

 Navigation

 	
 index

 	
 next |

 	rxos 1.0rc1 documentation

rxOS

[image: _images/rxos_logo.png]
rxOS is a Linux-based operating system (and also the system image) that is used
in Outernet’s Lantern and Lighthosue Mk 2 products, both based on Raspberry Pi
3 and CHIP.

rxOS is built on top of Buildroot [http://buildroot.org/] and constists of
two parts:

	Linux kernel image with early userspace

	rootfs image

Documentation

	Getting stated with rxOS

	How rxOS works

	Building and customizing the image

	Troubleshoting

	Appendices

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

Getting stated with rxOS

This chapter is aimed towards DIY users that wish to deploy rxOS on the
supported boards. If you purchased a rxOS-powered device from Outernet, you may
wish to skip ahead to How rxOS works.

A DIY build based on Raspbian is not covered in this guide. For instructions on
how to set up an Outernet L-band receiver using Raspbian, you should look at
the Outernet L-band on Raspberry Pi [http://outernet-l-band-on-raspberry-pi.readthedocs.io/en/latest/] guide.

	Raspberry Pi

	C.H.I.P

	The first steps

	What rxOS is and what it isn’t

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

 	Getting stated with rxOS

Raspberry Pi

In order to build a Raspberry Pi receiver, you will need the following:

	Raspberry Pi 3

	4GB (or larger) microSD card (8GB and larger is recommended)

	RTL-SDR USB dongle

	LNA

	patch antenna

The RTL-SDR radio dongle, LNA, and antenna, can be purchased through Outernet [https://outernet.is/products] either individually or as a kit.

You will also need a Raspberry Pi image, which can be downloaded from
archive.outernet.is/images/rxOS-Raspberry-Pi [https://archive.outernet.is/images/rxOS-Raspberry-Pi/].

Flashing the image

In order to use this image you will need to flash it to an SD card.

Windows

Obtain Win32 Disk Imager [https://archive.outernet.is/images/rxOS-Raspberry-Pi/2.0a1-201608151712/].
Open the program (it will ask for administrative privileges), select the image
file and destination drive, and click on “Write”.

Warning

Be careful not to select your system drive as the destination drive.

Linux

Insert the card into the card reader. Find out the what your SD card’s device
node is by using the dmesg | tail command. Let’s say the device node is
/dev/sdb1.

Warning

Be absolutely sure it’s the correct device node. dd will not ask any
questions, and will happily overwrite anything you give it. If you are
unusure, it’s best to ask on a Linux forum about how to find out whether
you have the right device node.

Make sure the SD card is not mounted if you have an
automouter.:

$ sudo umount -f /dev/sdb1

To write the image to the card:

$ sudo dd if=sdcard.img of=/dev/sdb1 bs=16m

Mac OSX

Insert the card into the card reader. Find out what your SD card’s device node
is by using the diskutil list command. Let’s say the device node is
/dev/disk4.

Warning

Be absolutely sure it’s the correct device node. dd will not ask any
questions, and will happily overwrite anything you give it. If you are
unusre, it’s best to ask on an OSX forum about how to find out whether you
have the right device node.

You need to unmount the disk:

$ diskutil unmountDisk /dev/disk4

Finally you can write the image:

$ dd if=sdcard.img of=/dev/disk4 bs=16m

Connecting the hardware

Once the image is done, put the SD card into the SD card slot. Connect the
antenna to the LNA, and then connect the LNA to the RTL-SDR dongle. Finally,
plug the RTL-SDR dongle into one of the available ports on the Raspberry Pi.

Power the Raspberry Pi on and continue to The first steps.

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

 	Getting stated with rxOS

C.H.I.P

In order to build a CHIP-based receiver, you will need the following:

	CHIP

	RTL-SDR USB dongle

	LNA

	patch antenna

	microUSB cable with data connection

	(optional) USB hub, if you wish to connect both the RTL-SDR dongle and some
other device, like USB storage

	(optional) UARD USB adapter, if you wish to monitor the boot loader output

	(optional) USB Ethernet adapter for wired network connection

The RTL-SDR radio dongle, LNA, and antenna, can be purchased through Outernet [https://outernet.is/products] either individually or as a kit.

You will also need a CHIP image, which can be downloaded from
archive.outernet.is/images/rxOS-Raspberry-Pi [https://archive.outernet.is/images/rxOS-CHIP/].

Flashing the image

At this time, CHIP can only be flashed from a Linux machine, either a virtual
machine or a native install.

Serial console

It helps to have access to a serial console. You will need an UART-USB or
similar adapter. The UART pins are located on the U14 pin header on the
inside, near the microUSB connector, marked as UART-TX and UART-RX. If the
board is powered from a source other than the PC to which the UART is
connected, remember to also plug in the ground lead to one of the pins marked
as GND on the CHIP (one is conveniently provided right next to the UART pins).

Preparing the system

To access CHIP as a normal user, you will need to set up the udev rules so that
the device has appropriate permissions when plugged in. Download the
99-chip.rules file. Edit the file with
your favorite editor, and change all referneces to plugdev to your
username. Alternatively, you can add your user to the plugdev group.

Reload the udev rules with this command:

$ sudo udevadm control --reload-rules

Next we need to set up the software. Using your systme’s package manager,
install the following software (possible package names are specified in
parenthesis):

	build tools (see note below)

	git (git)

	dd (coreutils)

	lsusb (usbutils)

	fel (sunxi-tools)

	mkimage (uboot-tools)

	fastboot (android-tools or android-tools-fastboot)

	img2simg (android-tools, simg2img, or android-tools-fsutils)

Note

Here are some commands for installing build tools on different distros:

Ubuntu/Debian and derivatives:

$ sudo apt-get install build-essential

Fedora:

$ sudo yum groupinstall "Development Tools" "Development Libraries"

Arch Linux:

$ sudo pacman -Sy base-devel

Opensuse:

$ sudo zypper install --type pattern devel_basis

We will need to clone a few Git repositories which contain non-standard tools
that are not commonly available as packages (yet):

$ git clone https://github.com/Outernet-Project/CHIP-tools.git
$ git clone https://github.com/Outernet-Project/sunxi-tools.git

We need to compile these tools so run a few more commands:

$ cd CHIP-tools
$ make
$ CHIP_TOOLS=$(pwd)
$ cd ../sunxi-tools
$ make
$ FEL=$(pwd)

Don’t close the terminal just yet.

Flashing

CHIP must be put into FEL mode before it can be flashed. To do this you will
need a (relatively thin) paper clip, or a twist tie with stripped ends (exposed
wire). With the paper clip or twist tie, connect the pins marked as FEL and
GND. The FEL pin is located at the 4th position in the inside row towards the
microUSB port. GND pin is located at the last position in the same row as the
FEL pin. Once the pins are connected, plug the CHIP into a USB port.

You should see a device node /dev/usb-chip. If you don’t see it, your udev
rules may need a refresh, or you may need to check the rules file for typos.

In the terminal where you set the software up, navigate to where you unpacked
the flash files. Start the flash script:

$ cd path/to/firmware/directory
$ PATH="$PATH:$CHIP_TOOLS:$FEL" bash chip-flash.sh
[0.01] ===> Preparing the payloads
[0.01] Preparing the SPL binary
[0.01] Preparing the U-Boot binary
[0.30] Preparing sparse UBI image
[0.41] ===> Creating U-Boot script
[0.42] Writing script source
[0.42] Writing script image
[0.42] ===> Uploading payloads
[0.43] Waiting for CHIP in FEL mode...OK
[0.44] Executing SPL
[1.97] Uploading SPL
[8.86] Uploading U-Boot
[16.15] Uploading U-Boot script
[16.16] ===> Executing flash
[16.17] Waiting for fastboot.......OK
target reported max download size of 314572800 bytes
sending 'UBI' (204800 KB)...
OKAY [16.949s]
writing 'UBI'...
OKAY [44.200s]
finished. total time: 61.149s
resuming boot...
OKAY [0.000s]
finished. total time: 0.000s
[101.84] ===> Cleaning up
[101.86] ===> Done

!!! DO NOT DISCONNECT JUST YET. !!!

