package you need to rebuild, do a clean rebuild of the entire project.

First complete a rxOS build itself using the git tag for the version you wish to target. Next, build only the package you
are interested in putting in your overlay. In this example, we will add htop:

$ make -s htop
>>> htop 1.0.3 Extracting
>>> htop 1.0.3 Patching
>>> htop 1.0.3 Updating config.sub and config.guess
>>> htop 1.0.3 Configuring
>>> htop 1.0.3 Autoreconfiguring
libtoolize: putting auxiliary files in '.'.
libtoolize: copying file './ltmain.sh'
....
>>> htop 1.0.3 Patching libtool
...
>>> htop 1.0.3 Building
...
>>> htop 1.0.3 Installing to target
/usr/bin/mkdir -p '/home/hajime/code/rxos/out/target/usr/bin'
/usr/bin/mkdir -p '/home/hajime/code/rxos/out/target/usr/share/applications'
/usr/bin/mkdir -p '/home/hajime/code/rxos/out/target/usr/share/pixmaps'
/usr/bin/mkdir -p '/home/hajime/code/rxos/out/target/usr/share/man/man1'

...

Note: You don’t have to (and you should not) select the package in the menu. Making the target that matches the
package name will build that package even if it’s not selected.

Once the package has finished building, we will collect the new files. To do this we will use the newfiles.sh
script:

$ tools/newfiles.sh path/to/overlay
usr/bin/htop
usr/share/pixmaps/htop.png
usr/share/applications/htop.desktop
usr/share/man/man1/htop.1

Now the package files are moved to the overlay directory. The list of files shown in the output is the list of files that
are copied to the overlay. Some of these files are stripped afterwards: in particular, the pixmaps, applications, and man
directories will be stripped.

Finally, we need to dirclean the package to reset it to unbuilt state:

$ make -s htop-dirclean

The last step is optional, but we do it just in case we change our minds later and decide to make the package part of
the build (otherwise buildroot will think the package is already built and won’t rebuild it).

1.3. Building and customizing the image 27

rxos Documentation, Release 1.0rc1

Booting with an overlay

To create an image that includes overlays, put them in out/images/sdcard-extras directory for SD card builds
(e.g., Raspberry Pi), and out/imags/overlays for NAND builds (e.g., CHIP).

To install an overlay to a running system, upload the overlay to the receiver, and then:

$ sudo chbootfsmode
$ sudo mv <path/to/overlay> /boot
$ sudo chbootfsmode
$ sudo reboot

Creating update packages for overlays

The tools directory contains a script called mkoverlaypkg.sh. This script will create an OTA update .pkg
file for any overlay images found in out/images/overlays. Run the script with -h flag to see the options it
supports.

The generated overlay files have the following naming convention:

rxos-<platform version>-overlay-<name>-<version>-<timestamp><suffix>.pkg

• platform version can be a version of a rxOS release (e.g., v1.0) or any. If the version is specified, the
update package can only be installed on that particular version of rxOS.

• name is the overlay name, and only overlays that have the same name that are already installed are going to be
updated by the generated upate package

• version is the overlay version, and if version check is enabled (see suffix below), only overlays that are
newer than the already installed overlay are upgraded

• timestamp is a timestamp in local time, when overlay package was created

• suffix can be either a blank string or nv, for non-version-checking package

1.3.5 Setup scripts

If the “User-provided options > System configuration > Perform initial system setup” option is enabled, a S00setup
init script is installed in the target system. This script runs the scripts found in /etc/setup.d during init, allowing
the developer to perform arbitrary tasks during init.

The setup scripts must have an exectuable flag and must have a .sh extension (even if it’s not a shell
script!). When a script is run, a log file is created that is named so as to match the script name:
/var/log/setup/<scriptname>.sh.log. Any messages from the setup script are logged in that file. The
log file is kept only if the script’s exit code is not 0. No output from the script is echoed to console.

One example of a setup script is the persist.sh which is installed by enabling “User-provided options > System
configuration > Persistent system configuration” option.

1.4 Troubleshoting

This section contains the information related to finding and fixing problems with the rxOS build as well as the running
rxOS operating system.

28 Chapter 1. Documentation

rxos Documentation, Release 1.0rc1

1.4.1 External storage issues

This section describes possible issues related to external storage support, and also provides general troubleshooting
tips.

Storage does not mount

If storage simply does not mount, ensure that it is one of the supported formats (see Using external storage devices)
and that the files are accessible on a computer. If your USB stick or memory card is factory-formatted, check that it is
FAT32 and not exFAT (exFAT is common with large capacity sticks and cards, larger than 64GB).

