

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Specification of blockyarchive

The specification is concerned only with actual data operations, UI/UX related matters are ignored.

Exit code

blkar returns

	0 if no errors occured

	1 if error is detected in user input (i.e. parameters provided)

	2 if error is detected during operation

Error handling behaviour in general

	blkar does not remove the generated file(s) even in case of failure

	This applies to encoding, decoding, repairing, rescuing, and sorting

	calculating, checking, showing do not generate any files

	This is mainly for in case the partial data is useful to the user

Output

The cli argument parsing library (clap) outputs errors to stderr.

If no errors are discovered by the cli argument parsing library, then

	In non-JSON mode

	Progress report texts are outputted to stderr

	All other texts are outputted to stdout, including error messages

	In JSON mode

	Progress report JSON data is outputted to stderr

	Each line holds a single JSON object

	All other JSON data is outputted to stdout

	The entire output forms a single JSON object

Block handling in general

Basic block validity

Block is valid if

	Header can be parsed

	CRC-CCITT is correct

Metadata block validity

Metadata block is valid if

	Basic block validity criteria are satisfied

	Several aspects are relaxed and allowed to not conform to SBX_FORMAT

	Metadata fields are optional

	They can be missing or unparsable

	Padding using 0x1A is not mandatory

Handling of duplicate metadata in metadata block given the block is valid

	For a given ID, only the first occurance of the metadata will be used

	e.g. if there are two FNM metadata fields in the metadata block, only the first (in terms of byte order) will be used

	This applies to everywhere where metadata fields need to be accessed

Handling of incorrect metadata fields in metadata block given the block is valid

	To avoid propogation of errors into core logic, incorrect fields either fail to be parsed in the parsing stage, or are filtered out immediately after the parsing stage. That is, invalid metadata fields are never accessible by other modules.

	This tradeoff means blkar’s error messages regarding metadata fields will be very coarse. For example, if the recorded file name is not a valid UTF-8 string, the core logic code will only see the field as missing, as it is dropped by the sbx_block module during parsing, and would not be able to tell whether the field is missing or incorrect, and also would not be able to tell the user why the field was not accessible, etc.

	This overall means trading flexibility and information granularity for better security.

Finding reference block

	The entire SBX container is scanned using alignment of 128 bytes, 128 is used as it is the largest common divisor of 512(block size for version 1), 128(block size for verion 2), and 4096(block size for version 3)

	if any block type is allowed

	the first whatever valid block (i.e. valid metadata or data block) will be used as reference block

	else

	if there is any valid metadata block in SBX container, then the first one will be used as reference block

	else the first valid data block will be used as reference block

Guessing burst error resistance level

	Read sequence numbers of first up to 1 + parity shard count + 1000 blocks

	if block is valid, record the sequence number

	else mark the sequence number as missing

	a ref block is required to provide guidance on version and uid accepted

	Go through level 0 to 1000 (inclusive), calculate supposed sequence number at each block position, record number of mismatches for each level

	if sequence number was marked missing, then it is ignored and checked for mismatch

	return the level with least amount of mismatches

Guessing starting block index

	Read 1024 blocks starting from specified from position

	if block is valid && is meta, then mark as missing

	if block is valid && is data, calculate anticipated global block index from the sequence number

	if global block index < blocks processed, then mark as missing

	else mark block index as global block index - blocks processed

	Overall this collects the starting block indices calculated from the global block indices of sampled blocks

	Go through collected starting block indices, and count the occurence of each starting block index seen

	Pick the starting block index with highest count

Calc workflow

Calc mode only operates at UI/UX level and does not handle any file data, thus it is not documented here.

Check workflow

	A reference block is retrieved first and is used for guidance on alignment, version, and uid (see Finding reference block procedure specified above)

	Scan for valid blocks from start of SBX container to decode and output using reference block’s block size as alignment

	if a block is invalid, and error message is shown

	if a block is valid, nothing is done

	By default, completely blank sections are ignored as they usually indicate gaps introduced by the burst error resistance pattern

Decode workflow

Metadata block is valid if

	Metadata block validity criteria are satisfied (see Block handling in general above)

	Version and uid matches reference block (see below)

Data block is valid if and only if

	Basic block validity criteria are satisfied (see Block handling in general above)

	Version and uid matches reference block (see below)

If output to file

	A reference block is retrieved first and is used for guidance on alignment, version, and uid (see Finding reference block procedure specified above)

	Scan for valid blocks from start of SBX container to decode and output using reference block’s block size as alignment

	if a block is invalid, nothing is done

	if a block is valid, and is a metadata block, nothing is done

	if a block is valid, and is a data parity block, nothing is done

	if a block is valid, and is a data block, then it will be written to the writepos at output file, where writepos = (sequence number - 1) * block size of reference block in bytes

	If possible, truncate output file to remove data padding done for the last block during encoding

	if reference block is a metadata block, and contains file size field, and output is a file, then the output file will be truncated to that file size

	otherwise nothing is done

	If possible, report/record if the hash of decoded file matches the recorded hash during encoding

	if reference block is a metadata block, and contains the hash field, and output is a file, then the output file will be hashed to check against the recorded hash

	output file will not be deleted even if hash does not match

	otherwise nothing is done

Handling of duplicate metadata/data blocks

	First valid metadata block will be used (if exists)

	For all other data blocks, the last seen valid data block will be used for a given sequence number

Handling of corrupted/missing blocks

	Corrupted blocks or missing blocks are not repaired in this mode

	User needs to invoke repair mode to repair the archive

If output to stdout

Read pattern

Read pattern is one of

	Burst error resistant

	Sequential with burst error resistance awareness

	Sequential with no burst error resistance awareness

Workflow

	A reference block is retrieved first and is used for guidance on alignment, version, and uid (see Finding reference block procedure specified above)

	Determine the read pattern

	if container is RS enabled, then

	if none of --from, --to-exc and --to-inc are specified, then read pattern is 1.

	else read pattern is 2.

	else read pattern is 3.

	If read pattern is 1.

	Go through metadata blocks in anticipated positions and try to decode. This is purely for statistics of successfully decoded metadata blocks

	Scan for valid blocks from the SBX container in the anticipated pattern to decode and output using reference block’s block size as alignment

	The anticipated pattern is same as the guessed encoding pattern, which depends on the SBX version, data parity parameters, guessed burst error resistance level

	blkar halts after going through the last anticipated seq num

	If a block is valid, and contains the anticipated seq num, then

	if the block is a metadata block, then nothing is done

	if the block is a data parity block, then nothing is done

	if the block is a data block, then

	if blkar can determine the block is the last block, the data chunk of the block is truncated so the overall output size matches the original file size, then outputted to stdout

	this is only possible when metadata block is used as reference block, and also contains the original file size

	else the data chunk of the block is outputted to stdout

	else a blank chunk of the same size as a normal data chunk is outputted to stdout

	If read pattern is 2. or 3.

	The starting block index of the blocks to read is guessed first (see Guessing starting block index procedure specified above)

	Using the starting block index as the first block index, the anticipated seq num of each block index is calculated for each block read

	if the block is valid and matches the anticipated seq num, then

	if the block is a metadata block, do nothing

	else if the block is a parity block, do nothing

	else

	if blkar can determine the block is the last block, the data chunk of the block is truncated so the overall output size matches the original file size, then outputted to stdout

	this is only possible when metadata block is used as reference block, and also contains the original file size

	else

	if blkar can determine the block is the last block, a blank chunk is truncated so the overall output size matches the original file size, then outputted to stdout

	this is only possible when metadata block is used as reference block, and also contains the original file size

	whichever the case, the chunk is used to update the hashing context if required

	hashing context is only created if the container contains a stored hash and the hash type is supported

	the hashing context is used to calculate the final hash displayed

Encode workflow

	If metadata is enabled, the following file metadata are gathered from file or retrieved from user input

	file name

	SBX file name

	file size

	file last modification time

	encoding start time

	If metadata is enabled, then a partial metadata block is written into the output file as filler

	The written metadata block is valid, but does not contain the actual file hash, a filler pattern of 0x00 is used in place of the hash part of the multihash (the header and length indicator of the multihash are still valid)

	Load version specific data sized chunk one at a time from input file to encode and output (and if metadata is enabled, Multihash hash state/ctx is updated as well - the actual hash state/ctx used depends on hash type, defaults to SHA256)

	data size = block size - header size (e.g. version 1 has data size of 512 - 16 = 496)

	if the seq num exceeds the maximum, the encoding procedure is terminated

	If RS is enabled, then the RS codec is updated as needed

	If metadata is enabled, the encoder seeks back to starting position of output file and overwrites the metadata block with one that contains the actual hash

