

Welcome to The RTRlib Handbook!

This is the official User Handbook of the RTRlib, it provides guidance on how
to use the library for development and gives an overview on a variety of tools
that utilize the RTRlib.
Further information can be found on the RTRlib website 1 and its source code
repository on Github 2.

	About
	In a Nutshell

	Why do I need the RTRlib?

	License

	Supported RFCs

	Community

	Background
	Further Reading

	Installation
	Apple macOS

	Archlinux

	Debian

	Gentoo

	From Source

	Development with RTRlib
	Overview

	Step-by-Step Example

	Complete RTRlib Example

	RTRlib Python Binding
	Installation

	Step-by-Step Example

	RTRlib Command Line Tools
	RTRlib RTR Client

	RTRlib ROV Validator

	Third Party Tools Using RTRlib
	RPKI Validator Browser Plugin

	RPKI READ

	RPKI MIRO

	RPKI RBV

	Other Third-Party Tools

	BGP Routing Daemons with RPKI/RTR
	The BIRD Internet Routing Daemon

	The Quagga Routing Software Suite

Footnotes

	1

	Project website – https://rtrlib.realmv6.org

	2

	Source code on Github – https://github.com/rtrlib/rtrlib

About

In a Nutshell

RTRlib is a C library that implements the client side of the RPKI-RTR
protocol as well as route origin validation. Basically, it maintains data
from an RPKI cache server (e.g., Routinator) and allows to verify whether
an autonomous system (AS) is the legitimate origin AS, based on the fetched
valid ROA data. It is prepared for BGPsec path validation.

RTRlib powers RPKI in BGP software routers such as FRR [https://frrouting.org/] and is the base for monitoring tools. A Python
binding is available. The basis RTRlib package includes the library and
lightweight command line tools.

Why do I need the RTRlib?

RTRlib gives easy and highly efficient access to cryptographically valid
RPKI data without relying on a specific cache server or RPKI validator
implementation. To prevent single point of failures, it handles failover
between multiple cache servers.

Not only developers of routing software but also network operators benefit
from RTRlib. Developers can integrate the RTRlib into their BGP daemon to
extend their implementation towards RPKI. Network operators may use the
RTRlib to develop monitoring tools (e.g., to evaluate the performance of
caches or to validate BGP data).

License

This software is free, open source and licensed under MIT.

Supported RFCs

The current version implements RFC 6811 [https://tools.ietf.org/html/rfc6811] and RFC 8210 [https://tools.ietf.org/html/rfc8210].

Community

If you run into a problem with RTRlib or you have a feature request, please
create an issue on Github [https://github.com/rtrlib/rtrlib/issues]. We
are also happy to accept your pull requests. For general discussion and
exchanging operational experiences we provide a mailing list. More details about RTRlib are available on the
project website [https://rtrlib.realmv6.org/].

Background

The global deployment of a Resource Public Key Infrastructure
(RPKI [1]) is one step towards securing the Internet routing
through cryptography.
The RPKI allows the holder of a distinct IP prefix to authorize certain
autonomous systems (AS) to originate corresponding routes, which is
cryptographically verifiable through Route Origination Authorizations (ROAs)
that are stored in the RPKI.

RPKI enabled routers do not store such ROAs themselves, but only the validated
content of those.
To achieve high scalability as well as limit resource utilization on BGP
routers, the validation of ROAs is performed by trusted RPKI cache servers,
which are deployed at the network operator site.
The RPKI-RTR protocol defines a standard mechanism to maintain exchange of
the prefix origin AS relations between the cache server and routers.
In combination with a BGP prefix origin validation scheme a router is able to
verify received BGP updates without suffering from cryptographic complexity.

The RTRlib is a lightweight C library that implements the RPKI-RTR protocol for
the client end (i.e., routers) and the proposed prefix origin validation scheme.
The RTRlib provides functions to establish a connection to a single or multiple
trusted caches using TCP and SSH transport connections, and further allows to
determine the validation state of prefix to origin AS relations.

Fig. 1 shows a typical RPKI deployment, where trusted cache servers
collect ROAs from global RPKI repositories of the RIRs, such as RIPE and APNIC.
Each local RPKI cache periodically updates and verifies the stored ROAs, and
pushes the preprocessed data to connected RPKI enabled BGP routers using
the RTR protocol.

[image: _images/rpki-rtr-overview.jpg]
Fig. 1 Overview on a typical RPKI deployment, showing global RPKI repositories,
trusted cache servers, and RPKI enabled BGP routers.

Further Reading

Detailed insights on the implementation of the RTRlib and its performance can
be found in [2].
Further information is available in the standard specifications and
protocols in RFCs 6810 [3] and 6811 [4], to which
the RTRlib complies.
Even more background material on BGP security extensions can be found in
[5], [6],
and [7]

References

	1

	M. Lepinski and S. Kent. An Infrastructure to Support Secure Internet Routing. RFC 6480, IETF, February 2012.

	2

	Matthias Wählisch, Fabian Holler, Thomas C. Schmidt, and Jochen H. Schiller. RTRlib: An Open-Source Library in C for RPKI-based Prefix Origin Validation. In Proc. of USENIX Security Workshop CSET‘13. Berkeley, CA, USA, 2013. USENIX Assoc. URL: https://www.usenix.org/conference/cset13/rtrlib-open-source-library-c-rpki-based-prefix-origin-validation.

