

Welcome to rushit’s documentation!

Contents:

	rushit
	How do I get started?

	Don’t know Lua?

	Packages

	Want to contribute?

	Introduction
	Basic usage

	Options

	Output format

	Script API
	Hooks

	Run Control

	Data Passing

	Syscall Wrappers

	Script Examples
	bind-to-device

	check-src-addr

	collect-values

	drop-count

	tcp-ack-interval

	time-script-run

Indices and tables

	Index

	Module Index

	Search Page

rushit

rushit is a network micro-benchmark tool that is scriptable with Lua. It
resembles well-known tools like iperf [https://iperf.fr/] or netperf [https://hewlettpackard.github.io/netperf/]. It originates from the neper [https://github.com/google/neper] project.

The project aims for the sweet spot between a small C program that simulates a
network client/server and a fully featured network micro-benchmark. It provides
you with a basic multi-threaded epoll-based client/server program that is
intended to be extended, as needed, with Lua scripts.

rushit can simulate the following network workloads:

	tcp_rr, a request/response over TCP workload; simulates HTTP or RPC,

	tcp_stream, a uni-/bi-directional bulk data transfer over TCP workload;
simulates FTP or scp,

	udp_stream, a uni-directional bulk data transfer over UDP workload;
simulates audio or video streaming.

How do I get started?

Best place to start is the project documentation [http://rushit.readthedocs.io/en/latest/] at Read the Docs.

Introduction goes over basic usage and available command line options.

Script Examples demonstrate what Lua scripting can be used for. Be sure
to check out the accompanying Script API documentation.

Don’t know Lua?

Don’t worry. See Learn Lua in Y minutes [https://learnxinyminutes.com/docs/lua/] for a quick introduction.

Once you are hooked on Lua, take a look at these resources:

	Lua for Programmers [http://nova-fusion.com/2012/08/27/lua-for-programmers-part-1/] blog series

	Programming in Lua [http://www.lua.org/pil/contents.html] book

	Lua 5.1 Reference Manual [http://www.lua.org/manual/5.1/manual.html]

	The Lua language (v5.1) [http://lua-users.org/files/wiki_insecure/users/thomasl/luarefv51.pdf] cheat
sheet

Packages

Fedora, CentOS: In pabeni’s copr repository [https://copr.fedorainfracloud.org/coprs/pabeni/rushit/] (thanks Paolo!)

Want to contribute?

Great! Just create a Pull Request [https://github.com/rushit-tool/rushit/compare]. We follow these guidelines:

	C99, avoid compiler-specific extensions.

	Linux kernel coding style [https://github.com/torvalds/linux/blob/master/Documentation/process/coding-style.rst],
with tabs expanded to 8 spaces.

Introduction

Basic usage

rushit is intended to be used between two machines. On each machine, the
rushit process (e.g. tcp_rr or tcp_stream) spawns T threads (workers),
creates F flows (e.g. TCP connections), and multiplexes the F flows evenly over
the T threads. Each thread has a epoll set to manage multiple flows. Each
flow keeps its own state to make sure the expected workload is generated.

For ease of explanation, we refer to the two machines as the server and the
client. The server is the process which binds to an endpoint, while the client
is the process which connects to the server. The ordering of bind() and
connect() invocations is insignificant, as neper ensures the two processes
are synchronized properly.

When launching the client process, we can specify the number of seconds to
generate network traffic. After that duration, the client will notify the
server to stop and exit. To run the test again, we have to restart both the
client and the server. This is different from netperf, and hopefully should
make individual tests more independent from each other.

tcp_rr

Let’s start the server process first:

server$ tcp_rr
percentiles=
all_samples=
port=12867
control_port=12866
host=
max_pacing_rate=0
interval=1.000000
pin_cpu=0
dry_run=0
client=0
buffer_size=65536
response_size=1
request_size=1
test_length=10
num_threads=1
num_flows=1
min_rto=0
help=0
total_run_time=10
(process waiting here)

Immediately after the process starts, it prints several key=value pairs to
stdout. They are the command-line option values perceived by rushit. In
this case, they are all default values. We can use them to verify the options
are parsed correctly, or to reproduce the test procedure from persisted
outputs.

At this point, the server is waiting for a client to connect. We can continue
by running

client$ tcp_rr -c -H server
(options key-value pairs omitted)

-c is short for --client which means “this is the client process”. If
-c is not specified, it will be started as a server and call bind().
When -c is specified, it will try to connect(), and -H (short for
--host) specifies the server hostname to connect to. We can also use IP
address directly, to avoid resolving hostnames (e.g. through DNS).

For both bind() and connect(), we actually need the port number as well.
In the case of rushit, two ports are being used, one for control plane, the other
one for data plane. Default ports are 12866 for control plane and 12867 for
data plane. They can be overridden by -C (short for --control-port) and
-P (short for --port), respectively. Default port numbers are chosen so
that they don’t collide with the port 12865 used by netperf.