Notes

	The work flow is the same whether input is file or stdin, as the reader used abstracts away the input type, and since the input is read purely sequentially, there was no need for different handling

Repair workflow

Metadata block is valid if

	Metadata block validity criteria are satisfied (see Block handling in general above)

	Version and uid matches reference block (see below)

Data block is valid if and only if

	Basic block validity criteria are satisfied (see Block handling in general above)

	Version and uid matches reference block (see below)

	A reference block is retrieved first and is used for guidance on alignment, version, and uid (see Finding reference block procedure specified above)

	a metadata block must be used as reference block in this mode

	If the version of ref block does not use RS, then exit

	If RSD and RSP fields are not found in the ref block, then exit

	Total block count is then calculated from

	FSZ field in ref block if present

	otherwise is estimated the container size

	Go through all positions where metadata blocks are stored in container

	if the metadata block is valid, nothing is done

	else the metadata block is overwritten by the reference block

	Go through sequence numbers sequentially until the block count reaches calculated total block count

	For each sequence number, calculate the block position and try to parse

	Each valid block is loaded into the RS codec, and repair process starts for the current block set when the current block set is filled

	Only blocks which were missing/damaged then successfully repaired are written back, all other blocks are not touched

	This means if a block cannot be repaired, then it is not touched

Handling of irreparable blocks

	Output sequence number of the blocks to log

Rescue workflow

	Scan for valid blocks from start of the provided file using 128 bytes alignment

	rescue mode rescues all 3 versions of SBX blocks

	if log file is specified, then

	if the log file exists, then it will be used to initialize the scan’s starting position

	bytes_processed field will be rounded down to closest multiple of 128 automatically

	the log file will be updated on every ~1.0 second

	each block is appended to OUTDIR/UID, where:

	OUTDIR = output directory specified

	UID = uid of the block in hex (uppercase)

	the original bytes in the file is used, that is, the output block bytes are not generated from scratch by blkar

	User is expected to attempt to decode the rescued data in OUTDIR using the blkar decode command

Show workflow

	Scan for metadata blocks from start of provided file using 128 bytes alignment

	if show all flag is supplied, all valid metadata blocks are displayed

	else only the first valid metadata block are displayed

	all displaying of blocks are immediate (no buffering of blocks)

Sort workflow

Metadata block is valid if

	Metadata block validity criteria are satisfied (see Block handling in general above)

	Version and uid matches reference block (see below)

Data block is valid if and only if

	Basic block validity criteria are satisfied (see Block handling in general above)

	Version and uid matches reference block (see below)

	A reference block is retrieved first and is used for guidance on alignment, version, and uid (see Finding reference block procedure specified above)

	Read block from input file sequentailly, and write to position calculated from sequence number, block size and burst error resistance level to output file

	The burst error resistance level by default is guessed using the Guessing burst error resistance level procedure specified above

	The first metadata block is used for all metadata blocks in output container

	The last valid data block is used for each sequence number

Handling of missing blocks

	Jumps/gaps caused by missing blocks are left to file system to handle (i.e. this may result in sparse file, or file with blank data in the gaps)

Update workflow

Metadata block is valid if

	Metadata block validity criteria are satisfied (see Block handling in general above)

	Version and uid matches reference block (see below)

	A reference block is retrieved first and is used for guidance on alignment, version, and uid (see Finding reference block procedure specified above)

	Read metadata block from input file using the calculated positions

	The burst error resistance level by default is guessed using the Guessing burst error resistance level procedure specified above

	Metadata update/addition and removal is considered individually for each metadata block rather than overwriting other medatablocks using the first metadata block

	For metadata update/addition

	If the metadata field already exists, then it is replaced and stays in the same position (i.e. if the field is the ith field, then it remains as the ith field

	If metadata field does not exist, then it is added as the last field

	For metdata removal

	If the metadata field exists, then it is removed and the remaining fields shift up in their positions

	If the metadata field does not exist, then nothing is changed

	Metadata update/addition process is done before removal process takes place

	Field processing order in both update/addition and removal process

	FNM

	SNM

To successfully encode a file

	File size must be within threshold

	For version 1, that means 496 * 2^32 - 1 = ~1.9375 TiB, where 496 is data size, obtained via 512(block size) - 16(header size)

	For version 2, that means 112 * 2^32 - 1 = ~0.4375 TiB, where 112 is data size, obtained via 128(block size) - 16(header size)

	For version 3, that means 4080 * 2^32 - 1 = ~15.9375 TiB, where 4080 is data size, obtained via 4096(block size) - 16(header size)

	If the file size changes during encoding to beyond the threshold, then the encoding process will be halted

To successfully decode a SBX container

	At least one valid data block for each position must exist

	If data padding was done for the last block, then at least one valid metadata block must exist and the first block amongst the valid metadata blocks needs to contain a field for the file size in order for truncation of the output file to happen

To successfully rescue your SBX container

	Get enough valid SBX blocks of your container such that a successful decoding or repair may take place

To successfully repair your SBX container

	The container has metadata block (or enough metadata parity blocks to reconstruct if corrupted/missing)

	The blocks’ sequence numbers are in consistent order

	The container has enough valid parity blocks to correct all errors

To successfully sort your SBX container

	There is space to store temporary file of same size at the specified destination

Changelog

7.2.0

	Fixed hash type validation in commandline arguments processing

	Some unsupported hash functions are accepted but not actually usable in core code, and cause crash when hash context is being created

	These unsupported hash functions are not listed in help messages, so normally not triggered

	Added –hash to update mode

	This options allows rehashing stored data in the SBX container with a possibly different hash function

	Check mode UX improvement

	Previously if hashing fails, then blkar errors out without showing the block check stats. This wastes a lot of time if the container is large, as the block check stats could be useful in diagnosis.

	Now blkar displays the error during stats reporting instead of erroring out and exiting immediately. This means block check stats are visible even when hashing error occurs.

7.1.1

	Updated file error messages casing

	Added multithreading and operation pipelining to encode core

	For SBX encoding

	Performance of encode mode is roughly 75% faster

	For ECSBX encoding

	Performance of encode mode now scales roughly linearly to number of CPU cores for version 17, 18

	Fixed progress reporting code synchronisation issue

	On some occasions, the summary of progress, specifically the time elapsed and average rate, may not be correctly calculated

	Fixed check and decode mode reference block checking

	Previously it may accept a reference block which does not contain RSD or RSP field even though it is required for version 17, 18, 19

	Fixed help message on behaviour of –guess-burst-from option

	It was stated it defaults to start of file, but it should state it defaults to –from option value

	Fixed help message on behaviour of –ref-from option

	It was stated it defaults to start of file, but it should state it defaults to –from option value mod SBX scan block size (128)

	Added missing –burst option to check mode

	Fixed input file size checking for encode mode

	Previously for SBX version 17, 18, 19, blkar fails to take data and parity shard ratio into account

7.1.0

	Dependencies update

	Updated use of blake2_c to blake2

	Updated encode help message to mention BLAKE2b-256 as a supported hash function explicitly

	Added support for following hash functions

	BLAKE2s-128

	BLAKE2s-256

7.0.0

	Updated --pv help message to state the default in JSON mode

	Added update mode for updating metadata

	Updated output text of following modes to use null instead of “N/A” for missing fields in JSON mode for consistency

	Encode and show mode

	Bumped major version as this may break backward compatibility

	Updated JSON code to output all numbers without quotes for consistency

	Previously, version numbers were quoted

	Previously, there may have been inconsistencies in general as well

	Bumped major version as this may break backward compatibility

	Switched to using tilde requirements for dependencies

	This is to ensure build stability for users who install blkar via crates.io, as Cargo.lock is not currently published along with the package on crates.io

	Updated progress reporting code

	Encode stdin mode now reports current rate and time used during encoding, and shows normal progress stats at the end

	The following modes now use “bytes” as units for progress reporting instead of “chunks” or “blocks”

	Check

	Decode

	Encode

	Repair

	Sort

	Fixed crashing bug in repair mode (issue #191 [https://github.com/darrenldl/blockyarchive/issues/191]) in PR #192 [https://github.com/darrenldl/blockyarchive/pull/192]

	In repair mode, if the version number of any data block is using a version number which size exceeds the one associated with version number of reference block, then blkar panics and crashes

	For example, for a EC-SeqBox archive of version 17, if any of the data block is changed to version 19 in its header, then blkar will crash, as version 17 is of block size 512 bytes, while version 19 is of block size 4096 bytes

	The reason is that the buffer size in the RS codec is fixed at the beginning based on the version number of reference block (the buffer is used for all later decoding of blocks), and even though a predicate was already provided in repair mode for tackling this, predicate checking in sbx_block::sync_from_buffer at the time only occurs after header parsing and reading from buffer as the predicate is a block predicate

	To be more specific, the predicate used in repair mode ensures the block to share same version and UID with referece block, but the checking occurs after reading from the buffer with length based on block size of version number. The reading from buffer triggers a panic if buffer is not of sufficient length.