Your CHIP is now flashed. It will now boot and prepare the system.
Status LED will start blinking when it's ready.

As the message says, within about 2 minutes, the status LED will start
blinking. At that point, you will be able to start using your newly flashed
CHIP.

Note on fastboot and virtual machines

If you are using a virtualmachine (e.g., VirtualBox or VMware), you should be
aware that, during the flashing, when the “Waiting for fastboot” message
appears, the CHIP will change its USB ID. This means that the USB ID you
originally set up while it was in FEL mode will no longer apply, and the
guest OS will loose the connection to CHIP. This results in fastboot timeout.

Once fastboot times out, you should reconfigure your virtual machine manager to
make the new USB ID available to the guest.

Connecting the hardware

Connect the antenna to the LNA, and then connect the LNA to the RTL-SDR dongle.
Finally, plug the RTL-SDR dongle into the USB port on the CHIP.

Power the CHIP on and continue to The first steps.

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

 	Getting stated with rxOS

The first steps

Once your receiver is all flashed and running, here are a few things you can
do.

Access the web-based interface

rxOS ships with a web-based user interface called Librarian [https://github.com/Outernet-Project/librarian]. This interface is available
on port 80 at the receiver’s IP address.

In the most common scenario, you will find a new WiFi access point named
‘Outernet’. If you connect to it, you will be able to reach the web interface
at 10.10.10.10 [http://10.10.10.10/] or librarian.outernet [http://librarian.outernet/].

Note

If your browser interferes with ‘librarian.outernet’ domain name and takes
you to search instead, you can either prefix the ‘http://‘ bit or use any
domain name like example.com to reach the receiver’s web interface.

You can get to the receiver a few different ways, which is documented in the
Remote shell access section.

Plug in the external storage

rxOS-basd receivers support external storage devices to expand the storage
available on the SD card or built-in NAND flash. More about that can be read in
the Using external storage devices.

Point the antenna

If you haven’t already, you will want to adjust the antenna’s pointing. Precise
pointing is a topic that is outside the scope of this guide.

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

 	Getting stated with rxOS

What rxOS is and what it isn’t

This section is intended for people who have some familiarity with the Linux
operating system [https://en.wikipedia.org/wiki/Linux]. If you are not
familiar with Linux, you may have some trouble following along, but the
information found in this section is not essential for using an rxOS-based
device so feel free to skip it.

Probably the most important thing to note is that rxOS is not a Linux
distribution. This means that, among other things:

	it has no writable root filesystem

	it has no packages or package manager

	it has no build tools

	it has no system administration tools

Read-only root filesystem

From time to time, we are asked about customizing the rxOS-based receivers.
While some of the configuration persists across reboots, one should not expect
to permanently modify the system outside of the short list of persistent
files.

No packages

The rxOS image is built as a unit. It is one monolithic system and there is no
notion of packages (nor there ever will be). There are sets of add-on files
that are added on top of the image via the root filesystem overlays (see
Root filesystem overlays for an in-depth treatment of the
subject), but those are not packages that you install with package managers
such as apt and pacman.

No build tools

As mentioned under the previous heading, rxOS is built as a unit. It is built
on a standard Intel PC and then flashed to a device. Because of this there are
no build tools on the device. Adding your own programs to the image is done
by rebuilding the image the same way it was originally built (a short guide on
that topic can be found in the Building and customizing the image chapter).

No sysadmin tools

Well, this isn’t entirely true. There are some tools for working with the
system. What is missing, though, are things that would normally alter the
system configuration. E.g., there is no support for changing the init script
order and state, there are no system configuration tools, etc. The rxOS system
is mainly intended to be left as is as much as possible, and modification to
the system are done at built time.

What good is all this?

While all of this may sound a bit limited, it has some advantages when it comes
to use on embedded devices.

Writable file systems are susceptible to corruption. If a device is writing
during power loss, the filesystem may be left in a state that makes it
impossible to boot up.

You can write files to the root filesystem when the system is up and running.
This is done by overlaying a fake filesystem in the system memory (RAM) on top
of the otherwise read-only root filesystem. If there is a bug in the software,
this may sometimes cause the system to exhibit weird behavior. Having a
read-only root filesystem allows the user to power-cycle the device and go back
to the known good state. Not having packages, build tools, and so on, are
design decisions along the same lines: the less modification you can make to
the system, the better the chance of being able to get back to the known good
state.

Another reason rxOS is quite stripped down is that the image needs to be
updated over-the-air (OTA). This puts a restriction on the amount of bandwidth
the image can use, so virtually all non-essential items have been stripped out.

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

How rxOS works

This section provides a high-level overview of how rxOS works.

	The boot process

	The early userspace

	Remote shell access

	Using external storage devices

	Storage layout

	OTA updates

	Setting up for remote support

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

 	How rxOS works

The boot process

The boot process is divided into 3 stages:

	Hardware boot

	Early userspace init

	Userspace init

Storage contents

The are two types of storage devices used in rxOS, based on the target device.
On Raspberry Pi, SD cards are used, while on CHIP, the built-in NAND flash
storage is used.

SD card boot partition contents

The first partition of the SD card is a 400MB FAT32 partition with the
following contents:

	Raspberry Pi stage 2 bootloader (bootcode.bin)

	Raspberry Pi stage 3 bootloader (start.elf)

	Raspberry Pi fixup data (fixup.dat)

	device tree blob (bcm2710-rpi-3-b.dtb)

	kernel image with early userspace (kernel.img)

	main root filesystem image (root.sqfs)

	backup root filesystem image (backup.sqfs)

	original factory root filesystem image (factory.sqfs)

NAND contents

The NAND contains the following:

	SPL (secondary program loader) partition

	SPL backup partition

	U-Boot bootloader partition

	U-Boot bootloader environment partition

	
	boot partition

	
	kernel image (zImage)

	device tree blob (sun5i-r8-chip.dtb)

	root filesystem partition

	backup root filesystem partition

	data partitions

Hardware boot

Before any of the rxOS-specific software is executed, there is a phase in which
the base hardware is initialized and the hardware-specific bootloaders are run.

Raspberry Pi boot

The first stage is the same for all Raspberry Pi devices, but it will be
described here for completeness.

The ROM on the Raspberry Pi board contains the stage 1 bootloader (S1). When
power is applied, VideoCore GPU is activated, and S1 is executed on a small
RISC core that is present on the board. The S1 bootloader mounts the SD card,
and loads S2, bootcode.bin, into the GPU’s L2 cache and executes it on the
GPU.

S2 activates the SDRAM. It also understands ELF binaries, and loads S3,
start.elf, from the SD card. S3 is also known as GPU firmware, and this is
what causes the rainbow splash (4 pixels that are blown up to full-scren) to be
displayed.

Note

If there is a rainbow splash on the screen but no further activity, it
means that S3 has been loaded successfully but kernel image did not boot.

S3 reads the firmware configuration file config.txt (if any), and then
proceeds to split the RAM between GPU and ARM CPU. S3 also loads a file called
cmdline.txt if it exists, and will pass its contents as kernel command
line. S3 finally enables the ARM CPU and loads the kernel image (kernel.img
by default, configurable via config.txt), which is executed on the ARM CPU.

Note

start.elf is actually a complete proprietary operating system known as
VCOS (VideoCore OS).

The kernel image contains a minimal early userspace and its init script is
executed.

CHIP boot

When the board receives power, code in the boot rom (BROM) is executed. This
code will activate a small amount of memory and load SPL from either the first
NAND partition or its backup image on the second partition.

SPL’s job is to activate all of DRAM and load the U-Boot bootloader from the
third partition.

When U-Boot is activated it reads the boot parameters from the U-Boot
environment partition. By default, this will cause U-Boot to mount the boot
partition (labelled ‘linux’), and load the kernel image and the DTB from it.

Finally, the kernel image is executed.

The early userspace

Early userspace initialization happens within the init script in the root
of the kernel’s initramfs. We will refer to this script as EI for brevity
(early init).

EI is generated from a template found in rxos/initramfs/init.*.in.sh file.
The asterix in the name can be either ‘nand’ or ‘sdcard’ depending on the
target platform. The sources are thoroughly documented, so if you need to know
more than what’s presented here, you are welcome to peruse the sources.