Immediately after the client process prints the options, it will connect to the
server and start sending packets. After a period of time (by default 10
seconds), both processes print statistics summary to stdout and then exit:

server$ tcp_rr
(previous output omitted)
invalid_secret_count=0
time_start=1306173.666348235
utime_start=0.062141
utime_end=0.348902
stime_start=0.003883
stime_end=5.798208
maxrss_start=7896
maxrss_end=7896
minflt_start=568
minflt_end=571
majflt_start=7
majflt_end=7
nvcsw_start=26
nvcsw_end=329455
nivcsw_start=46
nivcsw_end=1028
num_transactions=329605
start_index=0
end_index=9
num_samples=10
throughput=33009.84
correlation_coefficient=1.00
time_end=1306183.666374314

client$ tcp_rr -c -H server
(previous output omitted)
(new output lines are similar to the server)

From the line throughput=33009.84, we know this test run finished 33009.84
request/response “ping-pong” transactions per second. A transaction for the
client means sending a request and then receiving a response. A transaction
for the server means receiving a request and then sending a response. The
number in this example is very high because it was run on localhost.

To look closer, let’s reexamine the test parameters (command-line options),
most importantly:

response_size=1
request_size=1
test_length=10
num_threads=1
num_flows=1

That means we were using one thread (on each side) with one flow (TCP
connection between server and client) to send one-byte requests and responses
over 10 seconds.

To run the test with 10 flows and two threads, we can instead use

server$ tcp_rr -F 10 -T 2
client$ tcp_rr -c -H server -F 10 -T 2

where -F is short for --num-flows and -T is short for
--num-threads.

That will be 10 flows multiplexed on top of two threads, so normally it’s 5
flows per thread. rushit uses SO_REUSEPORT to load balance among the
threads, so it might not be exactly 5 flows per thread (e.g. may be 4 + 6).
This behavior might change in the future.

Server and client do not need to use the same number of threads. For example,
we can create 2 threads on the server to serve requests from 4 threads from the
client.

server$ tcp_rr -F 10 -T 2
client$ tcp_rr -c -H server -F 10 -T 4

In this case, the four client-side threads may handle 3 + 3 + 2 + 2 (= 10)
flows respectively.

Also note that we have to specify the number of flows on the server side. This
behavior might change in the future.

tcp_stream

tcp_stream shares most of the command-line options with tcp_rr. They
differ in the output since for a bulk data transfer test like tcp_stream, we
care about the throughput in Mbps rather than in number of transactions.

By default, it’s the client sending data to the server. We can enable the
other direction of data transfer (from server to client) by specifying
command-line options -r (short for --enable-read) and -w (short for
--enable-write).

server$ tcp_stream -w
client$ tcp_stream -c -H server -r

This is equivalent to

server$ tcp_stream -rw
client$ tcp_stream -c -H server -rw

since -w is auto-enabled for -c, and -r is auto-enabled when -c
is missing.

In both cases, the flows have bidirectional bulk data transfer. Previously,
netperf users may emulate this behavior with TCP_STREAM and TCP_MAERTS,
at the cost of doubling the number of netperf processes.

Note that we don’t have netperf TCP_MAERTS in rushit, as you can always
choose where to specify the -c option. The usage model is basically
different, as we don’t have a daemon (like netserver) either.

Options

Connectivity options

client
host
local_host
control_port
port

Workload options

maxevents
num_flows
num_threads
test_length
pin_cpu
dry_run
logtostderr
nonblocking

Statistics options

all_samples
interval

TCP options

max_pacing_rate
min_rto
listen_backlog

tcp_rr options

request_size
response_size
buffer_size
percentiles

The output is only available in the detailed form (samples.csv) but not in
the stdout summary.