	This is fixed by adding a header_pred parameter for sbx_block::sync_from_buffer, and changing all predicates supplied to sbx_block::sync_from_buffer from block predicates to header predicates when possible

	In repair mode case, this means now the block is filtered before reading from buffer takes place, if the block is not of the correct version, thus mitigating the issue

	Changed encoding defaults

	From sbx-version=17, rs-data=10, rs-parity=2, burst=10

	To sbx-version=17, rs-data=10, rs-parity=2, burst=12

	This means now by default the archive can survive burst sector error of size 3 on modern disks where the sector size is 4096 bytes

	Bumped major version as this may break backward compatibility

	Added options for hashing stored data in check mode

	This can be triggered via --hash or --hash-only

	Both are incompatible with range options, as opposed to decode mode where hashing is still done with range options

	This is to reduce complexity, especially since ranged hashing isn’t very useful in general

	Time elapsed fields display update for decode mode

	Now decoding time and hashing time are displayed separately

6.0.1

	Minor fixes for rescue and decode mode help messages

	Minor fix for calc mode output text

6.0.0

	Updated calc mode to use the same defaults as encode mode

	Bumped major version as this may break backward compatibility

	Fixed check and sort mode progress tracking when dealing with blank blocks

	Previously, blank blocks do not count toward progress made unless --report-blank is supplied

5.0.0

	Error-correcting versions of SeqBox are now called Error-correcting SeqBox or EC-SeqBox for short, and use the file extension .ecsbx

	This is done for easier differentiation between the extended versions and the original versions

	Fundamentally this does not change how blkar functions, as blkar does not take file extensions into account for all modes interacting with SBX containers

	Bumped major version as this may break backward compatibility

	Cargo.lock update via cargo update

4.0.0

	Changed “Uid” to “UID” in encode help messages for consistency

	Changed default archiving options

	Changed from using SBX version 1 to using SBX version 17 with data parity ratio of 10:2 and burst error resistance level of 10 by default

	Bumped major version as this may break backward compatibility

	Slight change in wording in calc mode error correction parameters interpretation

	Replaced the term “any” with “each” when referring to block set or super block set

	Updated sort mode to ignore failure to sort completely blank blocks by default

	Added --report-blank flag to toggle this behaviour

3.0.0

	Changed decode mode to use only file portion of stored file name in SBX container

	In previous versions, if the stored file name contains a path, then the entire path would be used, which can lead to unexpected output locations

	Added --multi-pass and --multi-pass-no-skip flag to the following modes

	decode

	sort mode

	This disables truncation, and allows updating the file gradually across multiple runs

	Upgraded stats tracking in sort mode

	Now it also tracks number of blocks in same order and in different order

	Added --dry-run flag to sort mode

	Combined with the improved stats tracking allows checking if the container is sorted or not

	Repalced --to with --to-inc and --to-exc

	This affects rescue and show mode

	Added --from, --to-inc and --to-exc to the following modes

	check

	decode

	encode

	sort

	Added --ref-from, --ref-to-inc and --ref-to-exc to the following modes

	check

	decode

	sort

	Added --force-misalign to the following modes

	check

	decode

	sort

	Updated reference block scanning code to respect --force-misalign

	Updated burst error resistance level guessing to respect --force-misalign

	Updated decode mode stats output

	This results in potentially incompatible JSON output

	Fixed misc_utils::calc_required_len_and_seek_to_from_byte_range

	Sometimes off by one error occured

	Ran rustfmt for code formatting

	Ran cargo fix --edition to update to Rust 2018 edition

	Fixed potential integer overflow issues in decode and repair mode

	Previously, when output is stdout, block index and seq num counter in decode mode may be incremented even if already at max

	Previously, seq num counter in repair mode may be incremented even if already at max

	Updated burst error resistance level guessing code to respect --from and --force-misalign options

	Fixed potential incorrect behaviour when processed block is incomplete

	Rectified by adding #[must_use] to Reader::ReadResult, forcing all code paths to check read result instead of possibly ignoring it

2.2.0

	Added --only-pick-uid option to show mode

	Changed “uid” to “UID” in output text for consistency

2.1.0

	Added --burst option to decode mode, used when output is stdout and container version is RS enabled

	Updated help messages in decode, encode mode to note that ./- can be used when the file of interest is named -

2.0.1

	First release under name blkar

	Warning message fix for stdout output in decode mode

2.0.0

	Dependencies upate

	Updated rand from 0.4 to 0.5.4

	Switched from ring to sha-1 and sha2 crates

	See issue #86 [https://github.com/darrenldl/rust-SeqBox/issues/86]

	Doc fix

	Added space before parantheses in code comments, documentation and help messages

	Added stdin input option for encode mode

	Added stdout output option for decode mode

	Fixed data padding bytes calculation in encode mode

	Renamed project from rust-SeqBox/rsbx to blockyarchive/blkar

1.1.2

	Dependencies update

	Updated reed-solomon-erasure from ^3.0 to ^3.1

1.1.1

	Added fuzzing suite

	No code changes from this as no bugs were found

	Dependency update

	Updated nom from ^3.2 to ^4.0

	Fixed incorrect use of nom combinators

	Previously was using alt! while alt_complete! should have been used

	This affects the following parsers

	multihash (multihash parser for metadata of hash)

	sbx_block::metadata (metadata parser for metadata blocks)

	sbx_block::header::ver_p (version parser for version byte in header)

1.1.0

	Added –json flag to all modes

	If specified, all information will be outputted in JSON format instead of human readable text

	This includes progress report text, which is outputted to stderr

	Progress report text changed to use stderr

1.0.8

	Updated file size retrieval procedure to handle block devices properly

	Previously modes would not interact with block devices correctly since metadata of block devices gives file size of 0

	Currently modes retrieve file size via seeking to the end of file, this gives the block device size correctly

1.0.7

	Polished repair stats text

1.0.6

	Improved calc mode dialog about interpretation of error correction parameters

1.0.5

	No code changes

	Added binary releases via GitHub releases

1.0.4

	Help messages polish

	Added text in help messages about rsbx’s limitations on burst error resistance level

	Massively improved code coverage

	Added a lot of internal tests

	Bug fixes in following internal functions

	Note that the main binary may restrict parameters provided to these internal functions, so not all bugs are visible or reproducible from user perspective

	Fixed calc_required_len_and_seek_to_from_byte_range_inc, issue #56

	rescue core and show core uses this function to calculate seek to positions and number of bytes to read

	Fixed make_path, issue #57

	All modes that outputs files use this function to calculate final output path

	Fixed rs_coder::encoder incorrect index counting logic

	This is used by encode mode, thought to be fixed in 1.0.0

	Does NOT actually lead to incorrect SBX container generation

	This means containers generated by rsbx version >= 1.0.0 are still correct

	Fixed meta blocks written stats reporting in encode mode, issue #59

1.0.3

	General output text polishing

	Fixed container size calculation for when –no-meta flag is supplied

	Fixed encode mode for when –no-meta flag is supplied

	Previously rsbx would leave a blank spot at where the metadata block would otherwise sit instead of skipping the metadata block properly

	SBX containers created with –no-meta flag enabled prior to this fix are still valid and can be decoded by rsbx successfully

	Fixed reference block retrieval procedure related code

	Previously for decode, sort, and check mode, rsbx would interpret –no-meta flag incorrecty for reference block preference, namely any block type is allowed when the flag is absent, and metadata block is preferred when the flag is present, while it should be the other way around

	Fixed a crash that occurs when sort mode is used with a SBX container of RS enabled version, and using data block as reference block

1.0.2

	Fixed wording of error correction parameters interpretation strings in calc mode

	Fixed container size calculation for when file size is 0

	Previously for RS enabled SBX versions, rsbx would fail to take burst gaps between metadata blocks into account

1.0.1

	Added displaying of metadata block repairs in repair mode when verbose flag is supplied

1.0.0

	Added fields to stats display in encode mode

	uid

	file size

	container size

	Added fields to stats display in decode mode

	uid

	file size

	container size

	General output text polishing

	Fixed repair mode code to handle block sets with blocks missing due to truncation properly

	Fixed encode mode code to avoid writing extraneous RS block set

	Previously if data read finishes right at the end of a block set, the RS codec would write out an extra RS block set with data blocks being just padding

	Added –dry-run flag to repair mode

	Added displaying of position in file of blocks requiring repair in repair mode

0.9.3

	Various UI/UX improvements in subcommands

	Added –info-only flag to encode mode to show info about encoding

	Added file and container sizes to encode mode stats

	Added calc mode to show detailed info about encoding configuration

0.9.2 (forgot to publish, whoops)

	Made decode mode output file path determination more robust

	Only the file part of the SNM field is used rather than the entire path when computing the final output path

	Added --info-only flag to encode mode

	Using the flag shows various calculation results and statistical information

0.9.1

	Fixed encode mode output file determination logic

	Prior to this version, encode mode would append the entire input path to the output path if output path is a directory, instead of just appending only the file name part

0.9.0

	Base version

Comparison to the original SeqBox implementation/design

The original SeqBox implementation and format do not support repairing of data, only sector level recoverability.