	3

	R. Bush and R. Austein. The Resource Public Key Infrastructure (RPKI) to Router Protocol. RFC 6810, IETF, January 2013.

	4

	P. Mohapatra, J. Scudder, D. Ward, R. Bush, and R. Austein. BGP Prefix Origin Validation. RFC 6811, IETF, January 2013.

	5

	S. Bellovin, R. Bush, and D. Ward. Security Requirements for BGP Path Validation. RFC 7353, IETF, August 2014.

	6

	Matthew Lepinski and Sean Turner. An Overview of BGPsec. Internet-Draft – work in progress 08, IETF, June 2016.

	7

	Matthew Lepinski and Kotikalapudi Sriram. BGPsec Protocol Specification. Internet-Draft – work in progress 19, IETF, November 2016.

Installation

Most Linux distributions as well as Apple macOS support RTRlib. The RTRlib
software package includes the library and basic ready-to-use command line
tools that show some of the RTRlib features.

Apple macOS

For macOS we provide a Homebrew tap to easily install the RTRlib.
First, setup Homebrew 1 and then install the RTRlib package:

brew tap rtrlib/pils
brew install rtrlib

Footnotes

	1

	Homebrew – http://brew.sh

Archlinux

For Archlinux we maintain two PKGBUILDs in the Archlinux User Repository,
rtrlib 2 and rtrlib-git 3. rtrlib
includes the latest official RTRlib release, rtrlib-git includes the
current git master.

You can either use your favourite aur helper or execute the following commands:

sudo pacman --needed base-devel

for the latest release
wget https://aur.archlinux.org/cgit/aur.git/snapshot/rtrlib.tar.gz
tar xf rtrlib
cd rtrlib

for the git version
wget https://aur.archlinux.org/cgit/aur.git/snapshot/rtrlib-git.tar.gz
tar xf rtrlib-git
cd rtrlib-git

for both
makepkg -sci

Footnotes

	2

	https://aur.archlinux.org/packages/rtrlib/

	3

	https://aur.archlinux.org/packages/rtrlib-git/

Debian

RTRlib is part of the official Debian package repository since Buster
4 and can be installed using apt. The following packages
are available:

	librtr0

	includes the basis library.

	librtr0-dev

	includes header files etc. for developers.

	rtr-tools

	includes basic command line tools based on RTRlib.

	librtr0-dbgsym

	includes debugging symbols.

	librtr-doc

	includes offline documentation.

To install the minimal set of packages required for development, execute the following command:

apt install librtr0 librtr-dev

If you just want to use the RTRlib command line tools, run

apt install librtr0 rtr-tools

Footnotes

	4

	Buster is currently in testing and scheduled for release Mid 2019.

Gentoo

The FRR routing project [http://frrouting.org/] maintains a gentoo
overlay 5 that contains an ebuild for the RTRlib. First, setup
layman 6, then install rtrlib with the following commands:

If this doe not work try layman -f
layman -a frr-gentoo
emerge rtrlib

Footnotes

	5

	https://github.com/FRRouting/gentoo-overlay

	6

	https://wiki.gentoo.org/wiki/Layman

From Source

The source code repository of RTRlib includes everything that you need to
implement or run applications based on the RTRlib, and to use the RTRlib
command line tools.

The RTRlib source code consists of the following subdirectories:

	cmake/ CMake modules

	doxygen/ Example code and graphics used in the Doxygen documentation

	rtrlib/ Header and source code files of the RTRlib

	tests/ Function tests and unit tests

	tools/ Contains rtrclient and rpki-rov

Getting Started

To build and install the RTRlib from source, you need the following common
software:

	cmake version >= 2.6

	to build the system.

	libssh version >= 0.5.0

	to establish SSH transport connections (optional but highly recommended).

Additional optional requirements are:

	cmocka

	to run RTRlib unit tests

	doxygen

	to build the RTRlib API documentation

Building

The easiest way to get the source code is to download either the latest
RTRlib release from https://github.com/rtrlib/rtrlib/releases/latest or the current master
from https://github.com/rtrlib/rtrlib/archive/master.zip, and then unpack:

unzip rtrlib-master.zip
cd rtrlib-master
or alternatively, clone the current git master
git clone https://github.com/rtrlib/rtrlib/
cd rtrlib

Then, build the library and command line tools using cmake. We
recommend an out-of-source build:

inside the main RTRlib source code directory
mkdir build && cd build
cmake -D CMAKE_BUILD_TYPE=Release ../
make
sudo make install

To enable debug symbols and messages, change the cmake command to:

cmake -D CMAKE_BUILD_TYPE=Debug ../

If the build command fails with any error, please consult the RTRlib README 7
and Wiki 8, you may also join our mailing list 9 or open
an issue on Github 10.

Additional cmake Options and Targets

If you did not install libssh in the default directories, you can run
cmake with the following parameters:

-D LIBSSH_LIBRARY=<path-to-libssh.so>
-D LIBSSH_INCLUDE=<include-directory>

To configure explicitly a directory where to place the RTRlib during
installation, you can pass the following argument to cmake:

-D CMAKE_INSTALL_PREFIX=<path>

For developers, we provide a pre-build API documentation online 11
which documents the API of the latest release. Alternatively, and if
Doxygen is available on your system, you can build the documentation
locally as follows:

make doc

To execute the build-in tests provided by the RTRlib package, run:

make test

Footnotes

	7

	README – https://github.com/rtrlib/rtrlib/blob/master/README

	8

	Wiki – https://github.com/rtrlib/rtrlib/wiki

	9

	Mailing list – https://groups.google.com/forum/#!forum/rtrlib

	10

	Issue tracker – https://github.com/rtrlib/rtrlib/issues

	11

	API reference – https://rtrlib.realmv6.org/doxygen/latest

Development with RTRlib

Overview

The RTRlib shared library is installed to /usr/local/lib by default,
and its headers files to /usr/local/include, respectively.
To write an application in C/C++ using the RTRlib, include the main header file
into the code:

#include "rtrlib/rtrlib.h"

The name of the corresponding shared library is rtr.
To link an application against the RTRlib, pass the following parameter to the
compiler:

-lrtr

If the linker reports an error such as cannot find -lrtr, probably the
RTRlib was not installed to a standard location.
In this case, pass its location as an absolute path to the compiler,
add parameter:

-L</path/to/librtr/>

On Linux you can alternatively try to update the linker cache instead,
run:

ldconfig
verify with
ldconfig -p | grep rtr

Step-by-Step Example

The RTRlib package includes two command line tools, the rtrclient and
the rpki-rov, see also tools.
The former connects to a single RTR cache server via TCP or SSH and prints
validated prefix origin data to STDOUT. You can use this tool to get first
experiences with the RPKI-RTR protocol. With the latter you can validate
arbitrary prefix origin AS relations against records received from a connected
RPKI cache. Both tools are located in the tools/ directory. Having a look
into the source code of these tools will help to understand and integrate the
RTRlib into applications.

Any application using the RTRlib will have to setup a RTR connection manager
that handles synchronization with one (or multiple) trusted RPKI cache server(s).
The following provides an overview on important code segments.

First, create a RTR transport socket, for instance using TCP as shown in
Listing 1.

Listing 1 Create a RTR transport socket

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	struct tr_socket tr_tcp;
struct rtr_socket rtr_tcp;
char tcp_host[] = "rpki-validator.realmv6.org";
char tcp_port[] = "8282";

struct tr_tcp_config tcp_config = {
 tcp_host, // cache server host
 tcp_port, // cache server port
 NULL // source address, empty
};

tr_tcp_init(&tcp_config, &tr_tcp);
rtr_tcp.tr_socket = &tr_tcp;

Afterwards, create a group of RTR cache servers with preference 1.
In this example (see Listing 2), it includes only a single
cache instance.

Listing 2 Create a group of RTR caches

	1
2
3
4
5

	rtr_mgr_group groups[1];
groups[0].sockets = malloc(sizeof(struct rtr_socket*));
groups[0].sockets_len = 1;
groups[0].sockets[0] = &rtr_tcp;
groups[0].preference = 1;

Now initialize the RTR connection manager (Listing 3) providing
a pointer to a configuration object, the preconfigured group(s), number
of groups, a refresh interval, an expiration interval, and retry interval,
as well as distinct callback functions.
In this case, a refresh interval of 30 seconds, a 600s expiration timeout,
and a 600s retry interval will be defined.
Afterwards, start the RTR Connection Manager.

Listing 3 Initialize the RTR connection manager.

	1
2
3
4
5

	struct rtr_mgr_config *conf;
int ret = rtr_mgr_init(&conf, groups, 1, 30, 600, 600,
 pfx_update_fp, spki_update_fp, status_fp, NULL);

rtr_mgr_start(conf);

As soon as an update has been received from the RTR-Server, the callback
function will be invoked. In this example, update_cb (see Listing 4)
is called which prints the prefix, its minimum, and maximum length, as well as
the corresponding origin AS.

Listing 4 RTR connection manager update callback

	1
2
3
4
5
6
7
8
9

	static void update_cb(struct pfx_table* p, const pfx_record rec, const bool added){
 char ip[INET6_ADDRSTRLEN];
 if(added)
 printf("+ ");
 else
 printf("- ");
 ip_addr_to_str(&(rec.prefix), ip, sizeof(ip));
 printf("%-18s %3u-%-3u %10u\n", ip, rec.min_len, rec.max_len, rec.asn);
}

With a running RTR connection manager, you can also execute validation queries.
For instance, validate the relation of prefix 10.10.0.0/24 and its origin
AS 12345 as shown in Listing 5.

Listing 5 Validate a prefix to origin AS relation

	1
2
3
4
5

	struct lrtr_ip_addr pref;
lrtr_ip_str_to_addr("10.10.0.0", &pref);
enum pfxv_state result;
const uint8_t mask = 24;
rtr_mgr_validate(conf, 12345, &pref, mask, &result);

For a clean shutdown and exit of the application, first stop the RTR
Connection Manager, and secondly release any memory allocated
(see Listing 6).

Listing 6 RTR connection manager cleanup

	1
2
3

	rtr_mgr_stop(conf);
rtr_mgr_free(conf);
free(groups[0].sockets);

Complete RTRlib Example

The code in Listing 7 shows a fully functional RPKI validator
using the RTRlib. It includes all parts explained in the previous section, and
shows how to setup multiple RPKI cache server connections using either TCP or
SSH transport sockets. For the latter, the RTRlib has to be build and installed
with libssh support.

Listing 7 A complete code example for the RTRlib

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100

	#include <stdio.h>
#include <stdlib.h>
#include "rtrlib/rtrlib.h"

int main(){
 //create a SSH transport socket
 char ssh_host[] = "123.231.123.221";
 char ssh_user[] = "rpki_user";
 char ssh_hostkey[] = "/etc/rpki-rtr/hostkey";
 char ssh_privkey[] = "/etc/rpki-rtr/client.priv";
 struct tr_socket tr_ssh;
 struct tr_ssh_config config = {
 ssh_host, //IP
 22, //Port
 NULL, //Source address
 ssh_user,
 ssh_hostkey, //Server hostkey
 ssh_privkey, //Private key
 };
 tr_ssh_init(&config, &tr_ssh);

 //create a TCP transport socket
 struct tr_socket tr_tcp;
 char tcp_host[] = "rpki-validator.realmv6.org";
 char tcp_port[] = "8282";

 struct tr_tcp_config tcp_config = {
 tcp_host, //IP
 tcp_port, //Port
 NULL //Source address
 };
 tr_tcp_init(&tcp_config, &tr_tcp);