It first mounts devtmpfs to /dev so that device nodes are accessible. It
then mounts the boot partition in order to access root filesystem
images/partitions.

On Raspberry Pi, additional data partitions are created. For NAND-based boot,
this step is skipped because the extra partitions are programmed along with the
base system when the NAND is flashed at the factory.

On Raspberry Pi, there are three possible candidates for the final userspace,
and those are root.sqfs, backup.sqfs, and factory.sqfs. On CHIP,
there are two possible candidates, ubi0:root and ubi0:root-backup.

A RAM disk with size configurable at build-time (default is 80 MiB) is created
to serve as a write-enabled overlay over the read-only root filesystem. The
mount points for the SD card and devtmpfs are moved to /boot and /dev
in the target rootfs, respectively.

If overlay SquashFS images are found (named overlay-<name>.sqfs), they are
laid over the root filesystem to provide device-specific extension.

For each candidate root filesystem, EI mounts the image, and creates a write
overlay using OverlayFS and the previously configured RAM disk. It then
attempts to switch to the new root filesystem using BusyBox’s switch_root
command which executes the /sbin/init binary in the target root filesystem.

If the switch is successful, early userspace initialization is complete and the
userspace proper takes over.

If the switch is not successful, the next candidate is tried until no root
filesystem candidates are left. If none of the root filesystem
images/partitions can be booted, EI starts an emergency shell where
troubleshooting can be performed.

Note

Even if switch is successful, it does not mean the boot will succeed.
Minimal checking is performed to ensure that the root filesystem contains a
path /sbin/init which an executable file or a symlink pointing to one,
but nothing beyond that is done. If the executable fails or does something
that terminates the init process, kernel will panic and boot will fail.
In general, however, this is not quite realistic as long as valid images
built for rxOS are used.

The userspace

Userspace initialization happens in the rootfs and is carried out by the init
scripts in /etc/init.d. The init scripts are executed synchronously in the
lexical file name order.

The userspace will start the WiFi hotspot, web and database servers, and
Outernet applications. Any attached external storage devices will also be
mounted during this stage.

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

 	How rxOS works

The early userspace

The early userspace consists of an init script and a minimal set of libraries
and programs necessary to prepare the system for the proper userspace
initialization.

The early userspace is built by enabling the “User-provided options > System
configuration > Create early userspace cpio archive” option. This option is
defined by a local package called ramfsinit. The package contains the file
list for the early userspace and the init script template.

During the early userspace initialization, the SD card’s boot partition is
mounted. If the card contains any one-time boot hooks, those are executed and
immediately removed. The root filesystem images are found, and mounted, and the
init script finally switches to the mounted root filesystem (userspace proper).
If no mountable root filesystem images are found, init script drops into an
emergency shell.

Boot hooks

Boot hooks are scripts in the early userspace image that perform pre-boot
setup. One example of such a hook is the selfpartition hook (provided by
boothook-selfpartition local package) which prepares the data persistence
partitions on the Raspberry Pi SD card.

Hooks are looked up by hook-*.sh name pattern and are executed in a
subshell every time rxOS boots. It is the hook script’s job to determine wither
they need to take action or not.

You can read more about boot hooks in Boot hooks.

Mounting the rootfs

On the SD card there are three root filesystem images. The rootfs.sqfs is
the default root filesystem image. backup.sqfs is the same image as the
default one, and serves as a backup in case the first image is corrupted or OTA
update fails. Lastly, the factory.sqfs serves as a fallback image. The
latter remains the same throughout the device’s useful life (factory state).

Root filesystem images are loop-mounted read-only and are overlaid with a RAM
disk that provides the write layer. This provides protection against corruption
resulting from partial writes and allows the user to reset the device to a
known state by power-cycling it.

The situation is similar for NAND flash, but the root filesystem is stored as
UBI volumes, and there are only two copies.

Emergency shell

Emergency shell is a minimal shell that can be used when troubleshooting boot
issues. This is not a fully featured environment such as the one typically
found in desktop Linux distributions, so many familiar commands are missing
(e.g., no lspci, lsusb, htop, etc). All commands are available
through the busybox binary at the root of the early userspace RAM disk.
Busybox documentation [https://busybox.net/downloads/BusyBox.html] describes
these commands (called ‘applets’), but one should have in mind that not all
Busybox features are enabled.

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

 	How rxOS works

Remote shell access

rxOS only supports the following methods for remotely accessing the system:

- SSH over wireless hotspot (Pi3 and CHIP)
- SSH over Ethernet (Pi3)
- SSH over USB Ethernet (CHIP)
- Serial console over USB (CHIP)
- Serial console over UART (CHIP)

IP addresses

The following addresses are assigned to on-board network interfaces:

	interface
	address

	WiFi
	10.0.0.1

	USB Ethernet
	10.10.10.10

	Ethernet
	dynamic (DHCP)

Connecting to networks

rxOS-based receivers have several ways to network with other devices and
networks.

Wireless hotspot

When a receiver is started, a wireless network is created automatically. The
default network name (SSID) is “Outernet” and is not password-protected.

USB Ethernet (CHIP only)

USB Ethernet connection is establish when the receiver is plugged in to a
computer using the microUSB cable. Assignment of IP address to the connected
computer is automatic.

Ethernet connection (Raspberry Pi3 only)

The receiver can be connected to a router, and it will automatically obtain an
IP address. Since this IP address is dynamic, you will need to consult your
router’s administrative interface, or use the wireless hotspot on the receiver
to find the IP address that was assigned.

SSH access

For SSH access, use port 22 and username outernet. The default password for
the outernet user is outernet.

Note

Once you go through the setup wizard in the web inteface, the SSH user will
change to the superuser credentials that you set up during the wizard.
Please adjust accordingly.

Root login is not enabled, but sudo can be used to gain full root access:

[rxOS][outernet@rxos ~]$ sudo su
Password: ********
[rxOS][root@rxos /home/outernet]# _

USB serial console access (CHIP only)

USB serial console becomes available when the receiver is connected to a
computer using a microUSB cable. Software such as PuTTY, screen, or minicom,
can be used to access this console. This console is log-in only and does not
show boot messages. For a more comprehensive console access, UART console is
recommended.

UART console (CHIP only)

USB-UART adapter (not included) can be plugged into the UART pin headers on the
CHIP to provide access to UART console. Depending on the receiver design, the
case may need to be removed to gain access the these pins. Software such as
PuTTY, screen, or minicom, can be used to access this console.

The UART console provides access to boot messages, and allows the user to
interact with not just rxOS, but also the U-Boot bootloader.

Changing the user password

User password can be changed using the passwd command:

[rxOS][outernet@rxos ~]$ passwd
Current password: *******
Enter new password: ******
Retype new password: ******

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

 	How rxOS works

Using external storage devices

Over time, the storage on the SD card may become full. rxOS supports using
external storage devices via the USB ports. Only one external storage device
can be used at a time.

The following table shows the supported disk formats and their characteristics.

	format
	integrity check
	large disks
	power failure recovery

	FAT32
	Yes
	No
	No

	NTFS
	No
	Yes
	Yes

	ext2 [1]
	Yes
	Yes
	No

	ext3 [1]
	Yes
	Yes
	Yes

	ext4 [1]
	Yes
	Yes
	Yes

FAT32 is the most common disk format for USB sticks and external hard drives.
Although exFAT is becoming more common with large-capacity devices, it is not
supported by rxOS, so such devices should be reformatted using the NTFS format
(FAT32 formatting on Windows does not support large disks).

Linux users may use ext2, ext3 or ext4 format in addition to the other two.

Integrity check is prerformed on the disk where supported and an attempt is
made to fix any problems with the on-disk data. While FAT32 supports integrity
checking, it is not as complete as running disk checks on Windows machines.

	[1]	(1, 2, 3) Creation of disks in this format is only supported on Linux operating
systems

Connecting an extrnal storage device

External storage devices can be simply plugged into one of the available USB
ports.

Warning

Some external storage devices (and especially mechanical USB hard disks)
draw a lot of electrical current from the USB port and may cause Raspberry
Pi to shut down. In such cases, a powered USB hub will be required.

