

Welcome to Rsyslog

Rsyslog [http://www.rsyslog.com/] is a rocket-fast system for log processing.
It offers high-performance, great security features and a modular design.
While it started as a regular syslogd, rsyslog has evolved into a kind of
swiss army knife of logging, being able to

	accept inputs from a wide variety of sources,

	transform them,

	and output the results to diverse destinations.

Rsyslog has a strong enterprise focus but also scales down to small
systems.
It supports, among others, MySQL,
PostgreSQL,
failover log destinations,
ElasticSearch, syslog/tcp transport, fine grain output format control,
high precision timestamps,
queued operations and the ability to filter on any message part.

Manual

	Configuration

	Installation

	Troubleshooting

	FAQ

	Concepts

	Example Use Cases

	Tutorials

	Development

	Historical Documents

Reference

	RSyslog - History

	Licensing

	How you can Help

	Community Resources

	RSyslog - Features

	Proposals

	Rsyslog Whitepapers

	Free Services for Rsyslog

	Compatibility

Sponsors and Community

Please visit the rsyslog Sponsor’s Page[4] to honor the project sponsors or
become one yourself! We are very grateful for any help towards the project
goals.

Visit the Rsyslog Status Page[2] to obtain current version information and
project status.

If you like rsyslog, you might want to lend us a helping hand. It
doesn’t require a lot of time - even a single mouse click helps. Learn
how to help the rsyslog project.

Related Links

	[2]	rsyslog Sponsor’s Page [http://www.rsyslog.com/sponsors]

	[4]	Regular expression checker/generator tool for rsyslog [http://www.rsyslog.com/tool-regex]

Configuration

Rsyslogd is configured via the rsyslog.conf file, typically found in
/etc. By default, rsyslogd reads the file /etc/rsyslog.conf.
This can be changed by a command line option.

Note that configurations can be built interactively via the online
rsyslog configuration builder [http://www.rsyslog.com/rsyslog-configuration-builder/] tool.

	Basic Structure
	Quick overview of message flow and objects

	Processing Principles

	Configuration File

	Statement Types

	Comments

	Processing Order

	Inputs

	Outputs

	Rulesets and Rules

	Templates
	Template processing

	The template() statement

	legacy format

	Reserved Template Names

	See Also

	rsyslog Properties
	Message Properties

	System Properties

	The Property Replacer
	Accessing Properties

	Further Links

	Filter Conditions
	Selectors

	Property-Based Filters

	Expression-Based Filters

	BSD-style Blocks

	Examples

	RainerScript
	Data Types

	Expressions

	Functions

	Control Structures

	configuration objects

	Constant Strings

	Variable (Property) types

	Lookup Tables

	General Queue Parameters

	The rsyslog “call” statement

	The rsyslog “call_indirect” statement

	global() configuration object

	Actions
	General Action Parameters

	Useful Links

	Legacy Format

	Input
	General Input Parameters

	Parser
	General Parser Parameters

	Samples

	timezone
	Parameters

	Sample

	Examples
	Templates

	Selector lines

	Legacy Configuration Directives
	Configuration Parameter Types

	Legacy Global Configuration Statements

	Legacy Directives affecting Input Modules

	Legacy Action-Specific Configuration Statements

	Ruleset-Specific Legacy Configuration Statements

	rsyslog statistic counter
	Queue

	Actions

	Plugins

	Modules
	Output Modules

	Input Modules

	Parser Modules

	Message Modification Modules

	String Generator Modules

	Library Modules

	Where are the modules integrated into the Message Flow?

	Output Channels

	Dropping privileges in rsyslog

	Notes on IPv6 Handling in Rsyslog

	libgcrypt Log Crypto Provider (gcry)

	Dynamic Stats
	Dyn-stats configuration

	Reporting

	Lookup Tables
	Types

	Lookup Table File Format

	Lookup-table configuration

	Implementation Details

Configuration file examples can be found in the rsyslog
wiki [http://wiki.rsyslog.com/index.php/Configuration_Samples]. Also
keep the rsyslog config
snippets [http://www.rsyslog.com/config-snippets/] on your mind. These
are ready-to-use real building blocks for rsyslog configuration.