Blockyarchive supports both SeqBox and EC-SeqBox, while the original implementation only supports the SeqBox specification.

Blockyarchive is also more robust compared to the original SeqBox implementation, as it does not assume the SBX container to be well formed, and makes as few assumptions about the SBX container as possible.

blkar is overall based around osbx [https://github.com/darrenldl/ocaml-SeqBox], but much more optimized.

blockyarchive

[image: _images/blockyarchive.svg]Build Status [https://travis-ci.org/darrenldl/blockyarchive]
[image: _images/i4dxpldp4t312gtv.svg]Build status [https://ci.appveyor.com/project/darrenldl/blockyarchive]
[image: _images/badge.svg]codecov [https://codecov.io/gh/darrenldl/blockyarchive]
[image: _images/blkar.svg]Crates [https://crates.io/crates/blkar]
[image: _images/status.svg]dependency status [https://deps.rs/repo/github/darrenldl/blockyarchive]
[image: _images/gitter.png]Gitter chat [https://gitter.im/blockyarchive/community]

Documentation [https://github.com/darrenldl/blockyarchive/wiki]

Blockyarchive/blkar (pronounced “bloc-kar”) is an archiver written in Rust that offers bit rot protection, and makes it easier to recover archived data from failing storage devices.

Demo

[image: _images/240491.svg]asciicast [https://asciinema.org/a/240491]

How does it work?

blkar encodes your data into SeqBox and EC-SeqBox archives. Both formats facilitate data recovery, but only EC-SeqBox provides data repair capability.

What are SeqBox and EC-SeqBox?

SeqBox is a single-file archive format designed by Marco Pontello [https://github.com/MarcoPon] that facilitates sector level data recovery for when file system metadata is corrupted/missing, while the archive itself still exists as a normal file on file system. Please visit the official SeqBox [https://github.com/MarcoPon/SeqBox] repo for the original implementation and technical details on this.

Error-correcting SeqBox (or EC-SeqBox for short) is an extended version of SeqBox developed by Darren Ldl [https://github.com/darrenldl] for this project, introducing forward error correction via Reed-Solomon erasure code.

Blockyarchive/blkar was formerly known as rust-SeqBox/rsbx prior to renaming.

Features overall

	Data recovery that does not depend on file system metadata (sector level recovery)

	This allows data recovery even when data is fragmented and out of order

	Supports error correction (via Reed-Solomon erasure code) for EC-SeqBox

	Supports burst (sector) error resistance for EC-SeqBox

	This is done via an interleaving block arrangement scheme. It is mainly to address the data repair limitation of the simple archive design

	More complex archive designs such as PAR2 can repair burst errors without any extra arrangement scheme, but they are also vastly more complex than EC-SeqBox

	JSON mode

	Outputs information in JSON format instead of human readable text, allowing easy integration with scripts

Limitations

	Only a single file is supported for encoding as SeqBox and EC-SeqBox are both single-file archive formats

	However, blkar may still be usable when you have multiple files, as blkar supports taking input from stdin during encoding, and also supports outputting to stdout during decoding

	This means if you have an archiver that supports bundling and unbundling on the fly with pipes, like tar, you can combine the use of the archiver and blkar into one encoding and decoding step

Getting started

Installation

blkar is available via AUR [https://aur.archlinux.org/packages/blkar], GitHub releases [https://github.com/darrenldl/blockyarchive/releases] or cargo

cargo install blkar

Usage guides & screencasts & other resources

The wiki [https://github.com/darrenldl/blockyarchive/wiki] contains comprehensive guides and resources.

Goals and status

As blkar is to be used largely as a backup utility, security/robustness of the code will be prioritised over apparent performance.

This project has reached its intended feature completeness, so no active development for new features will occur. However, this project is still actively looked after, i.e. I will respond to PRs, issues, and emails, will consider feature requests, respond to bug reports quickly, and so on.

In other words, this is a completed project with respect to its original scope, but it is not abandoned.

Links

Comparison to the original SeqBox implementation/design

Changelog

SBX format (EC-SeqBox is also specified in this document)

blkar specs

Contributions

Contributions are welcome. Note that by submitting contributions, you agree to license your work under the same license used by this project as stated in the LICENSE file.

Acknowledgement

I would like to thank Marco [https://github.com/MarcoPon] (the official SeqBox author) for discussing and clarifying aspects of his project, and also providing of test data during development of osbx. I would also like to thank him for his feedback on the numbering of the error correction enabled ECSBX versions (versions 17, 18, 19).

I would like to thank Ming [https://github.com/mdchia/] for his feedback on the documentation, UX design, and several other general aspects of the osbx project, of which most of the designs are carried over to blkar, and also his further feedback on this project as well.

The design of the readable rate in progress report text is copied from Arch Linux pacman [https://wiki.archlinux.org/index.php/Pacman]’s progress bar design.

The design of block set interleaving arrangement in RS enabled versions is heavily inspired by Thanassis Tsiodras’s design of RockFAT [https://www.thanassis.space/RockFAT.html]. The interleaving provides resistance against burst sector errors.

Donation

Note: Donation will NOT fuel development of new features. As mentioned above, this project is meant to be stable, well tested and well maintained, but normally I am not actively adding new features to it.

If blockyarchive has been useful to you, and you would like to donate to me for the development effort, you can donate through here [http://ko-fi.com/darrenldl].

License

Libcrc code

The crcccitt code is translated from the C implementation in libcrc [https://github.com/lammertb/libcrc] and is under the same MIT License as used by libcrc and as stated in libcrc source code. The license text of the crcccitt.c is copied over to crc-ccitt/build.rs, crc-ccitt/src/lib.rs, build.rs and src/crc_ccitt.rs as well.

Official SeqBox code

The following files in tests folder copied from official SeqBox are under its license, which is MIT as of time of writing

	tests/SeqBox/*

All remaining files are distributed under the MIT license as stated in the LICENSE file.

Technical Specification

The following specification for SBX is copied directly from the official specification with minor to no modifications.

ECSBX is the extended version of SBX with error-correcting capability.

Byte order: Big Endian

For SBX versions: 1, 2, 3

Common blocks header:

pos	to pos	size	desc
—	——	—-	————————————————————————-
0	2	3	Recoverable Block signature = ‘SBx’
3	3	1	Version byte
4	5	2	CRC-16-CCITT of the rest of the block (Version is used as starting value)
6	11	6	file UID
12	15	4	Block sequence number

Block 0

pos	to pos	size	desc
—	——–	—-	—————-
16	n	var	encoded metadata
n+1	blockend	var	padding (0x1a)

Blocks > 0 & < last:

pos	to pos	size	desc
—	——–	—-	—-
16	blockend	var	data

Blocks == last:

pos	to pos	size	desc
—	——–	—-	————–
16	n	var	data
n+1	blockend	var	padding (0x1a)

Versions:

ver	blocksize	note
—	———	——-
1	512	default
2	128	
3	4096	

Metadata encoding:

Bytes	Field
—–	—–
3	ID
1	Len
n	Data

IDs

ID	Desc
—	—————————————————————-
FNM	filename (utf-8)
SNM	sbx filename (utf-8)
FSZ	filesize (8 bytes - BE uint64)
FDT	date & time (8 bytes - BE int64, seconds since epoch)
SDT	sbx date & time (8 bytes - BE int64)
HSH	crypto hash (using Multihash [http://multiformats.io] protocol)
PID	parent UID (not used at the moment)

Supported crypto hashes since 1.0.0 are

	SHA1

	SHA256

	SHA512

	BLAKE2B_512

Metadata block (block 0) can be disabled.