 //create 3 rtr_sockets and associate them with the transprort sockets
 struct rtr_socket rtr_ssh, rtr_tcp;
 rtr_ssh.tr_socket = &tr_ssh;
 rtr_tcp.tr_socket = &tr_tcp;

 //create a rtr_mgr_group array with 2 elements
 struct rtr_mgr_group groups[2];

 //The first group contains both TCP RTR sockets
 groups[0].sockets = malloc(sizeof(struct rtr_socket*));
 groups[0].sockets_len = 1;
 groups[0].sockets[0] = &rtr_tcp;
 groups[0].preference = 1; //Preference value of this group

 //The seconds group contains only the SSH RTR socket
 groups[1].sockets = malloc(1 * sizeof(struct rtr_socket*));
 groups[1].sockets_len = 1;
 groups[1].sockets[0] = &rtr_ssh;
 groups[1].preference = 2;

 //create a rtr_mgr_config struct that stores the group
 struct rtr_mgr_config *conf;

 //initialize all rtr_sockets in the server pool with the same settings
 int ret = rtr_mgr_init(&conf, groups, 2, 30, 600, 600, NULL, NULL, NULL, NULL);

 //start the connection manager
 rtr_mgr_start(conf);

 //wait till at least one rtr_mgr_group is fully synchronized with the server
 while(!rtr_mgr_conf_in_sync(conf)) {
 sleep(1);
 }

 //validate the BGP-Route 10.10.0.0/24, origin ASN: 12345
 struct lrtr_ip_addr pref;
 lrtr_ip_str_to_addr("10.10.0.0", &pref);
 enum pfxv_state result;
 const uint8_t mask = 24;
 rtr_mgr_validate(conf, 12345, &pref, mask, &result);

 //output the result of the prefix validation above
 //to showcase the returned states.
 char buffer[INET_ADDRSTRLEN];
 lrtr_ip_addr_to_str(&pref, buffer, sizeof(buffer));

 printf("RESULT: The prefix %s/%i ", buffer, mask);
 switch(result) {
 case BGP_PFXV_STATE_VALID:
 printf("is valid.\n");
 break;
 case BGP_PFXV_STATE_INVALID:
 printf("is invalid.\n");
 break;
 case BGP_PFXV_STATE_NOT_FOUND:
 printf("was not found.\n");
 break;
 default:
 break;
 }

 // cleanup before exit
 rtr_mgr_stop(conf);
 rtr_mgr_free(conf);
 free(groups[0].sockets);
 free(groups[1].sockets);
}

RTRlib Python Binding

The RTRlib is also available for scripting in Python using the
RTRlib Python binding 1.
This section gives a quick overview on the usage of the Python binding.
An even more detailed documentation on the API and further usage examples can
be found on the corresponding readthedocs.io 2 page.

Installation

The RTRlib Python binding runs on Linux and Apple macOS like the C library. It
supports both Python 2 and Python 3, in any recent release, detailed requirements
and install instructions are described here.

Getting Started

The Python binding for the RTRlib has several dependencies. For compilation
it requires the following external packages to be installed:

	Python, version 2.7 or 3.x

	C Compiler

	RTRlib C library

To use the Python binding, the following Python packages have to be installed
as well:

	cffi>=1.4.0

	enum34

	six

If you are using virtualenv, these are installed automatically during the
install step, otherwise you have to use your platforms package management tool
or just run pip install -r requirements.txt.

Building and Installation

The setup process of the RTRlib Python binding is straight forward and complies
to well-known Python standards.
First, download the source code from Github:

git clone https://github.com/rtrlib/python-binding.git
cd python-binding

And second, build and install the package using Python commands:

python setup.py build
python setup.py install

Step-by-Step Example

The following code listings show how to implement a simple RPKI validator based
on the RTRlib Python binding. The functionality basically reflects the
rpki-rov tool shipped with the RTRlib C library (see
RTRlib ROV Validator).

First, import required Python packages as shown in Listing 8;
namely rtrlib, but also some future imports in case of Python 2.

Listing 8 Import RTRlib package

	1
2
3

	# uncomment future imports, required for Python 2
#from __future__ import print_function
from rtrlib import RTRManager, PfxvState

Afterwards, initialized and start an instance of the RTRManager,
see Listing 9, mandatory parameters are host and port of
a trusted RPKI cache server.

Listing 9 Setup and run RTRManager

	1
2

	mgr = RTRManager('rpki-validator.realmv6.org', 8282)
mgr.start()

As soon as the RTRManager is up and running, it can validate any prefix to
origin AS relation as shown in Listing 10. The return value
in result contains the corresponding validation state, i.e., valid, invalid,
or not_found; other return values indicate an error during validation.

Listing 10 Validate prefix to origin AS relation

	1
2
3
4
5
6
7
8
9

	result = mgr.validate(12345, '10.10.0.0', 24)
if result == PfxvState.valid:
 print('Prefix Valid')
elif result == PfxvState.invalid:
 print('Prefix Invalid')
elif result == PfxvState.not_found:
 print('Prefix not found')
else:
 print('Invalid response')

	1

	RTRlib Python binding – https://github.com/rtrlib/python-binding

	2

	ReadTheDocs – https://python-rtrlib.readthedocs.io

RTRlib Command Line Tools

The RTRlib software package includes two lightweight command line tools to
showcase some of the RTRlib features. rtr-client connects to an RPKI
cache server, fetches and maintains the valid ROA payloads, and prints the
received data. rpki-rov allows to verify whether an autonomous system
is the legitimate origin AS of an IP prefix, based on RPKI data.