When the storage device is plugged in, it is checked for format. If the device
uses an unsupported format, it is not used and may be safely unplugged.

rxOS then mounts the disk to a temporary location to test that it can be
mounted. If the test mount fails, the disk is ignored and not used as external
storage.

When the test mount is successful, rxOS will mount the disk as external storage
and will redirect downloads to it.

Once the disk is mounted, reindexing of the content is started, and any content
that already existed on the attached disk becomes available after a while.

Note

Although it is possible to attach more than one storage device, only the
last-attached device is used as external storage. The other storage device
is unmounted and may be unplugged.

Disconnecting the external storage device

External storage devices may be simply disconnected. Unmounting is done after
the fact, unless the user interface provides support for unmounting.

When a disk is disconnected, downloads are redirected to the internal storage
on the SD card, and reindexing is started. Any files that were present on the
external storage device become unavailable afer a while.

Status LED indication

During storage hot-plug events, the status LED (green) indicates the status of
the hot-plugging.

LED blinking slowly (0.5s interval) indicates that the storage mounting has
started.

LED blinking fast (0.1s interval) indicates that the integrity check has
started.

LED solid indicates that the storage device was mounted.

LED off indicates that the storage device was not mounted due to an error.

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

 	How rxOS works

Storage layout

rxOS storage is highly compartmentalized to allow different pieces of the
system and application code to utilize different portions of the storage
without stepping on each other. There are two types of storage used by rxOS:

	SD card (on Raspberry Pi)

	NAND flash (on CHIP)

The following table shows different portions of the storage on SD card and how
they are used:

	Storage device
	Size
	Format
	Usage

	1
	Primary partition
	200M
	FAT32
	Boot files

	2
	Extended partition
	Receiver state

	5
	conf
	24M
	ext4
	Persistent system configuration

	6
	cache
	600M
	ext4
	Download cache

	7
	data
	2G
	ext4
	Application data

	8
	downloads
	rest
	ext4
	Downloaded files

The following table shows different portions of the NAND flash storage and how
they are used:

	Storage device
	Size
	Format
	Usage

	1
	spl
	4M
	raw
	Secondary program loader

	2
	spl-backup
	4M
	raw
	SPL backup

	3
	uboot
	4M
	raw
	U-Boot Bootloader

	4
	env
	4M
	raw
	Bootloader settings

	5
	swap
	400M
	raw
	(reserved for future use)

	6
	UBI
	Kernel and Receiver state

	1
	linux
	64M
	ubifs
	Boot files

	2
	root
	200M
	ubifs
	Root filesytem

	3
	root-backup
	200M
	ubifs
	Backup root filesystem

	4
	conf
	64M
	ubifs
	Persistent configuration

	5
	cache
	600M
	ubifs
	Download cache

	6
	appdata
	1G
	ubifs
	Application data

	7
	data
	rest
	ubifs
	Downloaded files

Boot files

Stores the boot files.

On Raspberry Pi, it contains the following files:

	Raspberry Pi 3 binary device tree

	Stage 2 and 3 bootloader

	start.elf

	Kernel image (kernel.img)

	Main and fallback rootfs SquashFS images (root.sqfs, backup.sqfs)

	Factory default SquashFS image (factory.sqfs)

On CHIP, it contains the following files:

	CHIP binary device tree

	Kernel image (zImage)

These files are read-only (except when updating the system).

Receiver state

The receiver state extended partition is split into 4 logical partitions. These
partitions contain:

	persistent system configuration

	download cache

	application data

	downloads

Persistent system configuration

The init script that sets up configuration overrides maintains a list of
configuration files that should be overridden based on the contents of the
config partition. The files from the config partition are symlinked to
appropriate locations in the rootfs.

Download cache

The download cache is a storage area for partial downloads. ONDD download cache
is stored in a separate partition to maximize control over the storage
capacity.

Application data

Application data partition stores application configuration, databases, and
other application state.

Downloaded files

Remaining space on the SD card is used for permanent storage of downloaded
files.

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

 	How rxOS works

OTA updates

rxOS supports secure automatic over-the-air updates (OTA updates).

When updated firmware is delivered into /updates/<platform name>/
directory, it is passed to pkgtool which is an update package verfication
tool. The update package contains the payload files, executable script
(installer script) that controls the update process, and a signature. The
signature is checked by the pkgtool to ensure the authenticity of the
update package. Once the package is verified, the installer script is executed.

The installer script may contain arbitrary code, so udpate is just one of the
many things it can be configured to do. In this section, we will discuss a
typical update process.

Normally, the payload for an update pakage consits of the root filesystem image
and one or more of the optional extras:

	the pre-install script

	the post-install script

	kernel image

	DTB file

	firmware

	bootloader

	device-specific overlays

The update starts with a version check. If the version of the receiver’s
firmware is the same or newer than the version of the payload, installer aborts
the update.

If pre-install script is present, it is executed first.

Next the payload is copied or flashed into appropriate location.

On CHIP, the root filesystem is flashed to its backup UBI volume and then the
names of the backup and main root filesystem volumes are swapped, so that the
new root filesystem will get mounted on boot.

On Raspberry Pi 3, the root filesystem is copied into the boot partition just
like the kernel image.

Once the installation is finished, the post-install script, if present, is
invoked. This script performs any one-time adjustments to the system before
reboot.

The system is finally rebooted to complete the update.

This entire process happens automatically without user intervention.

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

 	How rxOS works

Setting up for remote support

rxOS allows remote support channel to be set up by adding a simple text file
on an USB stick and plugging it into the receiver.

Note

Because of the security implicatins, remote support channel is only opened
with full cooperation from Outernet, and only trusted individuals and
organizations (e.g., partners, clients) will are allowed to use this
feature.

Configuration file

The remote access configuration file is named REMOTE (all-caps). The file
contains configuration parameters in NAME='value' format, exactly one
parameter per line. The following table contains all the possible parameters
and their purpose. All parameters are optional except the KEY.

	Parameter
	Example
	Meaning

	PORT
	9978
	This value should be a port number issued
by Outernet staff. If omitted, a port
between 20000 and 30000 will be randomly
selected.

	HOST
	support.outernet.is
	Domain name of the support server as
specified by the Outernet staff. If
omitted, hub.outernet.is is used.

	NAME
	john-lantern
	Name of the receiver. This helps the
support staff identify the receiver. If
omitted, the default name ‘rxos’ is used.

	SSID
	mywifi
	SSID (access point name) of the access
point which should be used to connect to
Internet. If this is left blank, wireless
connection is not used, and instead, it is
assumed that the receiver will gain access
to Internet by some other means. PASSCODE
parameter is required when using SSID.

	PASSCODE
	some secret
	Passcode (password) of the wireless access
point that should be used to connect to
Internet.

	KEY
	(gibberish)
	Access key that is used to establish a
connection with the server and provided by
the Outernet staff.

Warning

Any and all values must be quoted using single quotes. Failure to do this
may result in unexpected behavior.

Warning

NEVER SHARE THE ACCESS KEY WITH ANYONE. You must ensure that the access key
does not fall into the wrong hands. If the key is misused by a malicious
user, any receivers connected to the support server or the networks they
are on may get compromised.

Activating the support connection

To activate the support connection:

	power down the receiver

	put the REMOTE file onto USB storage device

	plug the USB storage device into the receiver

	power the reciever up

Deactivating the support connection

To deactivate the support connection:

	power down the receiver

	remove the USB storage device from the reciever (if you need to use the
storage device again, delete the REMOTE file from it)

	power the receiver up

How it works

When rxOS boots, if the appropriate configuration file and access key are found
on the USB storage device, the networking is reconfigured (when using the
SSID parameter) to access the Internet, and a SSH connection is established
with the remote support server allowing a tunnel from the specified PORT
back to the SSH port on the receiver. The Outernet staff then accesses the
receiver using SSH through this tunnel (reverse SSH).

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

Building and customizing the image

This section provides information about building and customizing the rxOS
image.

	Build requirements

	Building the firmware image

	Boot hooks

	Root filesystem overlays

	Setup scripts

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

 	Building and customizing the image

Build requirements

In order to build the rxOS firmware, you will need a Linux (virtual) machine.