For ECSBX versions: 17 (0x11), 18 (0x12), 19 (0x13)

ECSBX specification is overall similar to the SBX specification above.

Block categories: Meta, Data, Parity

Meta and Data are mutually exclusive, and Meta and Parity are mutually exclusive. A block can be both Data and Parity.

Assumes configuration is M data shards and N parity shards.

Note

The following only describes the sequence number arrangement, not the actual block arrangement.

See section “Block set interleaving scheme” below for details on actual block arrangement.

Common blocks header:

pos	to pos	size	desc
—	——	—-	————————————————————————-
0	2	3	Recoverable Block signature = ‘SBx’
3	3	1	Version byte
4	5	2	CRC-16-CCITT of the rest of the block (Version is used as starting value)
6	11	6	file UID
12	15	4	Block sequence number

Block 0

pos	to pos	size	desc
—	——–	—-	—————-
16	n	var	encoded metadata
n+1	blockend	var	padding (0x1a)

Block 0 is Meta only.

Blocks >= 1 & < 1 + K * (M + N), where K is an integer >= 1:

For M continuous blocks

pos	to pos	size	desc
—	——–	—-	—-
16	blockend	var	data

For N continuous blocks

pos	to pos	size	desc
—	——–	—-	——
16	blockend	var	parity

RS arrangement: M blocks (M data shards) N blocks (N parity shards)

The M blocks are Data only.

The N blocks are both Data and Parity.

Last set of blocks

For X continuous blocks, where X is the remaining number of data blocks

Blocks in first X - 1:

pos	to pos	size	desc
—	——–	—-	—-
16	blockend	var	data

Last block

pos	to pos	size	desc
—	——–	—-	————–
16	n	var	data
n+1	blockend	var	padding (0x1a)

For M - X continuous blocks, where M is the specified data shards count

pos	to pos	size	desc
—	——–	—-	————–
16	blockend	var	padding (0x1a)

For N continuous blocks

pos	to pos	size	desc
—	——–	—-	——
16	blockend	var	parity

RS arrangement: M blocks (X data shards + (M - X) padding blocks) N blocks.

The M blocks are Data only.

The N blocks are both Data and Parity.

Versions:

ver	blocksize	note
—	———	—-
11	512	
12	128	
13	4096	

Metadata encoding:

Bytes	Field
—–	—–
3	ID
1	Len
n	Data

IDs

ID	Desc
—	—————————————————————————–
FNM	filename (utf-8)
SNM	sbx filename (utf-8)
FSZ	filesize (8 bytes - BE uint64)
FDT	date & time (8 bytes - BE int64, seconds since epoch)
SDT	sbx date & time (8 bytes - BE int64)
HSH	crypto hash (using Multihash [http://multiformats.io] protocol)
PID	parent UID (not used at the moment)
RSD	Reed-Solomon data shards part of ratio (ratio = RSD : RSP) (1 byte - uint8)
RSP	Reed-Solomon parity shards part of ratio (ratio = RSD : RSP) (1 byte - uint8)

Supported forward error correction algorithms since 1.0.0 are

	Reed-Solomon erasure code - probably the only one for versions 17, 18, 19

Metadata and the parity blocks are mandatory in versions 17, 18, 19.

Block set interleaving scheme

This block set interleaving is heavily inspired by Thanassis Tsiodras’s design of RockFAT [https://www.thanassis.space/RockFAT.html].

The major difference between the two schemes is that RockFAT’s one is byte based interleaving, blkar’s one is SBX block based interleaving.

The other difference is that blkar allows customizing level of resistance against burst sector errors.

A burst error is defined as consecutive SBX block erasures.

Burst error resistance is defined as the maximum number of consective SBX block erasures tolerable for any instance of burst error.

The maximum number of such errors tolerable is same as the parity shard count.

Assuming arrangement of M data shards, N parity shards, B burst error resistance.

Then the SBX container can tolerate up to N burst errors in every set of (M + N) * B consecutive blocks, and each individual error may be up to B SBX blocks.

Diagrams

M data shards, N parity shards, B burst error resistance

Sequential arrangement

0	1	…	N	N + 1	N + 2	N + 3	N + 4	…
—	—	—	—	—–	—–	—–	—–	—
00	00	…	00	01	02	03	04	…

1 + N metadata blocks at the front

Interleaving arrangement

Let base block set size = B

First 1 + N block sets have size = 1 + base block set size, the rest have size = base block set size

First 1 + N block sets:

0	1	2	3	…	B
—	—–	—————–	———————	—	—————————
00	01	01 + (M + N)	01 + 2 * (M + N)	…	01 + (B - 1) * (M + N)
00	02	02 + (M + N)	02 + 2 * (M + N)	…	02 + (B - 1) * (M + N)
…	…	…	…	…	…
00	1 + N	(1 + N) + (M + N)	(1 + N) + 2 * (M + N)	…	(1 + N) + (B - 1) * (M + N)

Rest of the block sets:

Let K > 1 + N:

0	1	2	3	…	B - 1
—	———–	—————	—————	—	———————
K	K + (M + N)	K + 2 * (M + N)	K + 3 * (M + N)	…	K + (B - 1) * (M + N)

Limitations

While an arbitrary number can be used for burst error resistance level during encoding, blkar will only guess up to 1000 when automatically guessing the burst error resistance level.

SeqBox - Sequenced Box container

A single file container/archive that can be reconstructed even after total loss of file system structures.

[image: ../../_images/Ewper2w.png]SBX-Logo

An SBX container exists both as a normal file in a mounted file system, and as a collection of recognizable blocks at a lower level.

SBX blocks have a size sub-multiple/equal to that of a sector, so they can survive any level of fragmentation. Each block have a minimal header that include a unique file identifier, block sequence number, checksum, version.
Additional, non critical info/metadata are contained in block 0 (like name, file size, crypto-hash, other attributes, etc.).

If disaster strikes, recovery can be performed simply scanning a volume/image, reading sector sized slices and checking blocks signatures and then CRCs to detect valid SBX blocks. Then the blocks can be grouped by UIDs, sorted by sequence number and reassembled to form the original SeqBox containers.

[image: ../../_images/DQZDO0P.gif]It's Magic

It’s also possible and entirely transparent to keep multiple copies of a container, in the same or different media, to increase the chances of recoverability. In case of corrupted blocks, all the good ones can be collected and reassembled from all available sources.

The UID can be anything, as long as is unique for the specific application. It could be random generated (probably the most common option), or a hash of the file content, or a simple sequence, etc.

Overhead is minimal: for SBX v1 is 16B/512B (+1 optional 512B block), or < 3.5%.

Demo tour

The two main tools are obviously the encoder & decoder:

	SBXEnc: encode a file to a SBX container

	SBXDec: decode SBX back to original file; can also show info on a container and tests for integrity against a crypto-hash

The other two are the recovery tools:

	SBXScan: scan a set of files (raw images, or even block devices on Linux) to build a Sqlite db with the necessary recovery info

	SBXReco: rebuild SBX files using data collected by SBXScan

There are in some case many parameters but the default are sensible so it’s generally pretty simple.

Now to a practical example: let’s see how 2 photos and their 2 SBX encoded versions go trough a fragmented floppy disk that have lost its FAT (and any other system part). We start with the 2 pictures, about 200KB and 330KB:

[image: ../../_images/Qf0qrUp.jpg]Castle [image: ../../_images/9rH6tMf.jpg]Lake

We encode using SBXEnc, and then test the new file with SBXDec, to be sure all is OK:

C:\t>sbxenc Lake.jpg
hashing file 'Lake.jpg'...
SHA256 3cfc376b6362444d2d25ebedb19e7594000f2ce2bdbb521d98f6c59b5adebfdc
creating file 'Lake.jpg.sbx'...
100%
SBX file size: 343040 - blocks: 670 - overhead: 3.4%

C:\t>sbxdec -t Lake.jpg.sbx
decoding 'Lake.jpg.sbx'...
metadata block found!
SBX decoding complete
SHA256 3cfc376b6362444d2d25ebedb19e7594000f2ce2bdbb521d98f6c59b5adebfdc
hash match!

Same for the other file. Now we put both the JPEG and the SBX files in a floppy disk image already about half full, that have gone trough various cycles of updating and deleting. As a result the data is laid out like this:

[image: ../../_images/cBoXONY.png]Disk Layout

Normal files (pictures included) are in green, and the two SBX in different shades of blue.
Then with an hex editor we zap the first system sectors and the FAT (in red)!
Time for recovery!