server$./tcp_rr
client$./tcp_rr -c -H server -A --percentiles=25,50,90,95,99
client$ cat samples.csv
time,tid,flow_id,bytes_read,transactions,latency_min,latency_mean,latency_max,latency_stddev,latency_p25,latency_p50,latency_p90,latency_p95,latency_p99,utime,stime,maxrss,minflt,majflt,nvcsw,nivcsw
2766296.649115114,0,0,31726,31726,0.000019,0.000030,0.008010,0.000086,0.000023,0.000026,0.000032,0.000033,0.000068,0.005268,0.479424,5288,71,0,28490,3360
2766297.649131797,0,0,62857,62857,0.000019,0.000031,0.007757,0.000078,0.000024,0.000027,0.000032,0.000034,0.000080,0.022667,0.933914,5288,133,0,57761,5692
2766298.649119440,0,0,98525,98525,0.000015,0.000027,0.004187,0.000048,0.000023,0.000025,0.000032,0.000033,0.000048,0.063623,1.481519,5288,204,0,91853,7383
2766299.649141269,0,0,138042,138042,0.000015,0.000024,0.009910,0.000091,0.000018,0.000018,0.000027,0.000030,0.000041,0.084147,1.984098,5288,283,0,129072,9754
2766300.649148147,0,0,169698,169698,0.000019,0.000030,0.004938,0.000063,0.000024,0.000027,0.000034,0.000036,0.000057,0.119381,2.493741,5288,346,0,160027,10551
2766301.649127545,0,0,202454,202454,0.000019,0.000029,0.006942,0.000060,0.000025,0.000027,0.000032,0.000032,0.000060,0.165496,2.920798,5288,411,0,186603,16817
2766302.649152705,0,0,234954,234954,0.000018,0.000029,0.012611,0.000100,0.000025,0.000026,0.000031,0.000032,0.000059,0.205488,3.349022,5288,475,0,212910,23195
2766303.649116145,0,0,269683,269683,0.000019,0.000027,0.004842,0.000038,0.000024,0.000026,0.000031,0.000032,0.000048,0.242531,3.806882,5288,544,0,240914,30076
2766304.649131298,0,0,302011,302011,0.000019,0.000030,0.004476,0.000049,0.000025,0.000029,0.000032,0.000033,0.000044,0.253141,4.294832,5288,608,0,270468,32944
2766305.649132278,0,0,340838,340838,0.000015,0.000025,0.000220,0.000006,0.000022,0.000025,0.000031,0.000033,0.000035,0.284624,4.808422,5288,685,0,308307,34005

tcp_stream options

reuseaddr
enable_read
enable_write
epoll_trigger
delay
buffer_size

Output format

When consuming the key-value pairs in the output, the order of the keys should
be insignificant. However, the keys are case sensitive.

Standard output keys

total_run_time # expected time to finish, useful when combined with --dry-run
invalid_secret_count
time_start
start_index
end_index
num_samples
time_end
rusage
utime_start
utime_end
stime_start
stime_end
maxrss_start
maxrss_end
minflt_start
minflt_end
majflt_start
majflt_end
nvcsw_start
nvcsw_end
nivcsw_start
nivcsw_end

tcp_rr

num_transactions
throughput
correlation_coefficient # for throughput

tcp_stream

num_transactions
throughput_Mbps
correlation_coefficient # for throughput_Mbps

Script API

This document describes the API available for use from within the Lua
script that can be passed on the command line using the --script
option. Such script will be executed by the main thread that controls
the client/server network threads.

Typical script can be split into 4 parts:

	initialize shared variables

	register hook functions

	trigger the test run

	process collected data

Hooks

Hooks are user-provided functions that allow you to “hook up” into
well-defined points of the client/server thread logic and execute a
custom script.

There are currently two types of hooks: Socket Hooks and
Packet Hooks.

Socket Hooks

Socket hooks are tied to socket events. Hooks are called once per each
socket that gets opened or closed by the client/server threads.

They are intended for configuring the socket (e.g. with
setsockopt(2)) or collecting the information about the socket
(e.g. with getsockopt(2)).

Note

In TCP workloads (tcp_stream or tcp_rr), server-side socket
hooks operate on the listening socket, not the connection
socket. This might change in the future.

	
socket_hook_fn(sockfd, addr)

	User provided function invoked right after the socket has been
opened (i.e. after the socket(2) call), or just before the
socket will be closed (i.e. before the close(2)).

	Parameters

	
	sockfd (int) – Socket descriptor client/server thread uses to
read(2) / write(2) data.

	addr (struct addrinfo) – Address used to bind(2) (for server threads) or
connect(2) (for client threads) the socket.

	
client_socket(socket_hook)

	
server_socket(socket_hook)

	Registers a hook function to be invoked after the client/server
thread opens a connection/listening socket with a socket(2)
call.

	Parameters

	
	socket_hook (socket_hook_fn) – Hook function invoked after socket(2) call.

	
client_close(socket_hook)

	
server_close(socket_hook)

	Registers a hook function to be invoked before the client/server
thread closes a connection/listening socket with a close(2)
call.

	Parameters

	
	socket_hook (socket_hook_fn) – Hook function invoked before close(2) call.

Packet Hooks

Packet hooks are tied to the socket message queue and socket error
queue events. They can be used to implement a custom way to read from
or write to a socket within the client/server thread’s main loop.

For TCP workloads (tcp_stream and tcp_rr), packet hooks always
operate on connection sockets.

	
packet_hook_fn(sockfd, msg, flags)

	User provided function invoked when the socket’s message queue (or
error queue) is ready to read/write. The packet hook function is
called instead of a read(2) / write(2) call.