For virtual machines, hardware virtualization (Hyper-V, etc) is highly
recommended, as well as as much RAM as you can spare.

You will need to have the following packages installed:

	Build tools [1]

	bc

	git

	rsync

	unzip

	cpio

	wget

	mercurial (hg)

Note

Here are some commands for installing build tools on different distros:

Ubuntu/Debian and derivatives:

$ sudo apt-get install build-essential

Fedora:

$ sudo yum groupinstall "Development Tools" "Development Libraries"

Arch Linux:

$ sudo pacman -Sy base-devel

Opensuse:

$ sudo zypper install --type pattern devel_basis

	[1]	The build tools include compilers (e.g., gcc), standard libraries, and
build automation tools (make, automake, autoconf, etc). In some Linux
distributions, there are packages that bundle these tools together
(e.g., ‘build-essential’ on Ubuntu, or ‘base-devel’ on Arch Linux). If
you are unsure, try googling “build-essential equivalent for <distro
name>”.

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

 	Building and customizing the image

Building the firmware image

The build is broadly divided into three parts that are carried out in one
sequence, driven by Buildroot.

	Linux kernel compilation

	Rootfs compilation

	Early userspace and kernel recompilation

During Linux kernel compilation, a kernel image is compiled with a dummy
initramfs image (just an empty file). Following the kernel, the root filesystem
contents are compiled. Finally, the cpio archive for the early userspace is
created and linked into the kernel image.

In order to build the firmware, you should be familiar with Buildroot [http://www.buildroot.org/docs.html].

Before you build

Before you build, you need to clone the rxOS git repository:

$ git clone --recursive https://github.com/Outernet-Project/rxOS.git

The --recursive flag causes git to init and update any submodules. If you
forgot it, you need two additional steps:

$ git submodule init
$ git submodule update

Selecting the board

rxOS build supports a few different target boards. These boards are selected
using the BOARD variable in the makefile, like this:

$ make BOARD=<boardname> [TARGET]

The boardname can be one of the following:

	rpi3: Raspberry Pi3

	chip: NTC C.H.I.P.

Shortcut scripts for making for specific targets are available at the root of
the source tree. These scripts are named after the respective target boards.
For example, to bring up the configuration menu for Raspberry Pi 3:

$./rpi3 menuconfig

Note

In the rest of the documentation, you can replace make with the board
script (e.g., ./rpi3) depending on the board you wish to build for.

Starting the build

The build is initated by invoking make or make build.

To completely clean up the build and restart it from scratch, use make clean
build. It is generally not needed to do this, though. In most cases, a more
efficient alternative is to call make rebuild-everything.

Customizing the build

To customize the build use make menuconfig, which brings up the Buildroot’s
configuration menu.

Updating the existing build

To update your local repository clone:

$ cd path/to/rxOS
$ git pull
$ git submodule update

Apply possibly updated build configuration:

$ make config

Rebuild starting from the linux kernel:

$ make rebuild-with-linux

Linux kernel compilation

The kernel is compiled using Buildroot’s build scripts. The kernel compilation
can be controlled to some degree using Buildroot’s Kernel menu. Any patches
applied to the kernel can be found in rxos/patches/linux directory.

The kernel configuration is found in the rxos/configs/rxos_kernel_defconfig
file.

The following files are generated during the build targeting the Raspberry Pi
board:

	zImage
	kernel image with linked initramfs

	kernel.img
	kernel image with Raspberry-Pi-specific trailer

The kernel.img file is created by a post-image hook called
rxos/scripts/add_trailer.sh. The script’s source includes more information
on what it does and why.

The following files are generated during the build targeting the CHIP board:

	zImage
	kernel image with linked initramfs

To restart the build from the kernel image compilation you can use the
rebuild-with-linux target.

U-Boot compilation

The CHIP build will also generate a bootloader image, u-boot-dtb.bin and
its derivative SPL images (secondary program loader), sunxi-spl.bin and
sunxi-spl-with-ecc.bin.

To recompile U-Boot, the uboot-dirclean target is used to clean the U-Boot
build, and uboot-rebuild target to rebuild it.

Rootfs compilation

The root filesystem image is created from a collection of packages, both from
the Buildroot’s own package collection found in buildroot/package and the
additional Outernet-provided packages found in rxos/package. The
Buildroot’s packages are selected using Buildroot’s Target packages
configuration section. Outernet-provided packages are selected in various
sections within the User-provided options section of the Buildroot’s
configuration menu.

The rootfs format is SquashFS compressed using LZ4 algorithm. This can be
changed in the Buildroot’s Target filesystems menu.

To apply small changes to the root filesystem (e.g., a new package was added or
an existing package was updated), run make rebuild. Keep in mind that
Buildroot does not track what files belong to what package. Because of this,
when removing packages, or when updating packages to version that no longer
contain some of the files that they used to contain, you may end up with stray
files from the previous builds. If this happens, make clean build should be
used instead.

Early userspace

The early userspace is built last as it is built from pieces of the root
filesystem. This is facilitated by the Outernet-specific patches applied to the
version of Buildroot used by rxOS.

The initial RAM disk (initramfs) image is build as a compressed cpio archive,
and the list of files that end up in the final initramfs image is controlled by
several different packages, including the ramfsinit local package. The
packages each provide a template that points the kernel’s gen_init_cpio
script to appropriate files in the root filesystem.

Known issues

The build scripts are still under development. In some cases, rebuild*
targets may fail. If a rebuild target fails, try falling back on another one
(e.g., if rebuild fails, try rebuild-with-linux), and finally do a
make clean build.

Also, be sure to report any build issues so we can address them.

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

 	Building and customizing the image

Boot hooks

Boot hooks are early userspace shell scripts (part of the initial RAM
filesystem image) that are invoked by the init script on each boot.

Boot hook local packages

Boot hooks are provided by local packages that are named boothook-*. A
typical boot hook consists of the following:

	initial RAM filesystem file list (to be added to the default set of files)

	hook script

Additionally, the package may select other packages that would become part of
the root filesystem and used as the source for the initial RAM filesystem file
list, or provide configuration options for the hook script.

The initial RAM filesystem file list is mandatory and it must be installed in
the $(BINARIES_DIR)/initramfs directory. The file must contain at least a
reference to the hook script and place the hook script into the root of the
initramfs.

There are no rules as to the naming of the initramfs list file, but a
convention is to use the package name without the boothook- prefix, and
append .cpio.in extension. The file must also be declared as the initramfs
list extension by appending its name (just the name, not the full path) to
INIT_CPIO_LISTS variable in the makefile. More information about the
initramfs list format can be found on landley.net [http://www.landley.net/writing/rootfs-howto.html].

By convention, we install the hook script into the same directory as the
initramfs list, so that it can be accessed quickly when needed for debugging
and similar purposes, but this is not required.

Finally, the package is registered under the “System configuration” section in
the rxOS’s master Config.in.

Simple boot hook example

For our example, we will create a simple hook script that shows a greeting with
configurable name. Let’s call this hook ‘greeter’.

We first need to create a directory for the hook.

$ mkdir -p rxos/local/boothook-greeter/src

Note that we have created not only the hook package directory, but also a
src directory inside it. This is a typical setup for local packages, where
the src directory provides the source code.

Now let’s create the Config.in file for the hook package (do not copy this
example as it is _not_ correctly formatted).

config BR2_PACKAGE_BUILDHOOK_GREETER
 bool "Greet the user"
 help
 Greet the user using a configurable message.

if BR2_PACKAGE_BUILDHOOK_GREETER

config BR2_PACKAGE_BUILDHOOK_GREETER_MESSAGE
 string "Greeting message"
 default "Welcome to rxOS!"
 help
 Greeting message printed to the user during
 boot.

endif # BR2_PACKAGE_BUILDHOOK_GREETER

We will also register this configuration. We edit the rxOS/Config.in file
and modify the “System configuration” menu.

menu "System configuration"
 ...
 source "$BR2_EXTERNAL/local/boothook-greeter/Config.in"
 ...
endmenu

Before we can write the matching makefile, we need the hook script itself. In
the src directory, we create a file called greeter.sh that looks like
this:

#!/bin/sh
MESSAGE="%MSG%"
echo "

$MESSSAGE

"

The %MSG% is a placeholder that will be populated later in the makefile.