We start with the free (GPLV v2+) PhotoRec [http://www.cgsecurity.org/wiki/PhotoRec], which is the go-to tool for these kind of jobs. Parameters are set to “Paranoid : YES (Brute force enabled)” & “Keep corrupted files : Yes”, to search the entire data area.
As the files are fragmented, we know we can’t expect miracles. The starting sector of the photos will be surely found, but as soon as the first contiguous fragment end, it’s anyone guess.

[image: ../../_images/qa0PySP.png]PhotoRec results

As expected, something has been recovered. But the 2 files size are off (280K and 400KB). The very first parts of the photos are OK, but then they degrade quickly as other random blocks of data where mixed in. We have all seen JPEGs ending up like this:

[image: ../../_images/kP0jwyC.jpg]Castle [image: ../../_images/GyOonct.jpg]Lake

Other popular recovery tools lead to the same results. It’s not anyone fault: it’s just not possible to know how the various fragment are concatenated, without an index or some kind of list (there are approaches based on file type validators that can in at least some cases differentiate between spurious and valid blocks, but that’s beside the point).

But with a SBX file it’s a different story. Each one of its block can’t be fragmented more, and contains all the needed data to be put in its proper place in sequence. So let’s proceed with the recovery of the SBX files.
To spice things up, the disk image file is run trough a scrambler, that swaps variable sized blocks of sectors around. The resulting layout is now this:

[image: ../../_images/jmOWult.png]Scrambled

Pretty nightmarish! Now on to SBXScan to search for pieces of SBX files around, and SBXReco to get a report of the collected data:

C:\t\recovered\sbx>sbxscan \t\scrambled.IMA
creating 'sbxscan.db3' database...
scanning file/device '\t\scrambled.IMA' (1/1)...
100.0% blocks: 1087 - meta: 2 - files: 2 - 89.97MB/s
scan completed!

C:\t\recovered\sbx>sbxreco sbxscan.db3 -i
opening 'sbxscan.db3' recovery info database...

"UID", "filesize", "sbxname", "filename"
"2818b123c00b", 206292, "Castle.jpg.sbx", "Castle.jpg"
"76fe4a49ebf2", 331774, "Lake.jpg.sbx", "Lake.jpg"

The 2 SBX container have been found, with all the metadata. So the original filesizes are also known, along with the names of the SBX files and the original ones. At this point it would be possible to recover singles files or a group of them, by UID or names, but we opt to recover everything:

C:\t\recovered\sbx>sbxreco sbxscan.db3 --all
opening 'sbxscan.db3' recovery info database...
recovering SBX files...
UID 2818b123c00b (1/2)
 blocks: 417 - size: 213504 bytes
 to: 'Castle.jpg.sbx'
 100.0% (missing blocks: 0)
UID 76fe4a49ebf2 (2/2)
 blocks: 670 - size: 343040 bytes
 to: 'Lake.jpg.sbx'
 100.0% (missing blocks: 0)

done.
all SBx files recovered with no errors!

All SBX files seems to have been recovered correctly. We start decoding:

C:\t\recovered\sbx>sbxdec Lake.jpg.sbx
decoding 'Lake.jpg.sbx'...
metadata block found!
creating file 'Lake.jpg'...
SBX decoding complete
SHA256 3cfc376b6362444d2d25ebedb19e7594000f2ce2bdbb521d98f6c59b5adebfdc
hash match!

And sure enough:

[image: ../../_images/Qf0qrUp.jpg]Castle [image: ../../_images/9rH6tMf.jpg]Lake

N.B. Here’s a 7-Zip archive [http://mark0.net/download/sbxdemo-diskimages.7z] with the 2 disk images used in the demo (542KB).

Possible / hypothetical / ideal uses cases

	Last step of a backup. After creating a compressed archive of something, the archive could be SeqBox encoded to increase recovery chances in the event of some software/hardware issues that cause logic / file system’s damages.

	Exchange data between different systems. Regardless of the file system used, an SBX container can always be read/extracted.

	Long term storage. Since each block is CRC tagged, and a crypto-hash of the original content is stored, bitrot can be easily detected. In addition, if multiple copies are stored, in the same or different media, the container can be correctly restored with high degree of probability even if all the copies are subject to some damages (in different blocks).

	Encoding of photos on a SDCard. Loss of images on perfectly functioning SDCards are known occurrences in the photography world, for example when low on battery and maybe with a camera/firmware with suboptimal monitoring & management strategies. If the photo files are fragmented, recovery tools can usually help only to a point.

	On-disk format for a File System. The trade-off in file size and performance (both should be fairly minimal anyway) could be interesting for some application. Maybe it could be a simple option (like compression in many FS). I plan to build a simple/toy FS with FUSE to test the concept, time permitting.

	Easy file splitting. Probably less interesting, but a SeqBox container can also be splitted with no particular precautions aside from doing that on block size boundaries. Additionally, there’s no need to use special naming conventions, numbering files, etc., as the SBX container can be reassembled exactly like when doing a recovery.

	Data hiding. SeqBox containers (or even fragments of them) can be put inside other files (for example at the end of a JPEG, in the middle of a document, etc.), sprayed somewhere in the unused space, between partitions, and so on.
Incidentally, that means that if you are in the digital forensics sector, now you have one more thing to check for!
If a password is used, the entire SBX file is mangled to look pseudo-random, and SBXScan, SBXReco & SBXDec will not be able to recognize it unless the same password is provided.

Tests

SeqBox recoverability have been practically tested with a number of File Systems. The procedure involved using a Virtual Machine (or a full blown emulator) to format a small disk image with a certain FS, filling it with a number of small files, then deleting some of them randomly to free enough space to copy a series of SBX files. This way every SBX file results fragmented in a lot of smaller pieces. Then the image was quick-formatted, wipefs-ed and the VM shutdown.
After that, from the host OS, recovery of the SBX files was attempted using SBXScan & SBXReco on the disk image.

	Working: ADFS [https://en.wikipedia.org/wiki/Advanced_Disc_Filing_System], AFFS [https://en.wikipedia.org/wiki/Amiga_Fast_File_System], APFS [https://en.wikipedia.org/wiki/Apple_File_System], BeFS [https://en.wikipedia.org/wiki/Be_File_System], BtrFS [https://en.wikipedia.org/wiki/Btrfs], EXT2/3/4 [https://en.wikipedia.org/wiki/Extended_file_system], F2FS [https://en.wikipedia.org/wiki/F2FS], FATnn/VFAT/exFAT [https://en.wikipedia.org/wiki/File_Allocation_Table], HAMMER [https://en.wikipedia.org/wiki/HAMMER], HFS [https://en.wikipedia.org/wiki/Hierarchical_File_System], HFS+ [https://en.wikipedia.org/wiki/HFS_Plus], HPFS [https://en.wikipedia.org/wiki/High_Performance_File_System], JFS [https://en.wikipedia.org/wiki/JFS_(file_system)], MFS [https://en.wikipedia.org/wiki/Macintosh_File_System], MINIX FS [https://en.wikipedia.org/wiki/MINIX_file_system], NTFS [https://en.wikipedia.org/wiki/NTFS], ProDOS [https://en.wikipedia.org/wiki/Apple_ProDOS], ReFS [https://en.wikipedia.org/wiki/ReFS], ReiserFS [https://en.wikipedia.org/wiki/ReiserFS], UFS [https://en.wikipedia.org/wiki/Unix_File_System], XFS [https://en.wikipedia.org/wiki/XFS], ZFS [https://en.wikipedia.org/wiki/ZFS].

	Not working: OFS [https://en.wikipedia.org/wiki/Amiga_Old_File_System] (due to 488 data bytes per 512 bytes sector)

N.B. Obviously SBX blocks can’t be found if File System encryption is used. Compression too (mostly, but not always). Striping/RAID instead is usually not a problem.

Being written in Python 3, SeqBox tools are naturally multi-platform and have been tested successfully on various versions of Windows, on OS X & macOS, on some Linux distros either on x86 or ARM, on FreeBSD and on Android (via QPython).