Packet hook function must return the number of bytes read/written
or -1 in the event of an error. This is usually achieved by passing
up the return value from either read() / recv() /
recvfrom() / recvmsg(), or write() / send() /
sendto() / sendmsg().

	Parameters

	
	sockfd (int) – Socket descriptor to read from or write to.

	msg (struct msghdr) – Message buffer to read data into or write data
from. Buffer size is determined by command line option
--buffer-size / -B (16 KiB or 16384 bytes by
default). In case of reading from the error queue,
msg also has a 512 byte control message buffer.

	flags (int) – MSG_* flags that should be passed to recv*()
/ send*() calls.

	Returns

	Number of bytes read/written or -1 in the event of an error.

	
client_sendmsg(packet_hook)

	
server_sendmsg(packet_hook)

	Registers a hook function to be invoked when a socket is ready for
writting. i.e. on EPOLLOUT epoll(7) event.

	Parameters

	
	packet_hook (packet_hook_fn) – Hook function to write data to the socket.

	
client_recvmsg(packet_hook)

	
server_recvmsg(packet_hook)

	Registers a hook function to be invoked when a socket is ready for
reading, i.e on EPOLLIN epoll(7) event.

	Parameters

	
	packet_hook (packet_hook_fn) – Hook function to read data from the socket.

	
client_recverr(packet_hook)

	
server_recverr(packet_hook)

	Registers a hook function to be invoked when socket’s error queue
is ready for reading, i.e. on EPOLLERR epoll(7) event.

	Parameters

	
	packet_hook (packet_hook_fn) – Hook function to read data from the socket
error queue.

Run Control

	
run()

	Triggers the test run and waits for the client/server threads to
finish.

It is used to separate the first part of the script that needs to
be executed before the network threads start running from the
second part of the script that can be executed only when the network
threads have stopped running.

Before run() returns it collects values of local
variables that have been marked for collection from client/server
threads. See collect().

Data Passing

	
collect(value)

	Marks a value for collection from the client/server threads after
the test run.

Returns the given value wrapped in a table with metadata that
identifies it for collection. Returned table should be treated as
an opaque object until after the test run.

The value will be automatically unwrapped (i.e. extracted from the
table) when copied to the client/server thread.

After the test run (i.e. a call to run()), the wrapper
table will be populated with corresponding values from each
client/server thread for access from outside of the hook functions.

	Returns

	Wrapped value that will be replaced by a table with values
collected from client/server threads after the call to
run().

Todo

Add link to an example.

Syscall Wrappers

Lua syscall wrappers are provided by the ljsyscall library. We provide
convenience aliases for symbols exported by ljsyscall so that the
symbol names are more C-like. That is:

S = require("syscall")
-- Aliases for syscalls
recvmsg = S.recvmsg
-- Aliases for constants
AF_INET = S.c.AF.INET becomes
-- Aliases for data types
sockaddr_in = S.types.t.sockaddr_in

Warning

Only a small set of symbols have aliases at the moment (see
script_prelude.lua). This will be resolved in the near
future. In the meantime please access any symbol that is missing an
alias via the S global variable.

Script Examples

bind-to-device

	Script: bind-to-device.lua

	Demo: bind-to-device.lua demo

check-src-addr

	Script: check-src-addr.lua

	Demo: check-src-addr.lua demo

collect-values

	Script: collect-values.lua

	Demo: collect-values.lua demo

drop-count

	Script: drop-count.lua

	Demo: drop-count.lua demo

tcp-ack-interval

	Script: tcp-ack-interval.lua

	Demo: tcp-ack-interval.lua demo

time-script-run

	Script: time-script-run.lua

	Demo: time-script-run.lua demo

Index

 C
 | P
 | R
 | S

C

 	
 	client_close (C function)

 	client_recverr (C function)

 	client_recvmsg (C function)

 	
 	client_sendmsg (C function)

 	client_socket (C function)

 	collect (C function)

P

 	
 	packet_hook_fn (C type)

R

 	
 	run (C function)

S

 	
 	server_close (C function)

 	server_recverr (C function)

 	server_recvmsg (C function)

 	
 	server_sendmsg (C function)

 	server_socket (C function)

 	socket_hook_fn (C type)

bind-to-device.lua

--
-- Bind socket to an interface to receive packets only from this
-- particular interface.
--
-- TODO:
-- * Pass interface name on the command line.
-- * Remove assert()'s once syscall wrappers abort on error.
--

local ifname = "veth0"

server_socket(
 function (sockfd)
 local _, err = setsockopt(sockfd, SOL_SOCKET, SO_BINDTODEVICE, ifname, #ifname)
 assert(not err, tostring(err))
 end
)

bind-to-device.lua demo

Demonstration of script for setting a socket option to receive packets
only from a particular interface (SO_BINDTODEVICE).