For NTFS filesystem, there is no integrity check on mount, so ensure that the disk is checked on a Windows computer
prior to use.

FSCK*.REC files appearing on storage after use

The integrity check for FAT32 system may create FSCK*.REC files (where * is a sequence of four digits). These files
represent recovered orphan file data. It is usually safe to remove them.

External storage files are not present in the file list

Files not appearing shortly after plugging in an external storage is normal. External storage devices have to be scanned
for new files, and this scan may take up to several minutes. The time it takes to scan the disk depends on such factors
as storage device perofrmance and the number of files (not their size).

If the new files do not appear even after an hour of waiting, try restarting the receiver.

Warning: Dot not remove and reattach the disk multiple times in in quick succession as this will cause multiple
scanning to be triggered and will take even longer to index the disk.

Wrong partition mounted

Currently, only one partition can be used from multi-partition disk, and this is the last partition with supported partition
format (see Using external storage devices).

General troubleshooting

This subsection contains instructions useful for general troubleshooting of storage-related issues.

Testing the hotplug script

The hotplug script, although a shell script, is not meant to be run from the shell. It is executed by udev, and expects to
see some of the udev environment variables. However, it is still possible to run the script manually by simulating the
udev environment.

The following environment variables are expected:

• ACTION: ‘add’ or ‘remove’, tells the script whether the device was attached or detatched

• DEVNAME: device node (e.g., /dev/sda1)

• ID_FS_TYPE: disk format (vfat, ntfs, ext2, ext3, or ext4)

1.4. Troubleshoting 29

rxos Documentation, Release 1.0rc1

• ID_BUS: must be ‘usb’

Here is an example simulating a hot-plug event for /dev/sdb1 device with ntfs disk format:

$ sudo su
Password: ********
ACTION=add DEVNAME=/dev/sdb1 ID_FS_TYPE=ntfs ID_BUS=usb \

/usr/sbin/hotplug.storage

Troubleshooting storage issues

If storage does not appear to be used after plugging in, it is recommended that integrity check is performed on a
computer.

Restarting the receiver may also help in some cases.

The system logs at /var/log/messages contain messages with more information about the nature of failure. To
get the storage hotplug logs, log in using SSH (see Remote shell access) and execute the following command:

$ grep hotplug.sd /var/log/messages
Jan 1 00:21:21 rxos user.notice hotplug.sda: Handling hotplug even for /dev/sda
Jan 1 00:21:21 rxos user.notice hotplug.sda: Attempting to use iso9660 disk /dev/sda
Jan 1 00:21:21 rxos user.notice hotplug.sda: iso9660 is not a supported filesystem.
Jan 1 00:21:21 rxos user.notice hotplug.sda1: Handling hotplug even for /dev/sda1
Jan 1 00:21:21 rxos user.notice hotplug.sda1: Attempting to use vfat disk /dev/sda1
Jan 1 00:21:22 rxos user.notice hotplug.sda1: Checking disk integrity
Jan 1 00:21:22 rxos user.notice hotplug.sda1: Mounting with options: 'utf8'
Jan 1 00:21:22 rxos user.notice hotplug.sda1: Doing a trial mount on /mnt/sda1
Jan 1 00:21:22 rxos user.notice hotplug.sda1: Final mount to /mnt/external
Jan 1 00:21:22 rxos user.notice hotplug.sda1: Redirecting ONDD to external storage
Jan 1 00:21:22 rxos user.notice hotplug.sda1: Refreshing file index

1.5 Appendices

This section contains information that does not fit into other sections.

1.5.1 Appendix: Source tree layout

• buildroot/: Buildroot submodule

• docs/: Documentation

• rxos/: External board directory

– configs/: Build configuration

* busybox.config: Busybox default configuration

* config.txt: Raspberry Pi bootloader configuration

* rxos_defconfig: rxOS build defaults

* rxos_kernel_defconfig: Linux kernel defaults

* users: User/group list

– installer/: Files used to create the update package’s installer

30 Chapter 1. Documentation

rxos Documentation, Release 1.0rc1

– local/: Packages with local source code (mostly system configs)

– misc/: Miscellaneous files (d’oh!)