Tech spec

Byte order: Big Endian

Common blocks header:

pos	to pos	size	desc
—-	—	—-	———————————–
0	2	3	Recoverable Block signature = ‘SBx’
3	3	1	Version byte
4	5	2	CRC-16-CCITT of the rest of the block (Version is used as starting value)
6	11	6	file UID
12	15	4	Block sequence number

Block 0

pos	to pos	size	desc
—-	——–	—-	—————-
16	n	var	encoded metadata
n+1	blockend	var	padding (0x1a)

Blocks > 0 & < last:

pos	to pos	size	desc
—-	——–	—-	—————-
16	blockend	var	data

Blocks == last:

pos	to pos	size	desc
—-	——–	—-	—————-
16	n	var	data
n+1	blockend	var	padding (0x1a)

Versions:

N.B. Current versions differs only by blocksize.

ver	blocksize	note
—-	———	——-
1	512	default
2	128	
3	4096	

Metadata encoding:

Bytes	Field
—–	—–
3	ID
1	Len
n	Data

IDs

ID	Desc
—	—
FNM	filename (utf-8)
SNM	sbx filename (utf-8)
FSZ	filesize (8 bytes)
FDT	date & time (8 bytes, seconds since epoch)
SDT	sbx date & time (8 bytes)
HSH	crypto hash (SHA256, using Multihash [http://multiformats.io] protocol)
PID	parent UID (not used at the moment)

(others IDs for file dates, attributes, etc. will be added…)

Final notes

The code was quickly hacked together in spare slices of time to verify the basic idea, so it’s not optimized for speed and will benefit for some refactoring, in time.
Still, the current block format is stable and some precautions have been taken to ensure that any encoded file could be correctly decoded. For example, the SHA256 hash that is stored as metadata is calculated before any other file operation.
So, as long as a newly created SBX file is checked as OK with SBXDec, it should be OK.
Also, SBXEnc and SBXDec by default don’t overwrite files, and SBXReco uniquify the recovered ones.
Finally, the file content is not altered in any way (except if a password is used), just re-framed.

Related tools

Check my BlockHashLoc [https://github.com/MarcoPon/BlockHashLoc] for a different/sinergic approach to obtaining a similar degree of recoverability, but using a parallel, small hashes file instead of a standalone container. It’s probably more suited to protect existing files, when it isn’t practical to touch/re-encode them.

Links

	SeqBox home page [http://mark0.net/soft-seqbox-e.html]

	SeqBox GitHub repository [https://github.com/MarcoPon/SeqBox]

Contacts

If you need more info, want to get in touch, or donate: Marco Pontello [http://mark0.net/contacts-e.html]

Bitcoin: 1Mark1tF6QGj112F5d3fQALGf41YfzXEK3

[image: ../../_images/qrcode.png]Qr-Code

SeqBox - Sequenced Box container

A single file container/archive that can be reconstructed even after total loss of file system structures.

[image: ../../_images/Ewper2w.png]SBX-Logo

An SBX container exists both as a normal file in a mounted file system, and as a collection of recognizable blocks at a lower level.

SBX blocks have a size sub-multiple/equal to that of a sector, so they can survive any level of fragmentation. Each block have a minimal header that include a unique file identifier, block sequence number, checksum, version.
Additional, non critical info/metadata are contained in block 0 (like name, file size, crypto-hash, other attributes, etc.).

If disaster strikes, recovery can be performed simply scanning a volume/image, reading sector sized slices and checking blocks signatures and then CRCs to detect valid SBX blocks. Then the blocks can be grouped by UIDs, sorted by sequence number and reassembled to form the original SeqBox containers.

[image: ../../_images/DQZDO0P.gif]It's Magic

It’s also possible and entirely transparent to keep multiple copies of a container, in the same or different media, to increase the chances of recoverability. In case of corrupted blocks, all the good ones can be collected and reassembled from all available sources.

The UID can be anything, as long as is unique for the specific application. It could be random generated (probably the most common option), or a hash of the file content, or a simple sequence, etc.

Overhead is minimal: for SBX v1 is 16B/512B (+1 optional 512B block), or < 3.5%.

Demo tour

The two main tools are obviously the encoder & decoder:

	SBXEnc: encode a file to a SBX container

	SBXDec: decode SBX back to original file; can also show info on a container and tests for integrity against a crypto-hash

The other two are the recovery tools:

	SBXScan: scan a set of files (raw images, or even block devices on Linux) to build a Sqlite db with the necessary recovery info

	SBXReco: rebuild SBX files using data collected by SBXScan

There are in some case many parameters but the default are sensible so it’s generally pretty simple.

Now to a practical example: let’s see how 2 photos and their 2 SBX encoded versions go trough a fragmented floppy disk that have lost its FAT (and any other system part). We start with the 2 pictures, about 200KB and 330KB:

[image: ../../_images/Qf0qrUp.jpg]Castle [image: ../../_images/9rH6tMf.jpg]Lake

We encode using SBXEnc, and then test the new file with SBXDec, to be sure all is OK:

C:\t>sbxenc Lake.jpg
hashing file 'Lake.jpg'...
SHA256 3cfc376b6362444d2d25ebedb19e7594000f2ce2bdbb521d98f6c59b5adebfdc
creating file 'Lake.jpg.sbx'...
100%
SBX file size: 343040 - blocks: 670 - overhead: 3.4%

C:\t>sbxdec -t Lake.jpg.sbx
decoding 'Lake.jpg.sbx'...
metadata block found!
SBX decoding complete
SHA256 3cfc376b6362444d2d25ebedb19e7594000f2ce2bdbb521d98f6c59b5adebfdc
hash match!

Same for the other file. Now we put both the JPEG and the SBX files in a floppy disk image already about half full, that have gone trough various cycles of updating and deleting. As a result the data is laid out like this:

[image: ../../_images/cBoXONY.png]Disk Layout

Normal files (pictures included) are in green, and the two SBX in different shades of blue.
Then with an hex editor we zap the first system sectors and the FAT (in red)!
Time for recovery!

We start with the free (GPLV v2+) PhotoRec [http://www.cgsecurity.org/wiki/PhotoRec], which is the go-to tool for these kind of jobs. Parameters are set to “Paranoid : YES (Brute force enabled)” & “Keep corrupted files : Yes”, to search the entire data area.
As the files are fragmented, we know we can’t expect miracles. The starting sector of the photos will be surely found, but as soon as the first contiguous fragment end, it’s anyone guess.

[image: ../../_images/qa0PySP.png]PhotoRec results

As expected, something has been recovered. But the 2 files size are off (280K and 400KB). The very first parts of the photos are OK, but then they degrade quickly as other random blocks of data where mixed in. We have all seen JPEGs ending up like this:

[image: ../../_images/kP0jwyC.jpg]Castle [image: ../../_images/GyOonct.jpg]Lake

Other popular recovery tools lead to the same results. It’s not anyone fault: it’s just not possible to know how the various fragment are concatenated, without an index or some kind of list (there are approaches based on file type validators that can in at least some cases differentiate between spurious and valid blocks, but that’s beside the point).

But with a SBX file it’s a different story. Each one of its block can’t be fragmented more, and contains all the needed data to be put in its proper place in sequence. So let’s proceed with the recovery of the SBX files.
To spice things up, the disk image file is run trough a scrambler, that swaps variable sized blocks of sectors around. The resulting layout is now this:

[image: ../../_images/jmOWult.png]Scrambled

Pretty nightmarish! Now on to SBXScan to search for pieces of SBX files around, and SBXReco to get a report of the collected data:

C:\t\recovered\sbx>sbxscan \t\scrambled.IMA
creating 'sbxscan.db3' database...
scanning file/device '\t\scrambled.IMA' (1/1)...
100.0% blocks: 1087 - meta: 2 - files: 2 - 89.97MB/s
scan completed!

C:\t\recovered\sbx>sbxreco sbxscan.db3 -i
opening 'sbxscan.db3' recovery info database...

"UID", "filesize", "sbxname", "filename"
"2818b123c00b", 206292, "Castle.jpg.sbx", "Castle.jpg"
"76fe4a49ebf2", 331774, "Lake.jpg.sbx", "Lake.jpg"

The 2 SBX container have been found, with all the metadata. So the original filesizes are also known, along with the names of the SBX files and the original ones. At this point it would be possible to recover singles files or a group of them, by UID or names, but we opt to recover everything:

C:\t\recovered\sbx>sbxreco sbxscan.db3 --all
opening 'sbxscan.db3' recovery info database...
recovering SBX files...
UID 2818b123c00b (1/2)
 blocks: 417 - size: 213504 bytes
 to: 'Castle.jpg.sbx'
 100.0% (missing blocks: 0)
UID 76fe4a49ebf2 (2/2)
 blocks: 670 - size: 343040 bytes
 to: 'Lake.jpg.sbx'
 100.0% (missing blocks: 0)

done.
all SBx files recovered with no errors!

All SBX files seems to have been recovered correctly. We start decoding:

C:\t\recovered\sbx>sbxdec Lake.jpg.sbx
decoding 'Lake.jpg.sbx'...
metadata block found!
creating file 'Lake.jpg'...
SBX decoding complete
SHA256 3cfc376b6362444d2d25ebedb19e7594000f2ce2bdbb521d98f6c59b5adebfdc
hash match!