Set up a veth pair from the current net namespace to a "client" net
namespace. We will want to receive packets that came in only through
the veth link from the "client" namespace.

ip netns add client
ip link add type veth peer netns client
ip addr add 172.16.1.1/24 dev veth0
ip link set dev veth0 up
ip netns exec client ip addr add 172.16.1.2/24 dev veth0
ip netns exec client ip link set dev veth0 up

Start the server process:

server $./udp_stream --script ./examples/bind-to-device.lua
[...]
server_socket: lua_pcall: ./examples/bind-to-device.lua:15: Operation not permitted

Binding to a device requires priviliges (CAP_NET_RAW). Redo as a
priviledged user:

server # ./udp_stream --script ./examples/bind-to-device.lua
[...]
port=12867
[...]

Observe with 'ss' utility that we are listening only on a particual
interface. (12867 is the default data port.)

$ ss -ln 'sport = 12867'
Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port
udp UNCONN 0 0 ::%veth0:12867 :::*

Using another terminal run a client process from within the "client"
net namespace:

client # ip netns exec client ./udp_stream -c -H 172.16.1.1

Notice the server process has received packets and measured the
throughput:

[... udp_stream server process output ...]
throughput_Mbps=21362.29
[...]
server #

Now restart the server:

server # ./udp_stream --script ./examples/bind-to-device.lua

... and attempt to connect to it over loopback from another terminal.
Notice the the client process reports errors on write due to the port
being unreachable.

server $./udp_stream -c -H 172.16.1.1 2>&1
[...]
write: Connection refused
write: Connection refused
write: Connection refused
[... errors repeat ...]
server $

check-src-addr.lua

--
-- Verify that we are receving packets only from a certian address.
--
-- TODO:
-- * Pass client address on the command line.
--

-- The source (client) address we expect
local SRC_ADDR = "127.0.0.1"

server_socket(
 function(sockfd, ai)
 if ai.ai_family ~= AF_INET then
 print("This script works only with IPv4! Please use -4 option.")
 os.exit(1)
 end
 end
)

server_recvmsg(
 function (sockfd, msg, flags)
 -- XXX: Accessing cdata objects from worker threads doesn't work
 -- yet. That's why we can't create in_addr in top level context.
 --
 local src_addr = in_addr(SRC_ADDR)

 -- server_recvmg() hook gets a struct msghdr as an argument, which
 -- we can pass directly to recvmsg(). If we want to call
 -- recvfrom() instead then we need to extract the buffer pointer
 -- and buffer length from struct msghdr.
 --
 -- For reference from recvmsg(2) man page:
 --
 -- struct msghdr {
 -- void *msg_name; /* optional address */
 -- socklen_t msg_namelen; /* size of address */
 -- struct iovec *msg_iov; /* scatter/gather array */
 -- size_t msg_iovlen; /* # elements in msg_iov */
 -- void *msg_control; /* ancillary data, see below */
 -- size_t msg_controllen; /* ancillary data buffer len */
 -- intmsg_flags; /* flags on received message */
 -- };
 --
 -- struct iovec { /* Scatter/gather array items */
 -- void *iov_base; /* Starting address */
 -- size_t iov_len; /* Number of bytes to transfer */
 -- };
 --
 local iov = msg.msg_iov[0]
 local buf = iov.iov_base
 local len = iov.iov_len
 local sin = sockaddr_in()

 local n = recvfrom(sockfd, buf, len, flags, sin)
 assert(n)

 if sin.sin_addr.s_addr ~= src_addr.s_addr then
 print("Wrong source address! " ..
 "Expected " .. tostring(src_addr) ..
 ", but got " .. tostring(sin.sin_addr))
 os.exit(1)
 end

 return n
 end
)

check-src-addr.lua demo

Example of verifying the client address to ensure it's the expected one.

We expect to receive packets over loopback from 127.0.0.1. The
expected source address is hardcoded in the script. The script works
only for IPv4. To use it with IPv6 you will need to adapt it.

Start the server:

server $./udp_stream -4 --script ./examples/check-src-addr.lua
[...]
script=./examples/check-src-addr.lua
total_run_time=10

From another terminal start the client:

client $./udp_stream -4 -c
VERSION=1.1.0
all_samples=
port=12867
control_port=12866
host=
local_host=
interval=1.000000
edge_trigger=0
nonblocking=0
logtostderr=0
reuseport=0
dry_run=0
client=1
ipv6=0
ipv4=1
suicide_length=0
buffer_size=16384
test_length=10
num_clients=1
num_threads=1
num_flows=1
maxevents=1000
magic=42
script=
total_run_time=10
invalid_secret_count=0
time_start=0.000000000
utime_start=0.011164
utime_end=0.190635
stime_start=0.001021
stime_end=6.745937
maxrss_start=10408
maxrss_end=10408
minflt_start=667
minflt_end=667
majflt_start=0
majflt_end=0
nvcsw_start=2
nvcsw_end=3
nivcsw_start=0
nivcsw_end=136
client $

Client should terminate successfully.

