

Welcome to Rückenwind’s documentation!

Contents:

	Getting started
	Design Principles and Goals

	Install

	Quick start

	Modules

	Routing

	Templates

	Basic HTTP and Services

	Static Content
	Dynamic Static Content

	Deployment

	Configuration Management

TODO

The documentation is far from completion, here are some TODOs

	plugin

	debugging

	i18n

	deployment

Indices and tables

	Index

	Module Index

	Search Page

Getting started

Design Principles and Goals

	KISS
Keept it simple, stupid.

	Convention over configuration
But don’t take it too far.

	Reusablity
I will not repeat myself.

	Don’t try to please everyone

Note

Rückenwind is in alpha stage of development, backwards compatibility will break.
And actually did: 0.3.x and 0.4.x are quite different.

Install

Use pip:

virtualenv my_playground
. ./my_playground/bin/activate
pip install rueckenwind

Quick start

It is highly recommended to develop and deploy within a virtualenv [https://pypi.python.org/pypi/virtualenv]. Always.
So this documentation just assumes you do without further mentioning it.
After installing rückenwind you got a new command at your disposal: rw.
You can use it to generate a new rückendwind project skeleton:

rw skel --name my_new_project

To start your new project:

rw serv my_new_project.http

Go and visit 127.0.0.1:8000 [http://127.0.0.1:8000/] to grab your hello world while it is hot.

Modules

The most basic entity in rückenwind is a module. A rückenwind module
is a normal python module with some added convention.

The basic structure:

module/
 __init__.py
 http.py
 static/
 templates/
 locale/

The obvious: all your static files go into the static/ folder and
your jinja2 [http://jinja.pocoo.org/] templates into
the templates/ folder.

The http.py must contain a Module named root.
It is the entry point for all http requests to your app.

Note

Rückenwind does not try to be a framework for everyone and
everything. As one of the consequences only a single templating engine is supported.
This keeps rückendwind code KISS. Don’t like jinja? Sorry,
rückenwind is not for you, switch to
one of the many other frameworks [http://wiki.python.org/moin/WebFrameworks].

Routing

At the heart of rückenwind there is routing of http requests.
It draws inspiration from several other projects, like Flask [http://flask.pocoo.org/] .

Note

	HTTP methods are strictly seperated. You cannot have one python function answering GET and POST.

An example RequestHandler

import time

import rw.http
import rw.gen

registration = rw.http.Module('my_playground')

@registration.get('/')
def register(handler):
 handler.render_template(template='register.html')

@registration.post('/')
def register_post(handler):
 u = User(email=handler.get_argument('email'),
 username=handler.get_argument('password'))
 handler.redirect(url_for(main))

root = rw.http.Module('my_playground')

@root.get('/')
def main(handler):
 handler['time'] = time.strftime("%a, %d %b %Y %H:%M:%S +0000", time.gmtime())
 root.render_template('index.html')

@root.get('/entry/<id>')
@rw.gen.coroutine
def entry(self, id):
 self['entries'] = yield get_entry_from_id(id)
 self.finish(template='my_playground/main.html')

root.mount('/register', registration)

For details see: Basic HTTP and Services

Templates

For documentation about the Jinja templating engine please look at its beautiful online documentation [http://jinja.pocoo.org/docs/] .

Assigning variables:

@root.get('/')
def main(handler):
 handler['time'] = strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime())
 root.finish(template='my_playground/index.html')

Within the template:

The current time is {{ time }}.

If you refer to another resource there are two helper functions
for creating URIs. For static files use:

{{ static('main.css') }}

This will insert an URI to your main.css, assuming there is one in your modules static folder.

If you want to link to another page there is:

{{ url_for(handler.login) }}

Same routes as before:

class Main(RequestHandler):
 @get('/')
 def main(self):
 # ...

 @get('/register')
 def register(self):
 # ...

 @get('/entry/<id>')
 def entry(self, id):
 # ...

	command

	result

	url_for(handler.login)

	/

	url_for(handler.register)

	/register

	url_for(handler.entry, id=1)

	/entry/1

Basic HTTP and Services

Static Content

You probably got content that is for every user the same on every request. Typically this is content like images, css or javascript. Downloads (as in content that is not directly displayed from html) or for this matter large files in generall should treated a little different.

You probably remember that there is a function called “static” to refer to your
static content:

{{ static('main.css') }}

The url it generates looks something like this:

/static/simpleblog/main.css?v=a37b

All static content is below /static/. Followed by the modules name (simpleblog here). Appended is version string to ensure the browser got the right thing in its cache. The version is the first few bytes of the hexdecimal representation of the md5 of the content of the main.css.

Dynamic Static Content

The definition of “static content” in rückenwind is content that is the same on every request for every user.

Deployment

Configuration Management

For your convenience Rückenwind comes with simple (as in KISS) configuration management. When you start up your project Rückenwind will try to load its configuration and you might see logging like:

rw[INFO] reading config: /my_virtualenv/src/my_cool_project_git/myproject/myproject.cfg
rw[INFO] reading config: /etc/myproject.cfg
rw[INFO] reading config: /home/joe/.myproject.cfg
rw[INFO] reading config: /my_virtualenv/etc/myproject.cfg

The order the files appear is of importance. Values in the later overwrite values in the former. So you can specify
default values for your configuration values inside your project that gets overwritten by system wide configuration in
/etc that gets overwritten by user configuration in their homes that gets overwritten by configuratin inside your
virtual_envs /etc.

The tornado server can be configured with httpserver:

httpserver:
 xheaders: true

Note:

TODO: Configs are now yaml format. Document.

For example if your your project features the following config file:

[mongodb]
host = 127.0.0.1
db = some_db

And your ~/.myproject.cfg is:

[mongodb]
host = db.local

You will get the following configuration dict:

{'mongodb': {
 'host': 'db.local'
 'db': 'some_db'
}}

Actually it is not a standard python dict but a ConfigObj [http://www.voidspace.org.uk/python/configobj.html] and therefor provides some extra methods like as_bool. It can be accessed via rw.cfg. Please note that the dict gets populated when rw setups your project. So if you use:

rw serv mycoolproject

The dict is populated before your module is loaded - meaning you can access rw.cfg without worries. In circumstances
were you are not running through the rw start command you might want to either use rw.setup('mycoolproject') to load
your module (which is what rw serv does). In other circumstances you might just want the config you can use:

Design Decisions:
- JSON does not support comments
- ini is not strictly typed

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Rückenwind’s documentation!

 		
 Getting started

 		
 Design Principles and Goals

 		
 Install

 		
 Quick start

 		
 Modules

 		
 Routing

 		
 Templates

 		
 Basic HTTP and Services

 		
 Static Content

 		
 Dynamic Static Content

 		
 Deployment

 		
 Configuration Management

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/basic_screenshot.png
ampledoc v1.0 documentation »

Table Of Contents Welcome to sampledoc’s

e documentation!

In nd tabl

This Page Contents:

Show Source

Quick seard Indices and tables

L Jocol « Index
ch terms or a module, « Module Index

« Search Page

sampledoc v1.0 documentation »

opyright 2009, JDH, Created usin

_static/ajax-loader.gif

_static/comment-bright.png