– package/: Custom software packages submodule

– patches/: Custom patches

– rootfs/: Rootfs overlay

– scripts/: Build hook scripts

– support/: Various build hooks

– Config.in: External board config

– external.mk: External boad makefile

– local.mk: Board-specific overrides

• Makefile: Main makefile

• README.rst: README file

1.5.2 Appendix: Make targets

The following table describes the available make targets:1

target function
version Get current version
build 2 Build both SD card image and update package
menuconfig Bring up Buildroot configuration menu
linuxconfig Bring up Linux kernel configuration menu
busyboxconfig Bring up Busybox configuration menu
saveconfig Save all configuration
config Load default configuration (overwrites any modifications)
rebuild Rebuild the rootfs and recompile linux with initramfs
rebuild-with-linux Completely rebuild the linux kernel, DTB, and rootfs
rebuild-everything Rebuild everything except host tools/libs
clean-rootfs Partial cleanup (useful when trying to apply small modifications)
clean-linux Partial cleanup (useful when linux configuration changes)
clean-deep Clean everything except host tools/libs
clean Complete cleanup (also removes any unsaved modifications)
print-post-script-args Print the arguments that would be passed to the post-build and post-image hooks.
manual Build the HTML manual and output it to docs/build/html.

1.5.3 Appendix: Updating rxOS manually

rxOS firmware can be updated manually. There are three ways to update the rxOS firmware:

• Create a new SD card

• Copy the updated images to the SD card

• Update using shell access

When updating individual files, commonly the following three files are updated:

1 Targets described here are custom targets for rxOS build. Full set of Buildroot’s own make targets are also available.
2Default target when invoking make

1.5. Appendices 31

rxos Documentation, Release 1.0rc1

• kernel.img - kernel image

• root.sqfs - root filesystem image (applications)

• backup.sqfs - a backup copy of the root filesystem image (usually updated at the same time the root filesys-
tem image itself is updated)

Here we will discuss the latter two options.

Copy updated images to SD card

The kernel image (kernel.img) and the root filesystem image (root.sqfs) can be updated by opening the SD
card on a computer and replacing the matching files on the card.

When replacing root.sqfs, please note that a copy of the file is named backup.sqfs. Ideally we want to replace
backup.sqfs with a copy of root.sqfs as well.

Warning: Make sure the card is safely removed (unmounted) from the computer. Failing to do so may result in
partial writes and factory image booting instead of the updated one.

Update using shell access

If direct access to the receiver’s SD card is impossible, remote shell access can be used as an alternative method of
updating. To update remotely, first use scp to transfer the files to the receiver. Note that only around 50MB of files
can be stored at a time, so we may need to update files one by one. (For more information about remote shell access
in general, see Remote shell access.)

Note: To check the available space, the following command can be used: df -h | grep overlay | awk
{print $4}

The boot partition is read-only by default. To make it read-write, we first run this command:

$ sudo chbootfsmode
Password: ********
Changing /boot to read-write mode.

Next we scp the files to the receiver.

Note: rxOS only supports scp and not sftp, therefore programs like FileZilla cannot be used. PuTTY users should
use the -scp option when using pscp.exe.

Using PuTTY as an example:

C:\> pscp -scp root.sqfs outernet@<IP address>:
outernet@<IP address>'s password: ********
root.sqfs | 48548kb | 754.2 kB/s | ETA 00:00:00 | 100%

Now we can copy the file to the boot directory:

$ sudo mv root.sqfs /boot/
Password: ********
mv: can't preserve ownership of '/boot/root.sqfs': Operation not permitted

32 Chapter 1. Documentation

rxos Documentation, Release 1.0rc1

The error message in the example is harmless and can be ignored.

We repeat the last two steps with any other files we may want to update. Finally:

$ sync && sudo reboot

Wait for the receiver to reboot.

1.5.4 Appendix: Creating a chrooted build environment under Arch Linux

Because the rxOS build depends on a large number of complex software packages, and Arch Linux is a rolling release
distribution, discrepancies between the package versions installed on developers’ machines may lead to random build
failure for some. To ensure maximum compatibility, we can set up a build environment in a chroot and fix the package
versions to known good ones.

A chroot is more or less a full Linux distro within a distro (sans the kernel, init scripts, bootloader, and things you do
not need for bootstrapping). It is created in an arbitrary directory within our install, and can use different versions of
software as if they were installed on the host system.

Arch Linux makes it easy to create the chrooted environment by making the scripts normally used during installation
available in form of packages.

Requirements

To build the chrooted environment, you will need a working Arch Linux install, and the following packages:

• arch-install-scripts

• devtools

Creating the chroot

We will first pick a directory where we will keep our chroot(s). Let’s call this directory chroots for simplicity:

$ mkdir chroots

Once we have the directory, we create the actual chroot directory within it:

$ mkarchroot chroots/buildroot base

The base argument is the name of the package group we want installed in the chroot. Although we can install any
number of packages, we won’t do it at this stage because we want to downgrade all installed packages to a known
good version. At this step, we merely want to install packages that will allow us to do so later.