If you want to use these command line tools, you need an RPKI-RTR
connection to an RPKI cache server (e.g., Routinator). For those who do not
have access to a cache server, we provide a public cache with hostname
rpki-validator.realmv6.org and port 8282.

RTRlib RTR Client

rtrclient is part of the default RTRlib software package. This command
line tool connects to an RPKI cache server and prints the received valid
ROA payloads to standard out.

To establish a connection to RPKI cache servers, the client can use TCP
or SSH transport sockets. To run the program you have to specify the
transport protocol as well as the hostname and port of the RPKI cache
server; additionally you can set several options. To get a complete
reference over all options for the command simply run rtrclient in a
shell.

Listing 11 shows how to connect the rtrclient to a cache
server as well as 10 lines of the resulting output. It shows IPv4 and IPv6
prefixes secured by ROAs, the allowed prefix lengths, and the legitimate
origin AS numbers. Each line represents either a ROA that was added
(+) or removed (-) from the selected RPKI cache server. The RTRlib
client will receive and print such updates until the program is terminated,
i.e., by ctrl + c.

Listing 11 Output of the rtrclient tool.

rtrclient tcp -k -p rpki-validator.realmv6.org 8282
Prefix Prefix Length ASN
+ 89.185.224.0 19 - 19 24971
+ 180.234.81.0 24 - 24 45951
+ 37.32.128.0 17 - 17 197121
+ 161.234.0.0 16 - 24 6306
+ 85.187.243.0 24 - 24 29694
+ 2a02:5d8:: 32 - 32 8596
+ 2a03:2260:: 30 - 30 201701
+ 2001:13c7:6f08:: 48 - 48 27814
+ 2a07:7cc3:: 32 - 32 61232
+ 2a05:b480:fc00:: 48 - 48 39126

RTRlib ROV Validator

rpki-rov is also part of the RTRlib software package.
This simple command line interface allows to verify whether an autonomous
system is allowed to announce a specific IP prefix, based on data received
from an RPKI cache server.

To run the program, you must provide two parameters, hostname and
port of a known RPKI cache server. Then, you can interactively validate
IP prefixes by typing prefix, prefix length, and origin ASN
separated by spaces. Press ENTER to run the validation. The result
will be shown instantly below the input.

Note

rpki-rov can validate IPv4 and IPv6 prefixes by default.

Listing 12 shows the validation results of all RPKI-enabled
RIPE RIS beacons [https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/current-ris-routing-beacons].
The output consists of three columns, which are separated by pipes (|):

<input query> | <ROAs> | <validation result>.

The validation results are
0 for valid, 1 for not found, and 2 for invalid.

In case of a valid and invalid prefix-AS pair, the output shows the
matching ROAs for the given prefix and AS number. If multiple ROAs for a
prefix exist, they are listed in a row separated by commas (,).

Listing 12 Output of rpki-rov showing validation results of multiple prefixes.

rpki-rov rpki-validator.realmv6.org 8282
93.175.146.0 24 12654
93.175.146.0 24 12654|12654 93.175.146.0 24 24|0
2001:7fb:fd02:: 48 12654
2001:7fb:fd02:: 48 12654|12654 2001:7fb:fd02:: 48 48|0
93.175.147.0 24 12654
93.175.147.0 24 12654|196615 93.175.147.0 24 24|2
2001:7fb:fd03:: 48 12654
2001:7fb:fd03:: 48 12654|196615 2001:7fb:fd03:: 48 48|2
84.205.83.0 24 12654
84.205.83.0 24 12654||1
2001:7fb:ff03:: 48 12654
2001:7fb:ff03:: 48 12654||1

Third Party Tools Using RTRlib

In the following sections we give an overview on several software tools, which
utilize the RTRlib and its features.
These tools range from low level shell commands to easy-to-use browser plugins.
For all tools we provide small usage examples; where ever appropriate we will
use the RIPE RIS Beacons 1 (see Table 1) with well
known RPKI validation results to show case the tool.

Table 1 RIPE RIS beacons for RPKI tests

	IP Prefix

	Valid Origin

	Result

	93.175.146.0/24

	AS12654

	valid

	2001:7fb:fd02::/48

	AS12654

	valid

	93.175.147.0/24

	AS196615

	invalid AS

	2001:7fb:fd03::/48

	AS196615

	invalid AS

	84.205.83.0/24

	None

	not found

	2001:7fb:ff03::/48

	None

	not found

Note: for all prefixes RPKI validation results are based on origin AS 12654
that is owned by RIPE.
Most examples also require a connection to a trusted RPKI cache server, for that
we provide a public cache with hostname rpki-validator.realmv6.org
and port 8282.

RPKI Validator Browser Plugin

The RPKI Validator plugin for web browsers allows to check the RPKI validation
of visited URLs, i.e., the associated IP prefix and origin AS of the URL.
A small icon indicates the validation state of the visited URL, which is
either valid ([image: valid]), invalid ([image: invalid]), or not found ([image: not_found]).

The plugin is available as an add-on (or extension) for the web browsers
Firefox and Chrome .
While the Firefox add-on 2 is available through the add-on store,
Chrome users have to download and install the extension themselves as follows:

	download the Chrome extension 3 from GitHub

	open a new tab in Chrome and enter chrome://extensions

	activate Developer Mode via the checkbox in the top right

	click the Load unpacked extension button and navigate to the source

The screenshots show the results of the RPKI Validator browser plugin for
Firefox (valid Fig. 2, invalid Fig. 3,
and not found Fig. 4) for certain websites .

[image: _images/rbv_valid.png]
Fig. 2 Screenshot of RPKI Validator plugin in Firefox showing result valid.