Note

The %NAME% syntax is just a convention. You can use whatever you like
for your placeholders, and also any technique for populating them. This is
just an example of how we do it.

We also need a initramfs list file. We will assume that, as per convention, the
hook script will be installed in $(BINARIES_DIR)/initramfs. The list will
be saved as src/init.cpio.in.

file /hook-greeter.sh %BINDIR%/initramfs/greeter.sh

Now we have all the files we need, so we can proceed to write the makefile.

Now let’s create the makefile. The makefile is called buildhook-greeter.mk
and should be saved in the package directory.

###
#
buildhook-greeter
#
###

BUILDHOOK_GREETER_VERSION = 1.0
BUILDHOOK_GREETER_LICENSE = GPLv3+
BUILDHOOK_GREETER_SITE = $(BR2_EXTERNAL)/local/buildhook-greeter/src
BUILDHOOK_GREETER_SITE_METHOD = local

(More stuff here soon...)

$(eval $(generic-package))

Thus far, it’s a typical Buildroot generic package [http://bit.ly/1saNe4s]
makefile. (Assume that we will keep the code above and below the ‘More stuff’
comment in the snippets that follow.)

We first need to prepare the user-specified message. When a value is specified
in the Buildroot’s menuconfig, it comes with double-quotes around them so those
need to be stripped out.

BUILDHOOK_GREETER_MSG = $(call qstrip,$(BR2_BUILDHOOK_GREETER_MESSAGE))

Now we define the install commands that will install the initramfs list and the
hook script in appropriate places and replace the placeholders with appropriate
values.

define BUILDHOOK_GREETER_INSTALL_TARGET_CMDS
 install -Dm644 $(@D)/init.cpio.in \
 $(BINARIES_DIR)/initramfs/greeter.cpio.in
 sed -i 's|%BINDIR%|$(BINARIES_DIR)' \
 $(BINARIES_DIR)/initramfs/greeter.cpio.in
 install -Dm644 $(@D)/greeter.sh \
 $(BINARIES_DIR)/initramfs/greeter.sh
 sed -i 's|%MSG%|$(BUILDHOOK_GREETER_MSG)' \
 $(BINARIES_DIR)/initramfs/greeter.sh
endef

Finally, we need to register the cpio list file:

INIT_CPIO_LISTS += greeter.cpio.in

This concludes our makefile. Now we can test whether it all works.

$ make boothook-greeter-rebuild

When we’re done, we can take a look at out/images/initramfs directory and
inspect the results. If everything is alright, we can include the hook in
initramfs by enabling “User-provided options > System configuration > Greet
the user” option and setting the message.

Adding files to the initial RAM filesystem

If the hook script requires files that are not present in the stock initial RAM
filesystem image, additional files can be added via the cpio list file.

Modifying the hooks

When the hook is modified, and it’s time to rebuild the image, we need to do it
like so:

$ make boothook-<hookname>-rebuild rebuild

Simply doing make rebuild will not update the hook as the package is marked
as already installed.

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

 	Building and customizing the image

Root filesystem overlays

rxOS supports customizing the base image using root filesystem overlays
(henceforth we’ll refer to them simply as just ‘overlays’). Overlays are
SquashFS images that contain a set of files and directories that either augment
or override the base root filesystem contents.

The benefit of using overlays as opposed to modified root filesystem images
are:

	ability to receive OTA updates meant for the base root filesystem only while
retaining the customization intact

	simpler build process as the full build environment is not needed for most
simple overlays

	OTA update for the overlay itself does not consume too much bandwidth as
overlays are typically small

There is no limit to the number of overlays that can be added to the system,
though one should be mindful about RAM usage as each overlay is loop-mounted.

Creating an overlay image

To create an overlay image, we first prepare a directory with the image
contents, and then convert it using squashfs-tools. Only LZ4-compressed images
are supported at the moment.

As an example, we will prepare an overlay that contains a single text file.

First prepare the work directory:

$ mkdir overlay && cd overlay

Next we create the directory where we will keep our text file and the text file
itself:

$ mkdir -p opt/doc
$ echo 'Hello world!' >> opt/doc/hello.txt

Finally, we adjust the ownership of the directories:

$ sudo chown -R 0:0 opt/doc

Note

We are using numeric IDs for the user and group. Since user and group names
on your system may not map to the same IDs on rxOS, you should stick to
using 0 for root, and 1000 for the outernet user.

We are now ready to create the SquashFS image:

$ cd .. # Exit overlay directory
$ mksquashfs overlay/ overlay-hello-1.0.sqfs -comp lz4 -Xhc

The output file name must be named overlay-<name>-<version>.sqfs because
that is the pattern that the init script looks for. The name should not
contain any dashes or spaces. The version can be in the X.Y or X.Y.Z format
and the following suffixes are supported:

	aN - alpha version N

	bN - beta version N

	rcN - release candidate N

Here are some examples of valid version numbers:

	1.0a2 - second alpha version for 1.0 release

	2.0b1 - first beta version for 2.0 release

	3.1 - third major, fist minor release

	1.3.002 - first major, third minor, second patch release

	5.1rc2 - second release candidate for 5.1 release

Adding binary executables to overlays

Binary executables have to be compiled for the rxOS target platform(s). While
you can create binaries any way you prefer, the simplest approach is to use the
rxOS build itself to generate the binary files.

The advantage of this method is that the build-related tooling is already set
up. Disadvantages are that it is time consuming as it requires a complete rxOS
build and that you are limited to packages that are in the build (or you have
to create new ones for 3rd party packages that are not available in the build).

Warning

This method uses the buildroot package infrastructure to create the
binaries. Because buildroot packages do not maintain a list of files that
belong to them, if a package you wish to compile overwrites a file from
another package, the overwritten file will be competely removed from the
output directory. If this happens, your build will be left in an
inconsistent state, and you will need to rebuild the original package to
which the overwritten file belongs, or, if you are not sure which package
you need to rebuild, do a clean rebuild of the entire project.

First complete a rxOS build itself using the git tag for the version you wish
to target. Next, build only the package you are interested in putting in your
overlay. In this example, we will add htop:

$ make -s htop
>>> htop 1.0.3 Extracting
>>> htop 1.0.3 Patching
>>> htop 1.0.3 Updating config.sub and config.guess
>>> htop 1.0.3 Configuring
>>> htop 1.0.3 Autoreconfiguring
libtoolize: putting auxiliary files in '.'.
libtoolize: copying file './ltmain.sh'
....
>>> htop 1.0.3 Patching libtool
...
>>> htop 1.0.3 Building
...
>>> htop 1.0.3 Installing to target
 /usr/bin/mkdir -p '/home/hajime/code/rxos/out/target/usr/bin'
 /usr/bin/mkdir -p '/home/hajime/code/rxos/out/target/usr/share/applications'
 /usr/bin/mkdir -p '/home/hajime/code/rxos/out/target/usr/share/pixmaps'
 /usr/bin/mkdir -p '/home/hajime/code/rxos/out/target/usr/share/man/man1'
...

Note

You don’t have to (and you should not) select the package in the menu.
Making the target that matches the package name will build that package
even if it’s not selected.

Once the package has finished building, we will collect the new files. To do
this we will use the newfiles.sh script:

$ tools/newfiles.sh path/to/overlay
usr/bin/htop
usr/share/pixmaps/htop.png
usr/share/applications/htop.desktop
usr/share/man/man1/htop.1

Now the package files are moved to the overlay directory. The list of files
shown in the output is the list of files that are copied to the overlay. Some
of these files are stripped afterwards: in particular, the pixmaps,
applications, and man directories will be stripped.

Finally, we need to dirclean the package to reset it to unbuilt state:

$ make -s htop-dirclean

The last step is optional, but we do it just in case we change our minds later
and decide to make the package part of the build (otherwise buildroot will
think the package is already built and won’t rebuild it).

Booting with an overlay

To create an image that includes overlays, put them in
out/images/sdcard-extras directory for SD card builds (e.g., Raspberry Pi),
and out/imags/overlays for NAND builds (e.g., CHIP).