And sure enough:

[image: ../../_images/Qf0qrUp.jpg]Castle [image: ../../_images/9rH6tMf.jpg]Lake

N.B. Here’s a 7-Zip archive [http://mark0.net/download/sbxdemo-diskimages.7z] with the 2 disk images used in the demo (542KB).

Possible / hypothetical / ideal uses cases

	Last step of a backup. After creating a compressed archive of something, the archive could be SeqBox encoded to increase recovery chances in the event of some software/hardware issues that cause logic / file system’s damages.

	Exchange data between different systems. Regardless of the file system used, an SBX container can always be read/extracted.

	Long term storage. Since each block is CRC tagged, and a crypto-hash of the original content is stored, bitrot can be easily detected. In addition, if multiple copies are stored, in the same or different media, the container can be correctly restored with high degree of probability even if all the copies are subject to some damages (in different blocks).

	Encoding of photos on a SDCard. Loss of images on perfectly functioning SDCards are known occurrences in the photography world, for example when low on battery and maybe with a camera/firmware with suboptimal monitoring & management strategies. If the photo files are fragmented, recovery tools can usually help only to a point.

	On-disk format for a File System. The trade-off in file size and performance (both should be fairly minimal anyway) could be interesting for some application. Maybe it could be a simple option (like compression in many FS). I plan to build a simple/toy FS with FUSE to test the concept, time permitting.

	Easy file splitting. Probably less interesting, but a SeqBox container can also be splitted with no particular precautions aside from doing that on block size boundaries. Additionally, there’s no need to use special naming conventions, numbering files, etc., as the SBX container can be reassembled exactly like when doing a recovery.

	Data hiding. SeqBox containers (or even fragments of them) can be put inside other files (for example at the end of a JPEG, in the middle of a document, etc.), sprayed somewhere in the unused space, between partitions, and so on.
Incidentally, that means that if you are in the digital forensics sector, now you have one more thing to check for!
If a password is used, the entire SBX file is mangled to look pseudo-random, and SBXScan, SBXReco & SBXDec will not be able to recognize it unless the same password is provided.

Tests

SeqBox recoverability have been practically tested with a number of File Systems. The procedure involved using a Virtual Machine (or a full blown emulator) to format a small disk image with a certain FS, filling it with a number of small files, then deleting some of them randomly to free enough space to copy a series of SBX files. This way every SBX file results fragmented in a lot of smaller pieces. Then the image was quick-formatted, wipefs-ed and the VM shutdown.
After that, from the host OS, recovery of the SBX files was attempted using SBXScan & SBXReco on the disk image.

	Working: ADFS [https://en.wikipedia.org/wiki/Advanced_Disc_Filing_System], AFFS [https://en.wikipedia.org/wiki/Amiga_Fast_File_System], APFS [https://en.wikipedia.org/wiki/Apple_File_System], BeFS [https://en.wikipedia.org/wiki/Be_File_System], BtrFS [https://en.wikipedia.org/wiki/Btrfs], EXT2/3/4 [https://en.wikipedia.org/wiki/Extended_file_system], F2FS [https://en.wikipedia.org/wiki/F2FS], FATnn/VFAT/exFAT [https://en.wikipedia.org/wiki/File_Allocation_Table], HAMMER [https://en.wikipedia.org/wiki/HAMMER], HFS [https://en.wikipedia.org/wiki/Hierarchical_File_System], HFS+ [https://en.wikipedia.org/wiki/HFS_Plus], HPFS [https://en.wikipedia.org/wiki/High_Performance_File_System], JFS [https://en.wikipedia.org/wiki/JFS_(file_system)], MFS [https://en.wikipedia.org/wiki/Macintosh_File_System], MINIX FS [https://en.wikipedia.org/wiki/MINIX_file_system], NTFS [https://en.wikipedia.org/wiki/NTFS], ProDOS [https://en.wikipedia.org/wiki/Apple_ProDOS], ReFS [https://en.wikipedia.org/wiki/ReFS], ReiserFS [https://en.wikipedia.org/wiki/ReiserFS], UFS [https://en.wikipedia.org/wiki/Unix_File_System], XFS [https://en.wikipedia.org/wiki/XFS], ZFS [https://en.wikipedia.org/wiki/ZFS].

	Not working: OFS [https://en.wikipedia.org/wiki/Amiga_Old_File_System] (due to 488 data bytes per 512 bytes sector)

N.B. Obviously SBX blocks can’t be found if File System encryption is used. Compression too (mostly, but not always). Striping/RAID instead is usually not a problem.

Being written in Python 3, SeqBox tools are naturally multi-platform and have been tested successfully on various versions of Windows, on OS X & macOS, on some Linux distros either on x86 or ARM, on FreeBSD and on Android (via QPython).

Tech spec

Byte order: Big Endian

Common blocks header:

pos	to pos	size	desc
—-	—	—-	———————————–
0	2	3	Recoverable Block signature = ‘SBx’
3	3	1	Version byte
4	5	2	CRC-16-CCITT of the rest of the block (Version is used as starting value)
6	11	6	file UID
12	15	4	Block sequence number

Block 0

pos	to pos	size	desc
—-	——–	—-	—————-
16	n	var	encoded metadata
n+1	blockend	var	padding (0x1a)

Blocks > 0 & < last:

pos	to pos	size	desc
—-	——–	—-	—————-
16	blockend	var	data

Blocks == last:

pos	to pos	size	desc
—-	——–	—-	—————-
16	n	var	data
n+1	blockend	var	padding (0x1a)

Versions:

N.B. Current versions differs only by blocksize.

ver	blocksize	note
—-	———	——-
1	512	default
2	128	
3	4096	

Metadata encoding:

Bytes	Field
—–	—–
3	ID
1	Len
n	Data

IDs

ID	Desc
—	—
FNM	filename (utf-8)
SNM	sbx filename (utf-8)
FSZ	filesize (8 bytes)
FDT	date & time (8 bytes, seconds since epoch)
SDT	sbx date & time (8 bytes)
HSH	crypto hash (SHA256, using Multihash [http://multiformats.io] protocol)
PID	parent UID (not used at the moment)

(others IDs for file dates, attributes, etc. will be added…)

Final notes

The code was quickly hacked together in spare slices of time to verify the basic idea, so it’s not optimized for speed and will benefit for some refactoring, in time.
Still, the current block format is stable and some precautions have been taken to ensure that any encoded file could be correctly decoded. For example, the SHA256 hash that is stored as metadata is calculated before any other file operation.
So, as long as a newly created SBX file is checked as OK with SBXDec, it should be OK.
Also, SBXEnc and SBXDec by default don’t overwrite files, and SBXReco uniquify the recovered ones.
Finally, the file content is not altered in any way (except if a password is used), just re-framed.

Related tools

Check my BlockHashLoc [https://github.com/MarcoPon/BlockHashLoc] for a different/sinergic approach to obtaining a similar degree of recoverability, but using a parallel, small hashes file instead of a standalone container. It’s probably more suited to protect existing files, when it isn’t practical to touch/re-encode them.

Links

	SeqBox home page [http://mark0.net/soft-seqbox-e.html]

	SeqBox GitHub repository [https://github.com/MarcoPon/SeqBox]

Contacts

If you need more info, want to get in touch, or donate: Marco Pontello [http://mark0.net/contacts-e.html]

Bitcoin: 1Mark1tF6QGj112F5d3fQALGf41YfzXEK3

[image: ../../_images/qrcode.png]Qr-Code

 _static/down.png

_images/Qf0qrUp.jpg

_static/plus.png

_images/Ewper2w.png
SBYX

_static/file.png

_images/GyOonct.jpg

_static/minus.png

_images/cBoXONY.png

_images/gitter.png
“chat on gitter

_static/up-pressed.png

_static/up.png

_images/jmOWult.png

_images/9rH6tMf.jpg

_images/DQZDO0P.gif

_images/kP0jwyC.jpg

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

_images/qa0PySP.png
hotoRec 7.8, Data Recovery Utility. April 2015
hristophe GRENIER (grenierfcgsecurity.orgd’
tEp: /i cgsecurity.ory

ick disk.IMA - 1474 KB / 1448 KiB CRO>
Partition Start End Size in sectors
P Unknoun 0 8 1 o 45 45 2880

f£iles saved in /t/vecovered/recup_dir directory.
ecovery conpleted.

ou are welcome to donate to support Further development and encouragement
\tEp://u . cgsecurity.org/uiki/Donat ion

_images/qrcode.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