[image: _images/rbv_invalid.png]
Fig. 3 Screenshot of RPKI Validator plugin in Firefox showing result invalid.

[image: _images/rbv_notfound.png]
Fig. 4 Screenshot of RPKI Validator plugin in Firefox showing result not found.

RPKI READ

The RPKI Realtime Dashboard (RPKI READ 4) aims to provide a
consistent (and live) view on the RPKI validation state of currently announced
IP prefixes. That is, it verifies relation of an IP prefix and its BGP origin AS
(autonomous system) utilizing the RPKI.

The RPKI READ monitoring system has two parts:

	the backend, storing latest validation results in a database, and

	the (web) frontend, displaying these results as well as an overview of statistics derived from them.

The backend connects to a live BGP stream, e.g. of a BGPmon 5 instance
or via BGPstream 6.
It then parses received BGP messages and extracts IP prefixes and origin AS
information.
These prefix to origin AS relations are validated using the RTRlib validator
to query a trusted RPKI cache server.

The RPKI READ frontend presents a dashboard like interface showing a live
overview of the RPKI validation state of all currently advertised IP prefixes
observed by a certain BGP source (see Fig. 5).
Further, the frontend provides detailed statistics and also allows the user
to search for validation results of distinct prefixes or all prefixes originated
by a certain AS.

[image: RPKI READ screenshot]
Fig. 5 Screenshot of the RPKI READ web frontend

RPKI MIRO

The RPKI Monitoring and Inspection of RPKI Objects (RPKI MIRO 7)
aims for easy access to RPKI certificates, revocation lists, ROAs etc.
to give network operators more confidence in their data.
Though, RPKI is a powerful tool, its success depends on several aspects.
One crucial piece is the correctness of the RPKI data.
Though, the RPKI data is public, it still might be hard to inspect outside of
shell-like environments.

The main objective of RPKI MIRO is to provide an extensive but painless
insight into the published RPKI content.
RPKI MIRO is a monitoring application that consists of three parts:

	standard functions to collect RPKI data from remote repositories,

	a browser to visualize RPKI objects, and

	statistical analysis of the collected objects.

[image: RPKI MIRO screenshot]
Fig. 6 Screenshot of the RPKI MIRO web interface.

Using RPKI MIRO you can lookup any IP prefix and its associated ROA, e.g. the
RIPE RIS beacon 93.175.147.0/24.
Open a browser and goto URL http://rpki-browser.realmv6.org, in the menu switch
from AFRINIC to RIPE and set a filter for the prefix 93.175.147.0/24
with attribute resource.
Expand the ROA tree view on the left side to get the corresponding ROA for the
beacon prefix, the resulting web view should look like the screenshot
in Fig. 6.

RPKI RBV

The RPKI RESTful BGP Validator (RPKI RBV 8) is web application
that provides a RESTful API to validate IP prefix to origin AS relations.
The validation service can be accessed via a plain and simple web page (see
also Fig. 7) or directly using its RESTful API.

[image: RPKI RBV screenshot]
Fig. 7 Screenshot of the RPKI RBV web interface

RBV provides two distinct APIs to run RPKI validation queries, the APIs allow
RESTful GET queries with the following syntax and formatting of the URL path:

	/api/v1/validity/<asn>/<prefix>/<masklen>

	/api/v2/validity/<host>

Note: the AS number in <asn> has to be prepended with AS;
and <host> can either be an IP address or a DNS hostname.
To test the APIs type the following queries for the RIPE RIS beacon
93.175.146.0/24 into the address bar of your favorite web browser:

rpki-rbv.realmv6.org/api/v1/validity/AS12654/93.175.146.0/24
rpki-rbv.realmv6.org/api/v2/validity/93.175.146.1

The result will be a JSON object as shown in Listing 13.

Listing 13 Sample JSON output of RPKI RBV

{
 "validated_route": {
 "info": {
 "origin_country": "EU",
 "origin_asname": "RIPE-NCC-RIS-AS Reseaux IP Europeens Network Coordination Centre (RIPE NCC), EU"
 },
 "route": {
 "prefix": "93.175.146.0/24",
 "origin_asn": "AS12654"
 },
 "validity": {
 "state": "Valid",
 "code": 0,
 "description": "At least one VRP Matches the Route Prefix",
 "VRPs": {
 "unmatched_as": [],
 "unmatched_length": [],
 "matched": [{
 "prefix": "93.175.146.0/24",
 "max_length": "24",
 "asn": "AS12654"
 }]
 }
 }
 }
}

For detailed instruction how to install and set up the API visit
the RBV Repository on GitHub 9.

Other Third-Party Tools

The RIPE Tools and Resources 10 webpage provides an (almost)
complete overview on other tools related to RPKI and BGP security, in general.

Footnotes

	1

	https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/current-ris-routing-beacons

	2

	Firefox add-on – https://addons.mozilla.org/en-US/firefox/addon/rpki-validator/

	3

	Chrome Extension – https://github.com/rtrlib/chrome-extension

	4

	RPKI READ – https://rpki-read.realmv6.org/

	5

	BGPmon – http://www.bgpmon.io/

	6

	BGPstream – https://bgpstream.caida.org/

	7

	RPKI MIRO – http://rpki-miro.realmv6.org/

	8

	RPKI RBV – https://rpki-rbv.realmv6.org/

	9

	RPKI RBV Github – https://github.com/rtrlib/rbv

	10

	https://www.ripe.net/manage-ips-and-asns/resource-management/certification/tools-and-resources/

BGP Routing Daemons with RPKI/RTR

For several Routing Daemons such as Quagga 1 and BIRD 2
exist RPKI enabled extensions that are based on the RTRlib.