Back to the server. It should also terminate successfully and report
the measured throughput.

invalid_secret_count=0
time_start=226168.842703565
utime_start=0.012902
utime_end=6.683734
stime_start=0.000983
stime_end=3.292551
maxrss_start=5348
maxrss_end=7376
minflt_start=671
minflt_end=1356
majflt_start=0
majflt_end=0
nvcsw_start=5
nvcsw_end=3551
nivcsw_start=1
nivcsw_end=99
start_index=0
end_index=9
num_samples=10
throughput_Mbps=20551.14
correlation_coefficient=1.00
time_end=226178.842706837
server $

Now reconfigure the loopback so that we can attempt to bind the client
to another address, that is unexpected by the server:

root # ip addr add 127.0.0.2/8 dev lo
root # ip addr show lo
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet 127.0.0.2/8 scope host secondary lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever

Re-run the server as before:

server $./udp_stream -4 --script ./examples/check-src-addr.lua

Run the client again but this time tell it to bind to secondary
loopback address:

client $./udp_stream -c -L 127.0.0.2

You should see the server complain about the unexpected source address
and abort:

Wrong source address! Expected 127.0.0.1, but got 127.0.0.2
server $

collect-values.lua

--
-- Demonstration of value collection from client/server threads.
--

local sockfd = collect(-1)
-- `sockfd` now refers to a special table ("{ -1 }") w/ metadata set.
-- Should be treated as an opaque object.

local function log_fd(fd)
 io.write(tostring(fd) .. " ")
 io.flush()
end

local function on_socket(fd)
 log_fd(fd)
 sockfd = fd
end

client_socket(on_socket)
server_socket(on_socket)

run()

-- Client/server threads have stopped. `sockfd` now refers to a table
-- that contains values copied from all threads, i.e.:
--
-- { <sockfd from thread #1>, <sockfd from thread #2>, ... }
--

io.write("\n")
for _, fd in pairs(sockfd) do
 log_fd(fd)
end
io.write("\n")

collect-values.lua demo

This is a demonstration of how data can be passed from client/server
threads to the main thread running the script by marking values for
collection with `collect()`.

Run a TCP stream server with 5 threads. As socket hook for each of the
server threads gets invoked they print out their socket descriptor
number.

server $./tcp_stream -T5 --script ./examples/collect-values.lua
[... output trimmed ...]
10 11 14 16 18

From another terminal run a TCP stream client with 10 threads. The
client threads will also print out socket descriptor numbers.

client $./tcp_stream -c -l2 -F10 -T10 --script ./examples/collect-values.lua
[... output trimmed ...]
17 18 20 24 26 22 28 32 31 34

Wait for the test run to finish. Now both client and server process
will run the second part of the script which simply prints out again
the socket descriptors numbers that the threads have been using.

[... client output cont'd ...]
26 17 20 24 18 28 22 32 34 31
[... output trimmed ...]
client $

[... server output cont'd ...]
16 10 11 14 18
[... output trimmed ...]
server $

drop-count.lua

--
-- Demonstration of collecting per socket packet drop counts
-- statistics reported by the network stack.
--

local stats = collect({
 -- Received packets
 recv_pkts = 0,
 -- Dropped packets
 drop_pkts = 0,
})

server_socket(
 function (sockfd)
 -- XXX: Make setsockopt() wrapper abort or error by default
 local ok, err = setsockopt(sockfd, SOL_SOCKET, SO_RXQ_OVFL, 1)
 assert(ok, tostring(err))
 end
)

server_recvmsg(
 function (sockfd, msg, flags)
 local n_recv, err = recvmsg(sockfd, msg, flags)
 assert(n_recv, tostring(err))

 stats.recv_pkts = stats.recv_pkts + 1

 local _, cmsg = msg:cmsg_firsthdr()
 if cmsg then
 if cmsg.cmsg_level == SOL_SOCKET and cmsg.cmsg_type == SO_RXQ_OVFL then
 local n_drop = tonumber(uint32_ptr(cmsg.cmsg_data)[0])

 -- Uncomment to see packet drops being reported
 -- if n_drop > drop_pkts then
 -- io.stderr:write('.')
 -- end

 stats.drop_pkts = n_drop
 end
 end

 return n_recv
 end
)

run()

print()
print(string.format("%10s %12s %12s", "", "Received", "Dropped"))
print(string.format("%10s %12s %12s", "", "(packets)", "(packets)"))

local total = {
 recv_pkts = 0,
 drop_pkts = 0,
}

for i = 1, #stats do
 print(string.format("%10s %12d %12d",
 string.format("Thread-%02d:", i),
 stats[i].recv_pkts, stats[i].drop_pkts))

 total.recv_pkts = total.recv_pkts + stats[i].recv_pkts
 total.drop_pkts = total.drop_pkts + stats[i].drop_pkts
end

print(string.format("%10s %12d %12d",
 "Total:", total.recv_pkts, total.drop_pkts))
print()

drop-count.lua demo

Sample script that collects per-socket packet drop count stats.