There is also one sample file provided together with the documentation
set. If you do not like to read, be sure to have at least a quick look
at rsyslog-example.conf.

While rsyslogd contains enhancements over standard syslogd, efforts have
been made to keep the configuration file as compatible as possible.
While, for obvious reasons, enhanced features require
a different config file syntax, rsyslogd should be able to work with a
standard syslog.conf file. This is especially useful while you are
migrating from syslogd to rsyslogd.

Basic Structure

This section describes how rsyslog configuration basically works. Think
of rsyslog as a big logging and event processing toolset. It can be considered
a framework with some basic processing that is fixed in the way data flows,
but is highly customizable in the details of this message flow. During
configuration, this customization is done by defining and customizing
the rsyslog objects.

Quick overview of message flow and objects

Messages enter rsyslog with the help of input modules. Then, they are
passed to ruleset, where rules are conditionally applied. When a rule
matches, the message is transferred to an action, which then does
something to the message, e.g. writes it to a file, database or
forwards it to a remote host.

Processing Principles

	inputs submit received messages to rulesets
	if the ruleset is not specifically bound, the default ruleset is used

	by default, there is one ruleset (RSYSLOG_DefaultRuleset)

	additional rulesets can be user-defined

	each ruleset contains zero or more rules
	while it is permitted to have zero rules inside a ruleset,
this obviously makes no sense

	a rule consists of a filter and an action list

	filters provide yes/no decisions and thus control-of-flow capability

	if a filter “matches” (filter says “yes”), the corresponding
action list is executed. If it does not match, nothing special
happens

	rules are evaluated in sequence from the first to the last rule
inside the given ruleset. No rules from unrelated rulesets are
ever executed.

	all rules are always fully evaluated, no matter if a filter matches
or not (so we do not stop at the first match). If message processing
shall stop, the “discard” action (represented by the tilde character or the
stop command) must explicitly be executed. If discard is executed,
message processing immediately stops, without evaluating any further rules.

	an action list contains one or many actions

	inside an action list no further filters are possible

	to have more than one action inside a list, the ampersand character
must be placed in the position of the filter, and this must immediately
follow the previous action

	actions consist of the action call itself (e.g. ”:omusrmsg:”) as
well as all action-defining configuration statements ($Action... directives)

	if legacy format is used (see below), $Action... directives must be
specified in front of the action they are intended to configure

	some config directives automatically refer to their previous values
after being applied, others not. See the respective doc for details. Be
warned that this is currently not always properly documented.

	in general, rsyslog v5 is heavily outdated and its native config language
is a pain. The rsyslog project strongly recommends using at least version 7,
where these problems are solved and configuration is much easier.

	legacy configuration statements (those starting with $) do not affect
RainerScript objects (e.g. actions).

Configuration File

Upon startup, rsyslog reads its configuration from the rsyslog.conf
file by default. This file may contain references to include other
config files.

A different “root” configuration file can be specified via the -f <file>
rsyslogd command line option. This is usually done within some init
script or similar facility.

Statement Types

Rsyslog supports three different types of configuration statements
concurrently:

	sysklogd - this is the plain old format, taught everywhere and
still pretty useful for simple use cases. Note that some
constructs are no longer supported because they are incompatible with
newer features. These are mentioned in the compatibility docs.

	legacy rsyslog - these are statements that begin with a dollar
sign. They set some configuration parameters and modify e.g. the way
actions operate. This is the only format supported in pre-v6 versions
of rsyslog. It is still fully supported in v6 and above. Note that
some plugins and features may still only be available through legacy
format (because plugins need to be explicitly upgraded to use the
new style format, and this hasn’t happened to all plugins).

	RainerScript - the new style format. This is the best and most
precise format to be used for more complex cases. The rest of this
page assumes RainerScript based rsyslog.conf.

The rsyslog.conf files consists of statements. For old style (sysklogd &
legacy rsyslog), lines do matter. For new style (RainerScript) line
spacing is irrelevant. Most importantly, this means with new style
actions and all other objects can split across lines as users want to.

Recommended use of Statement Types

In general it is recommended to use RainerScript type statements, as
these provide clean and easy to read control-of-flow as well as
no doubt about which parameters are active. They also have no
side-effects with include files, which can be a major obstacle with
legacy rsyslog statements.