The BIRD Internet Routing Daemon

To set up BIRD, first download 3 the latest release, unzip and
change into the source directory. To build BIRD, run:

./configure
make
make install

You may need to execute these and any following commands in this handbook as sudo.
More information on the building process can be found in the README of BIRD.

Before any validations with BIRD can be done, it must be configured accordingly.
First, a ROA table and the validation function must be added to /usr/local/etc/bird.conf.
At the top of this file write:

roa table rtr_roa_table;

function test_ripe_beacons()
{
 print "Testing ROA";
 print "Should be TRUE TRUE TRUE:",
 " ", roa_check(rtr_roa_table, 84.205.83.0/24, 12654) = ROA_UNKNOWN,
 " ", roa_check(rtr_roa_table, 93.175.146.0/24, 12654) = ROA_VALID,
 " ", roa_check(rtr_roa_table, 93.175.147.0/24, 12654) = ROA_INVALID;
}

The first line automatically creates a ROA table when the BIRD daemon is started.
The function itself checks for three entries in the ROA table
and prints the corresponding validity status.
The BIRD socket must now be opened. In order to do that type the following command:

./bird -c /usr/local/etc/bird.conf -s /tmp/bird.ctl -d

With the option -d BIRD runs in the foreground.
That’s necessary to view the output of the test_ripe_beacons function.
/tmp/bird.ctl is the location and name of the socket that will be created.
It is required by the bird-rtrlib-cli which we will install next.

Open another new terminal. To try out whether BIRD receives actual responses,
there is an IPC that runs on the BIRD socket.
Clone the BIRD-RTRlib-CLI repository on GitHub and build it:

git clone https://github.com/rtrlib/bird-rtrlib-cli
cd bird-rtrlib-cli
cmake .
make

In case that the RTRlib was not installed into the default directory, run

cmake -DRTRLIB_INCLUDE=<rtrlib> -DRTRLIB_LIBRARY=</path/to/rtrlib.[a|so|dylib]> .
make

If everything was build correctly,
there now should be an executable called bird-rtrlib-cli.
To see all the options of this program run ./bird-rtrlib-cli --help.
Now connect to the BIRD socket and receive the RPKI data with the following command:

./bird-rtrlib-cli -b /tmp/bird.ctl -r rpki-validator.realmv6.org:8282 -t rtr_roa_table

The options do the following:

-b: the location of the BIRD socket.

-r: the address and port of the RPKI cache server. Change it if you want to use a different one.

-t: the table in which the gathered rpki-data is filled into. We created this one earlier in the bird.conf

After executing this line, you will see that, after establishing a connection
to the cache server, the ROA entries are piped into the BIRD ROA table.
Head back to the BRID directory and start the BIRD CLI with the following command:

sudo ./birdc -s /tmp/bird.ctl

All the commands of the CLI can be viewed by typing ?.
To list all the entries from the ROA table enter:

bird> show roa
194.3.206.0/24 max 24 as 24954
03.4.119.0/24 max 24 as 38203
200.7.212.0/24 max 24 as 27947
200.7.212.0/24 max 24 as 19114
103.10.79.0/24 max 24 as 45951
...

Type q to exit. There will be a lot of similar output.
The content of the bird-rtrlib-cli was successfully written to the ROA table.
Search, for example, for the prefix 93.175.146.0/24 and BIRD will return
the entry with its corresponding ASN.

bird> show roa 93.175.146.0/24
93.175.146.0/24 max 24 as 12654

To do the actual validation of the prefixes that were defined in test_ripe_beacons execute:

bird> eval test_ripe_beacons()
(void)

To see the output of the function, switch to the terminal that is running the
BIRD daemon. The output will look like:

bird: Testing ROA
bird: Should be TRUE TRUE TRUE: TRUE TRUE TRUE

After seeing this line, the test function was executed and the prefixes were successfully tested.

The Quagga Routing Software Suite

The Quagga routing daemon implements IP routing via the protocols
OSPF, RIP and BGP. It acts as a router that fetches and shares routing information
with other routers. Quagga is mainly dedicated to BGP4.
An unofficial release implements support for the RPKI so BGP updates can be
verified against a ROA. Doing so requires the support of the RTRlib so Quagga
can initialize a connection to a cache server using the RTR protocol.

To install Quagga, clone the Git repository and switch the branch like this:

git clone https://github.com/rtrlib/quagga-rtrlib.git
cd quagga-rtrlib
git checkout feature/rtrlib

This repository is a fork of the original and implements RPKI support. Before
building it, make sure your system meets the perquisites:

	automake: 1.9.6

	autoconf: 2.59

	libtool: 1.5.22

	texinfo: 4.7

	GNU AWK: 3.1.5

If all of these packages are installed, Quagga can be build. Some steps might
require sudo privileges:

./bootstrap
./configure --enable-rpki
make
make install

The --enable-rpki option tells the configure script to include the RTRlib.

Now that Quagga is built, start the BGP and Zebra daemons. Zebra acts as a
process between the package stream of the kernel and daemons like BGP or OSPF.
Execute bgpd and zebra:

./bgpd/bgpd
./zebra/zebra

To interact with BGPD, connect to it via vtysh, a command line interface that gains access to such daemons.

Footnotes

	1

	Quagga – http://www.nongnu.org/quagga/

	2

	BIRD – http://bird.network.cz/

	3

	BIRD download – http://bird.network.cz/?download

Index

 _static/plus.png

_images/rbv_invalid.png
® /' E3 wikommen bei Facebook +

€) O @ nipsy[de-de facebook.com

facebook

wa o $a 0

Facebook erméglicht es dir, mit den Menschen

in deinem Leben in Verbindung zu treten und

AS Number

AS Name

IP Address

BGP Prefix
Validation Result

32934 —l .