To install an overlay to a running system, upload the overlay to the receiver,
and then:

$ sudo chbootfsmode
$ sudo mv <path/to/overlay> /boot
$ sudo chbootfsmode
$ sudo reboot

Creating update packages for overlays

The tools directory contains a script called mkoverlaypkg.sh. This
script will create an OTA update .pkg file for any overlay images found in
out/images/overlays. Run the script with -h flag to see the options it
supports.

The generated overlay files have the following naming convention:

rxos-<platform version>-overlay-<name>-<version>-<timestamp><suffix>.pkg

	platform version can be a version of a rxOS release (e.g., v1.0) or
any. If the version is specified, the update package can only be
installed on that particular version of rxOS.

	name is the overlay name, and only overlays that have the same name that
are already installed are going to be updated by the generated upate
package

	version is the overlay version, and if version check is enabled (see
suffix below), only overlays that are newer than the already installed
overlay are upgraded

	timestamp is a timestamp in local time, when overlay package was created

	suffix can be either a blank string or nv, for non-version-checking
package

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

 	Building and customizing the image

Setup scripts

If the “User-provided options > System configuration > Perform initial system
setup” option is enabled, a S00setup init script is installed in the target
system. This script runs the scripts found in /etc/setup.d during init,
allowing the developer to perform arbitrary tasks during init.

The setup scripts must have an exectuable flag and must have a .sh
extension (even if it’s not a shell script!). When a script is run, a log file
is created that is named so as to match the script name:
/var/log/setup/<scriptname>.sh.log. Any messages from the setup script are
logged in that file. The log file is kept only if the script’s exit code is not
0. No output from the script is echoed to console.

One example of a setup script is the persist.sh which is installed by
enabling “User-provided options > System configuration > Persistent system
configuration” option.

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

Troubleshoting

This section contains the information related to finding and fixing problems
with the rxOS build as well as the running rxOS operating system.

	External storage issues

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

 	Troubleshoting

External storage issues

This section describes possible issues related to external storage support, and
also provides general troubleshooting tips.

Storage does not mount

If storage simply does not mount, ensure that it is one of the supported
formats (see Using external storage devices) and that the files are
accessible on a computer. If your USB stick or memory card is
factory-formatted, check that it is FAT32 and not exFAT (exFAT is common with
large capacity sticks and cards, larger than 64GB).

For NTFS filesystem, there is no integrity check on mount, so ensure that the
disk is checked on a Windows computer prior to use.

FSCK*.REC files appearing on storage after use

The integrity check for FAT32 system may create FSCK*.REC files (where
* is a sequence of four digits). These files represent recovered orphan
file data. It is usually safe to remove them.

External storage files are not present in the file list

Files not appearing shortly after plugging in an external storage is normal.
External storage devices have to be scanned for new files, and this scan may
take up to several minutes. The time it takes to scan the disk depends on such
factors as storage device perofrmance and the number of files (not their size).

If the new files do not appear even after an hour of waiting, try restarting
the receiver.

Warning

Dot not remove and reattach the disk multiple times in in quick succession
as this will cause multiple scanning to be triggered and will take even
longer to index the disk.

Wrong partition mounted

Currently, only one partition can be used from multi-partition disk, and this
is the last partition with supported partition format (see
Using external storage devices).

General troubleshooting

This subsection contains instructions useful for general troubleshooting of
storage-related issues.

Testing the hotplug script

The hotplug script, although a shell script, is not meant to be run from the
shell. It is executed by udev, and expects to see some of the udev environment
variables. However, it is still possible to run the script manually by
simulating the udev environment.

The following environment variables are expected:

	ACTION: ‘add’ or ‘remove’, tells the script whether the device was
attached or detatched

	DEVNAME: device node (e.g., /dev/sda1)

	ID_FS_TYPE: disk format (vfat, ntfs, ext2, ext3, or ext4)

	ID_BUS: must be ‘usb’

Here is an example simulating a hot-plug event for /dev/sdb1 device with
ntfs disk format:

$ sudo su
Password: ********
ACTION=add DEVNAME=/dev/sdb1 ID_FS_TYPE=ntfs ID_BUS=usb \
 /usr/sbin/hotplug.storage

Troubleshooting storage issues

If storage does not appear to be used after plugging in, it is recommended that
integrity check is performed on a computer.

Restarting the receiver may also help in some cases.

The system logs at /var/log/messages contain messages with more information
about the nature of failure. To get the storage hotplug logs, log in using SSH
(see Remote shell access) and execute the following command:

$ grep hotplug.sd /var/log/messages
Jan 1 00:21:21 rxos user.notice hotplug.sda: Handling hotplug even for /dev/sda
Jan 1 00:21:21 rxos user.notice hotplug.sda: Attempting to use iso9660 disk /dev/sda
Jan 1 00:21:21 rxos user.notice hotplug.sda: iso9660 is not a supported filesystem.
Jan 1 00:21:21 rxos user.notice hotplug.sda1: Handling hotplug even for /dev/sda1
Jan 1 00:21:21 rxos user.notice hotplug.sda1: Attempting to use vfat disk /dev/sda1
Jan 1 00:21:22 rxos user.notice hotplug.sda1: Checking disk integrity
Jan 1 00:21:22 rxos user.notice hotplug.sda1: Mounting with options: 'utf8'
Jan 1 00:21:22 rxos user.notice hotplug.sda1: Doing a trial mount on /mnt/sda1
Jan 1 00:21:22 rxos user.notice hotplug.sda1: Final mount to /mnt/external
Jan 1 00:21:22 rxos user.notice hotplug.sda1: Redirecting ONDD to external storage
Jan 1 00:21:22 rxos user.notice hotplug.sda1: Refreshing file index

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

Appendices

This section contains information that does not fit into other sections.

	Appendix: Source tree layout

	Appendix: Make targets

	Appendix: Updating rxOS manually

	Appendix: Creating a chrooted build environment under Arch Linux

	Appendix: C.H.I.P. NAND storage characteristics

	Appendix: Tools for working with compute boards

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

 	Appendices

Appendix: Source tree layout

	buildroot/: Buildroot submodule

	docs/: Documentation

	
	rxos/: External board directory

	
	
	configs/: Build configuration

	
	busybox.config: Busybox default configuration

	config.txt: Raspberry Pi bootloader configuration

	rxos_defconfig: rxOS build defaults

	rxos_kernel_defconfig: Linux kernel defaults

	users: User/group list

	installer/: Files used to create the update package’s installer

	local/: Packages with local source code (mostly system configs)

	misc/: Miscellaneous files (d’oh!)

	package/: Custom software packages submodule

	patches/: Custom patches

	rootfs/: Rootfs overlay

	scripts/: Build hook scripts

	support/: Various build hooks

	Config.in: External board config

	external.mk: External boad makefile

	local.mk: Board-specific overrides

	Makefile: Main makefile

	README.rst: README file

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

 	Appendices

Appendix: Make targets

The following table describes the available make targets:[1]

	target
	function

	version
	Get current version

	build [2]
	Build both SD card image and update package

	menuconfig
	Bring up Buildroot configuration menu

	linuxconfig
	Bring up Linux kernel configuration menu

	busyboxconfig
	Bring up Busybox configuration menu

	saveconfig
	Save all configuration

	config
	Load default configuration (overwrites any
modifications)

	rebuild
	Rebuild the rootfs and recompile linux with initramfs

	rebuild-with-linux
	Completely rebuild the linux kernel, DTB, and rootfs

	rebuild-everything
	Rebuild everything except host tools/libs

	clean-rootfs
	Partial cleanup (useful when trying to apply small
modifications)

	clean-linux
	Partial cleanup (useful when linux configuration
changes)

	clean-deep
	Clean everything except host tools/libs

	clean
	Complete cleanup (also removes any unsaved
modifications)

	print-post-script-args
	Print the arguments that would be passed to the
post-build and post-image hooks.

	manual
	Build the HTML manual and output it to
docs/build/html.

	[1]	Targets described here are custom targets for rxOS build. Full set of
Buildroot’s own make targets are also available.