The drop-count.lua script keeps the count of received packets as well
as dropped packets for each receiving socket. Once the test has run,
script reports the counts per socket as well as their total.

First run the UDP stream workload with 4 receiving threads, each one
listening on its own port.

server $./udp_stream -T 4 --script ./examples/drop-count.lua
VERSION=1.1.0
all_samples=
port=12867
control_port=12866
host=
local_host=
interval=1.000000
edge_trigger=0
nonblocking=0
logtostderr=0
reuseport=0
dry_run=0
client=0
ipv6=0
ipv4=0
suicide_length=0
buffer_size=16384
test_length=10
num_clients=1
num_threads=4
num_flows=1
maxevents=1000
magic=42
script=./examples/drop-count.lua
total_run_time=10

From another terminal, run the client process with the matching number
of threads:

client $./udp_stream -c -F 4 -T 4 --buffer-size 64

Once the test has run, the server process running the script will
report the received and dropped packet counts:

[... server process output cont'd ...]
 Received Dropped
 (packets) (packets)
Thread-01: 612587 26443
Thread-02: 601991 6224
Thread-03: 657645 27296
Thread-04: 614631 6815
 Total: 2486854 66778

invalid_secret_count=0
time_start=327650.758210243
utime_start=0.016462
utime_end=4.800203
stime_start=0.009194
stime_end=4.068251
maxrss_start=8556
maxrss_end=18660
minflt_start=1520
minflt_end=15108
majflt_start=0
majflt_end=0
nvcsw_start=18
nvcsw_end=2370363
nivcsw_start=0
nivcsw_end=20459
start_index=0
end_index=39
num_samples=40
throughput_Mbps=137.99
correlation_coefficient=1.00
time_end=327660.758255218
server $

tcp-ack-interval.lua

--
-- Measure time between ACKs and display the delay distribution.
--
-- TODO:
-- * Get rid of open coded histogram generation. Introduce helpers.
--

-- Per-thread base-2 logarithmic histogram of interval lengths in
-- microseconds (us) between consecutive TCP ACKs. Keyed by the upper
-- bound (exclusive) of the bucket. That is:
--
-- hist[2^0] = # of measured intervals between [0, 1) us
-- hist[2^1] = # of measured intervals between [1, 2) us
-- ...
-- hist[2^N] = # of measured intervals between [2^N, 2^N+1) us
--
local hist = collect({})

-- Timestamp in microseconds of last TCP ACK. Keyed by socket FD.
local sock_last_ts = {}

client_socket(
 function (sockfd)
 local ok, err = setsockopt(sockfd, SOL_SOCKET, SO_TIMESTAMPING,
 bit.bor(SOF_TIMESTAMPING_SOFTWARE,
 SOF_TIMESTAMPING_TX_ACK,
 SOF_TIMESTAMPING_OPT_TSONLY))
 assert(ok, tostring(err))
 end
)

client_recverr(
 function (sockfd, msg, flags)
 local n, err = recvmsg(sockfd, msg, flags)
 assert(n, tostring(err))

 for _, cmsg in msg:cmsgs() do
 if cmsg.cmsg_level == SOL_SOCKET and
 cmsg.cmsg_type == SCM_TIMESTAMPING then

 -- Anciallary message carries a pointer to an scm_timestamping
 -- structure. We are interested in the fist timestemp in it.
 --
 -- struct scm_timestamping {
 -- struct timespec ts[3];
 -- };
 --
 local tss = scm_timestamping_ptr(cmsg.cmsg_data)
 local tv = tss.ts[0]
 local ts = (tv.sec * 1000 * 1000)
 + (tv.nsec / 1000)

 local last_ts = sock_last_ts[sockfd]

 if last_ts ~= nil then
 local ival = ts - last_ts
 local upper = 1 -- 2^0

 while ival >= upper do
 upper = upper * 2
 end

 hist[upper] = (hist[upper] or 0) + 1
 end

 sock_last_ts[sockfd] = ts

 elseif (cmsg.cmsg_level == SOL_IP and
 cmsg.cmsg_type == IP_RECVERR) or
 (cmsg.cmsg_level == SOL_IPV6 and
 cmsg.cmsg_type == IPV6_RECVERR) then
 -- XXX: Check ee_errno & ee_origin
 end
 end

 return n
 end
)

run();