Next we need to edit the mirrorlist file within the chroot to facilitate the downgrade.

$ echo 'Server = https://archive.archlinux.org/repos/2016/02/19/$repo/os/$arch' \
> chroots/buildroot/etc/pacmand.d/mirrorlist

Once the mirrorlist is edited, we can enter the chroot, remove unnecessary packages and downgrade the packages we
need:

$ sudo arch-chroot chroots/buildroot /bin/bash
pacman -Rncs linux linux-firmware systemd
pacman -Syyuu

1.5. Appendices 33

rxos Documentation, Release 1.0rc1

Note: If you use a terminal emulator that isn’t quite xterm-compatible, you may need to install terminfo files for
your terminal emulator within the chroot. For urxvt, for example, you need to install rxvt-unicode-terminfo
package. Neglecting to do so will result in weird terminal behavior such a Backspace not echoing correctly.

Next we install the build prerequisites:

pacman -S base-devel python2 git mercurial bc unzip rsync wget cpio

Once everything is installed, we can remove the package cache to recover disk space:

pacman -Scc

Creating the unprivileged user

There is no need, nor it is desirable, to perform the builds as root. Therefore, we need a normal user account to use
while building. Inside the chroot we run the following command:

$ useradd -Umk /etc/skel <USERNAME>

Making development files available to the chroot

While inside the chrooted environment, we cannot access any files on the host system. Since it is wasteful to clone the
code inside the chroot, install all the development tools, and otherwise bloat the chroot, we will make the development
files (local git repository) available within the chroot. This allows us to user our normal environment to work on the
files (edit, etc), while using the chroot for the actual build.

Since symlinking to location outside the chroot does not work, we will use a bind mount instead. From the host
system:

$ sudo mount --bind /path/to/local/repo \
chroots/buildroot/home/<USERNAME>/rxos

Building

Now whenever we want to build, we enter the chroot and build as the unprivileged user:

$ sudo arch-chroot chroots/buildroot /bin/bash
su <USERNAME>
$ cd ~/rxos
... build commands ...

1.5.5 Appendix: C.H.I.P. NAND storage characteristics

C.H.I.P. has built-in NAND flash storage mounted on the top side of the board. It’s an 8GB SK-hynix-branded SLC
NAND chip.

NAND characteristics

The following table contains information returned by executing nand info in the U-Boot shell.

34 Chapter 1. Documentation

rxos Documentation, Release 1.0rc1

Capacity 8589934592 B (8 GiB) 0x200000000
Erase block size 4194304 B (4 MiB) 0x400000
Page size 16384 B (16 KiB) 0x4000
Subpage size 16384 B (16 KiB) 0x4000
OOB 1664 B 0x680
Options 0x40003200
BBT Options 0x00110000

Information returned by mtdinfo is as follows:

Type: mlc-nand
Eraseblock size: 4194304 bytes, 4.0 MiB
Amount of eraseblocks: 2044 (8573157376 bytes, 8.0 GiB)
Minimum input/output unit size: 16384 bytes
Sub-page size: 16384 bytes
OOB size: 1664 bytes
Character device major/minor: 90:8
Bad blocks are allowed: true
Device is writable: true
Default UBI VID header offset: 16384
Default UBI data offset: 32768
Default UBI LEB size: 4161536 bytes, 4.0 MiB
Maximum UBI volumes count: 128

Additional notes

Normally about a dozen or more bad sections will be found on first boot.

1.5.6 Appendix: Tools for working with compute boards

This appendix lists some of the tools that could come in handy when working with the compute boards (Raspberry Pi
and CHIP).

Raspberry Pi tools

• HDMI-HDMI cable for connecting to an HDMI monitor or TV

• DVI-HDMI cable for connecting to a DVI monitor

• USB keyboard

• 5V/2A power adapter with microUSB cable

• spare SD cards (8GB+)

• Cat 5 cable (LAN cable) for connecting the board to a router

• USB stick

CHIP tools

• USB-UART adapter

• male-male jumper (dupont) wire for grounding the FEL pin

• male-male or male-female jumper (dupont) wires (3x) for attaching USB UART adapters (connector type de-
pends on the UART adapter)

1.5. Appendices 35

rxos Documentation, Release 1.0rc1

• 5V/2A power adapter with stripped connector exposing voltage and ground wires for powering the board via
CHG-IN pin

• USB cable with stripped connector for powering the board via CHG-IN pin

• precision tweezers for removing broken-off pins from the pin header

• passive or powered USB hub for connecting multiple external devices

• USB stick

36 Chapter 1. Documentation

	Documentation