	[2]	Default target when invoking make

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

 	Appendices

Appendix: Updating rxOS manually

rxOS firmware can be updated manually. There are three ways to update the rxOS
firmware:

	Create a new SD card

	Copy the updated images to the SD card

	Update using shell access

When updating individual files, commonly the following three files are updated:

	kernel.img - kernel image

	root.sqfs - root filesystem image (applications)

	backup.sqfs - a backup copy of the root filesystem image (usually updated
at the same time the root filesystem image itself is updated)

Here we will discuss the latter two options.

Copy updated images to SD card

The kernel image (kernel.img) and the root filesystem image (root.sqfs)
can be updated by opening the SD card on a computer and replacing the
matching files on the card.

When replacing root.sqfs, please note that a copy of the file is named
backup.sqfs. Ideally we want to replace backup.sqfs with a copy of
root.sqfs as well.

Warning

Make sure the card is safely removed (unmounted) from the computer. Failing
to do so may result in partial writes and factory image booting instead of
the updated one.

Update using shell access

If direct access to the receiver’s SD card is impossible, remote shell access
can be used as an alternative method of updating. To update remotely, first use
scp to transfer the files to the receiver. Note that only around 50MB of files
can be stored at a time, so we may need to update files one by one. (For more
information about remote shell access in general, see
Remote shell access.)

Note

To check the available space, the following command can be used: df -h |
grep overlay | awk {print $4}

The boot partition is read-only by default. To make it read-write, we first run
this command:

$ sudo chbootfsmode
Password: ********
Changing /boot to read-write mode.

Next we scp the files to the receiver.

Note

rxOS only supports scp and not sftp, therefore programs like FileZilla
cannot be used. PuTTY users should use the -scp option when using
pscp.exe.

Using PuTTY as an example:

C:\> pscp -scp root.sqfs outernet@<IP address>:
outernet@<IP address>'s password: ********
root.sqfs | 48548kb | 754.2 kB/s | ETA 00:00:00 | 100%

Now we can copy the file to the boot directory:

$ sudo mv root.sqfs /boot/
Password: ********
mv: can't preserve ownership of '/boot/root.sqfs': Operation not permitted

The error message in the example is harmless and can be ignored.

We repeat the last two steps with any other files we may want to update.
Finally:

$ sync && sudo reboot

Wait for the receiver to reboot.

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

 	Appendices

Appendix: Creating a chrooted build environment under Arch Linux

Because the rxOS build depends on a large number of complex software packages,
and Arch Linux is a rolling release distribution, discrepancies between the
package versions installed on developers’ machines may lead to random build
failure for some. To ensure maximum compatibility, we can set up a build
environment in a chroot and fix the package versions to known good ones.

A chroot is more or less a full Linux distro within a distro (sans the kernel,
init scripts, bootloader, and things you do not need for bootstrapping). It is
created in an arbitrary directory within our install, and can use different
versions of software as if they were installed on the host system.

Arch Linux makes it easy to create the chrooted environment by making the
scripts normally used during installation available in form of packages.

Requirements

To build the chrooted environment, you will need a working Arch Linux install,
and the following packages:

	arch-install-scripts

	devtools

Creating the chroot

We will first pick a directory where we will keep our chroot(s). Let’s call
this directory chroots for simplicity:

$ mkdir chroots

Once we have the directory, we create the actual chroot directory within it:

$ mkarchroot chroots/buildroot base

The base argument is the name of the package group we want installed in the
chroot. Although we can install any number of packages, we won’t do it at this
stage because we want to downgrade all installed packages to a known good
version. At this step, we merely want to install packages that will allow us to
do so later.

Next we need to edit the mirrorlist file within the chroot to facilitate
the downgrade.

$ echo 'Server = https://archive.archlinux.org/repos/2016/02/19/$repo/os/$arch' \
 > chroots/buildroot/etc/pacmand.d/mirrorlist

Once the mirrorlist is edited, we can enter the chroot, remove unnecessary
packages and downgrade the packages we need:

$ sudo arch-chroot chroots/buildroot /bin/bash
pacman -Rncs linux linux-firmware systemd
pacman -Syyuu

Note

If you use a terminal emulator that isn’t quite xterm-compatible, you may
need to install terminfo files for your terminal emulator within the
chroot. For urxvt, for example, you need to install
rxvt-unicode-terminfo package. Neglecting to do so will result in weird
terminal behavior such a Backspace not echoing correctly.

Next we install the build prerequisites:

pacman -S base-devel python2 git mercurial bc unzip rsync wget cpio

Once everything is installed, we can remove the package cache to recover disk
space:

pacman -Scc

Creating the unprivileged user

There is no need, nor it is desirable, to perform the builds as root.
Therefore, we need a normal user account to use while building. Inside the
chroot we run the following command:

$ useradd -Umk /etc/skel <USERNAME>

Making development files available to the chroot

While inside the chrooted environment, we cannot access any files on the host
system. Since it is wasteful to clone the code inside the chroot, install all
the development tools, and otherwise bloat the chroot, we will make the
development files (local git repository) available within the chroot. This
allows us to user our normal environment to work on the files (edit, etc),
while using the chroot for the actual build.

Since symlinking to location outside the chroot does not work, we will use a
bind mount instead. From the host system:

$ sudo mount --bind /path/to/local/repo \
 chroots/buildroot/home/<USERNAME>/rxos

Building

Now whenever we want to build, we enter the chroot and build as the
unprivileged user:

$ sudo arch-chroot chroots/buildroot /bin/bash
su <USERNAME>
$ cd ~/rxos
... build commands ...

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	rxos 1.0rc1 documentation

 	Appendices

Appendix: C.H.I.P. NAND storage characteristics

C.H.I.P. has built-in NAND flash storage mounted on the top side of the board.
It’s an 8GB SK-hynix-branded SLC NAND chip.

NAND characteristics

The following table contains information returned by executing nand info in
the U-Boot shell.

	Capacity
	8589934592 B (8 GiB)
	0x200000000

	Erase block size
	4194304 B (4 MiB)
	0x400000

	Page size
	16384 B (16 KiB)
	0x4000

	Subpage size
	16384 B (16 KiB)
	0x4000

	OOB
	1664 B
	0x680

	Options
	
	0x40003200

	BBT Options
	
	0x00110000

Information returned by mtdinfo is as follows:

Type: mlc-nand
Eraseblock size: 4194304 bytes, 4.0 MiB
Amount of eraseblocks: 2044 (8573157376 bytes, 8.0 GiB)
Minimum input/output unit size: 16384 bytes
Sub-page size: 16384 bytes
OOB size: 1664 bytes
Character device major/minor: 90:8
Bad blocks are allowed: true
Device is writable: true
Default UBI VID header offset: 16384
Default UBI data offset: 32768
Default UBI LEB size: 4161536 bytes, 4.0 MiB
Maximum UBI volumes count: 128

Additional notes

Normally about a dozen or more bad sections will be found on first boot.

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	rxos 1.0rc1 documentation

 	Appendices

Appendix: Tools for working with compute boards

This appendix lists some of the tools that could come in handy when working
with the compute boards (Raspberry Pi and CHIP).

Raspberry Pi tools

	HDMI-HDMI cable for connecting to an HDMI monitor or TV

	DVI-HDMI cable for connecting to a DVI monitor

	USB keyboard

	5V/2A power adapter with microUSB cable

	spare SD cards (8GB+)

	Cat 5 cable (LAN cable) for connecting the board to a router

	USB stick

CHIP tools

	USB-UART adapter

	male-male jumper (dupont) wire for grounding the FEL pin

	male-male or male-female jumper (dupont) wires (3x) for attaching USB UART
adapters (connector type depends on the UART adapter)

	5V/2A power adapter with stripped connector exposing voltage and ground wires
for powering the board via CHG-IN pin

	USB cable with stripped connector for powering the board via CHG-IN pin

	precision tweezers for removing broken-off pins from the pin header

	passive or powered USB hub for connecting multiple external devices

	USB stick

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	rxos 1.0rc1 documentation

Index

 Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/plus.png

_images/rxos_logo.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		rxos 1.0rc1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Outernet Inc.
 Created using Sphinx 1.3.5.

_static/down.png

_static/up.png