FACEBOOK - Facebook, Inc., US
173.252.88.66 I.
173.252.88.0/21

InvalidLength

Facebook ist und bleibt kostenlos.

_images/rbv_notfound.png
©08 /57 cocoe onire- mcueie. * \ (&

"B 93 AD

€ v spiegel.de

Home | Video | Themen | Forum | English | DER SPIEGEL | SPf AS Number 61157
AS Name TGOS-ASNT Host Europe GmbH. DE
1P Address 62.138.116.25

EPIEEEL ON]_] N E BGP Prefix 62.138.116.0/24

Validation Result NotFound

Politik | Wirtschaft Panorama | Sport | Kultur | Netzwelt | Wissenschf

10, Mai 2016 P Themen: Donalg Trump | Grecheniandicise | Nordkorea | S8

_images/invalid.png

_static/up-pressed.png

_images/notFound.png
<

_static/up.png

_images/rpki_miro.png
RPKIMIRO

@ Q search wBe A -]

rpki-browser.realmvé.org

RPKI Repository Browser RPKiBrowser Statistics About

Filter Clear Filter ListView RIPE Download (JSON) 2016-11-25T11:32:51.567+01:00

® ripe-nce-ta.cer ROA EE Certificate

@ 2a2304103c4e807dae’511d33008c936920973c40.cer
jivhUzPbFillauztt1mMBJWZ84Y.r0a

@ bouCVBNXHT|NHVV7sTaAdy8HyYw.cer
rsyncilrpki.ripe.netrepository/RIPE/73/fe2d72-c2dd-461-9429-e663696494 1/1/

jvhUzPbFiJlauZt11mMBJWZ84Y.roa on:
Validation PASSED

Status:
Errors: None
Warnings: None

Validity Period: 2016-10-12T21:09:20.000Z - 2017-07-01700:00:00.000Z
Signing Time: 2016-10-12T21:00:20.0002

ASN: AS196615
93.175.147.0/24 24
2001:71b:fd03::/48 48

_images/rpki_rbv.png
REST BGP Validator

Validate IP prefix : Origin AS
1P prefix [93.175.146.024
Origin AS 12654
Cache Server ipki-validator.realmv6.org:8262

Reset | [Submit

Map and validate TP address
Host IPFQDN
Cache Server ipki-validator.realmv6.org:8262
1P2AS mapping | Team Cymru v
Reset || Submit

_images/rbv_valid.png
eoe 'Z| ZEIT ONLINE | Nachrichter +
€ | () www.zeitdefindex E1 Q suchen % B + A 9 [8|=
ABO SHOP AKADEMIE JOBS MEHR~ AS Number 24956 ifecoe
AS Name GDS-1Gaertner Datensysterme GmbH & Co.
KG. DE
ZEITZLONLINE |rme 5oes e

BGP Prefix 217.13.64.0/20
Validation Result Valid

Politik Gesellschaft Wirtschaft Kultur+ Wissen Digital

_images/rpki-rtr-overview.jpg
RIPE RPKI
Repository

Validated Prefixes
& Origin ASNs

APNIC RPKI
Repository .

Trusted RPKI/RTR-enabled
ClobaiREKS Local Caches Router

_images/rpki_read.png
€

RPKIREAD - RPKI Real tme Da... % | +

@ rpki-read reaimub.org e Qsearcn P al=I T S -]

RPKIREAD ~ Dashboard Stats Vaiid Invalidlength InvalidAS About ©.g.1.2.3.0/24, AS680 Q

RPKI Realtime Dashboard
UTG Timestamp: BGP Source: [T

- 7.049% prfies are verfiabe by the RPKI

This page provides a realtime overview of the latest validation results for prefix to origin AS relations using the RPKI. It
covers all IP prefixes advertised by the given BGP source and up to the most current timestamp. The progess bar above
shows the current state and coverage of the RPKI origin validation, i.e., how many prefixes are verifiable by a ROA. For
more and detailed statistics have look at our stats page. To look up the RPKI origin validation result of a certain IP prefix or
autonomous system (AS) use the search box in the menu bar.

Latest RPKI Validation Results B

by the numbers Advertised Prefixes Advertised Prefixes with ROA
Valid
#2718] Invalid Length
Invalid AS
Not Found

658051 Total

_images/valid.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to The RTRlib Handbook!

 		
 About

 		
 In a Nutshell

 		
 Why do I need the RTRlib?

 		
 License

 		
 Supported RFCs

 		
 Community

 		
 Background

 		
 Further Reading

 		
 Installation

 		
 Apple macOS

 		
 Archlinux

 		
 Debian

 		
 Gentoo

 		
 From Source

 		
 Getting Started

 		
 Building

 		
 Additional cmake Options and Targets

 		
 Development with RTRlib

 		
 Overview

 		
 Step-by-Step Example

 		
 Complete RTRlib Example

 		
 RTRlib Python Binding

 		
 Installation

 		
 Getting Started

 		
 Building and Installation

 		
 Step-by-Step Example

 		
 RTRlib Command Line Tools

 		
 RTRlib RTR Client

 		
 RTRlib ROV Validator

 		
 Third Party Tools Using RTRlib

 		
 RPKI Validator Browser Plugin

 		
 RPKI READ

 		
 RPKI MIRO

 		
 RPKI RBV

 		
 Other Third-Party Tools

 		
 BGP Routing Daemons with RPKI/RTR

 		
 The BIRD Internet Routing Daemon

 		
 The Quagga Routing Software Suite

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