local function bar(val, max, width)
 if max == 0 then return "" end

 local s = ""
 local i = 0
 while i < (width * val / max) do
 s = s .. "="
 i = i + 1
 end
 return s
end

local function print_hist(h)
 local max = 0

 for _, v in pairs(h) do
 if v > max then
 max = v
 end
 end

 print('\n',
 string.format("%10s .. %-10s: %-10s |%-40s|",
 ">=", "< [us]", "Count", "Distribution"),
 '\n')

 local lower_us = 0
 local upper_us = 1
 while lower_us < table.maxn(h) do
 local count = (h[upper_us] or 0)
 print(string.format("%10d -> %-10d: %-10d |%-40s|",
 lower_us, upper_us, count, bar(count, max, 40)))
 lower_us = upper_us
 upper_us = upper_us * 2
 end

 print()
end

-- Print per-thread histograms
for i, h in ipairs(hist) do
 print("Thread", i)
 print_hist(h)
end

-- Print aggregate (sum of all) histogram
hist_sum = {}
for _, h in ipairs(hist) do
 for k, v in pairs(h) do
 hist_sum[k] = (hist_sum[k] or 0) + v
 end
end

print("All threads (summed)")
print_hist(hist_sum)

tcp-ack-interval.lua demo

Example of using Linux timestamping API to calculate time between ACKs.

~/src/rushit $./tcp_stream > /dev/null &
[1] 6300
~/src/rushit $./tcp_stream -c --script examples/tcp-ack-interval.lua
VERSION=1.1.0
all_samples=
port=12867
control_port=12866
host=
local_host=
delay=0
max_pacing_rate=0
interval=1.000000
edge_trigger=0
enable_write=1
enable_read=0
nonblocking=0
logtostderr=0
reuseaddr=0
pin_cpu=0
dry_run=0
debug=0
client=1
ipv6=0
ipv4=0
suicide_length=0
listen_backlog=128
buffer_size=16384
test_length=10
num_clients=1
num_threads=1
num_flows=1
maxevents=1000
min_rto=0
magic=42
script=examples/tcp-ack-interval.lua
total_run_time=10

 >= .. < [us] : Count |Distribution |

 0 -> 1 : 20696 |===== |
 1 -> 2 : 61 |= |
 2 -> 4 : 199 |= |
 4 -> 8 : 198135 |==|
 8 -> 16 : 57604 |============ |
 16 -> 32 : 70826 |=============== |
 32 -> 64 : 32610 |======= |
 64 -> 128 : 2110 |= |
 128 -> 256 : 17 |= |
 256 -> 512 : 12 |= |
 512 -> 1024 : 1 |= |

invalid_secret_count=0
time_start=0.000000000
utime_start=0.005826
utime_end=4.570102
stime_start=0.004930
stime_end=4.581644
maxrss_start=4612
maxrss_end=7544
minflt_start=432
minflt_end=28383
majflt_start=0
majflt_end=0
nvcsw_start=2
nvcsw_end=12
nivcsw_start=30
nivcsw_end=108
[1]+ Done ./tcp_stream > /dev/null
~/src/rushit $

time-script-run.lua

local t_start = os.time()

run()

local t_diff = os.time() - t_start
io.stderr:write('Script ran for ' .. t_diff .. ' seconds.\n')

time-script-run.lua demo

Example of triggering the test run from the script.

~/src/rushit $ cat -n examples/time-script-run.lua
 1 local t_start = os.time()
 2
 3 run()
 4
 5 local t_diff = os.time() - t_start
 6 io.stderr:write('Script ran for ' .. t_diff .. ' seconds.\n')
~/src/rushit $./tcp_stream > /dev/null &
[2] 12063
~/src/rushit $./tcp_stream --client --test-length 7 --script examples/time-script-run.lua > /dev/null
Script ran for 7 seconds.
[2]+ Done ./tcp_stream > /dev/null
~/src/rushit $

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 Welcome to rushit’s documentation!

 		
 rushit

 		
 How do I get started?

 		
 Don’t know Lua?

 		
 Packages

 		
 Want to contribute?

 		
 Introduction

 		
 Basic usage

 		
 tcp_rr

 		
 tcp_stream

 		
 Options

 		
 Connectivity options

 		
 Workload options

 		
 Statistics options

 		
 TCP options

 		
 tcp_rr options

 		
 tcp_stream options

 		
 Output format

 		
 Standard output keys

 		
 tcp_rr

 		
 tcp_stream

 		
 Script API

 		
 Hooks

 		
 Socket Hooks

 		
 Packet Hooks

 		
 Run Control

 		
 Data Passing

 		
 Syscall Wrappers

 		
 Script Examples

 		
 bind-to-device

 		
 check-src-addr

 		
 collect-values

 		
 drop-count

 		
 tcp-ack-interval

 		
 time-script-run