For very simple things sysklogd statement types are still suggested,
especially if the full config consists of such simple things. The
classical sample is writing to files (or forwarding) via priority.
In sysklogd, this looks like:

mail.info /var/log/mail.log
mail.err @server.example.net

This is hard to beat in simplicity, still being taught in courses
and a lot of people know this syntax. It is perfectly fine to use
these constructs even in newly written config files.

As a rule of thumb, RainerScript config statements should be used
when

	configuration parameters are required (e.g. the Action...
type of legacy statements)

	more elaborate control-of-flow is required (e.g. when multiple
actions must be nested under the same condition)

It is usually not recommended to use rsyslog legacy config format
(those directives starting with a dollar sign). However, a few
settings and modules have not yet been converted to RainerScript. In
those cases, the legacy syntax must be used.

Comments

There are two types of comments:

	#-Comments - start with a hash sign (#) and run to the end of the
line

	C-style Comments - start with /* and end with */, just like in
the C programming language. They can be used to comment out multiple
lines at once. Comment nesting is not supported, but #-Comments can be
contained inside a C-style comment.

Processing Order

Directives are processed from the top of rsyslog.conf to the bottom.
Order matters. For example, if you stop processing of a message,
obviously all statements after the stop statement are never evaluated.

Flow Control Statements

Flow control is provided by:

	Control Structures

	Filter Conditions

Data Manipulation Statements

Data manipulation is achieved by set, unset and reset statements
which are documented here in detail.

Inputs

Every input requires an input module to be loaded and a listener defined
for it. Full details can be found inside the rsyslog
modules documentation. Once loaded, inputs
are defined via the input() object.

Outputs

Outputs are also called “actions”. A small set of actions is pre-loaded
(like the output file writer, which is used in almost every
rsyslog.conf), others must be loaded just like inputs.

An action is invoked via the action(type=”type” ...) object. Type is
mandatory and must contain the name of the plugin to be called (e.g.
“omfile” or “ommongodb”). Other parameters may be present. Their type and
use depends on the output plugin in question.

Rulesets and Rules

Rulesets and rules form the basis of rsyslog processing. In short, a
rule is a way how rsyslog shall process a specific message. Usually,
there is a type of filter (if-statement) in front of the rule. Complex
nesting of rules is possible, much like in a programming language.

Rulesets are containers for rules. A single ruleset can contain many
rules. In the programming language analogy, one may think of a ruleset
like being a program. A ruleset can be “bound” (assigned) to a specific
input. In the analogy, this means that when a message comes in via that
input, the “program” (ruleset) bound to it will be executed (but not any
other!).

There is detailed documentation available for
rsyslog rulesets.

For quick reference, rulesets are defined as follows:

ruleset(name="rulesetname") {
 action(type="omfile" file="/path/to/file")
 action(type="..." ...)
 /* and so on... */
}

Templates

Templates are a key feature of rsyslog. They allow to specify any format
a user might want. They are also used for dynamic file name generation.
Every output in rsyslog uses templates - this holds true for files, user
messages and so on. The database writer expects its template to be a
proper SQL statement - so this is highly customizable too. You might ask
how does all of this work when no templates at all are specified. Good
question ;). The answer is simple, though. Templates are compatible with the
stock syslogd formats which are hardcoded into rsyslogd. So if no template is
specified, we use one of those hardcoded templates. Search for
“template_” in rsconf.c and you will find the hardcoded ones.

Templates are specified by template() statements. They can also be
specified via $template legacy statements.

Note: key elements of templates are rsyslog properties. See the
rsyslog properties reference for a list of which
are available.

Template processing

Due to lack of standarization regarding logs formats, when a template is
specified it’s supposed to include HEADER, as defined in RFC5424 [https://tools.ietf.org/html/rfc5424]

It’s very important to have this in mind, and also how to understand how
rsyslog parsing [http://www.rsyslog.com/doc/syslog_parsing.html] works

For example, if MSG field is set to “this:is a message” and no HOSTNAME,
neither TAG are specified, outgoing parser will split the message as:

TAG:this:
MSG:is a message

The template() statement

The template() statement is used to define templates. Note that it is a
static statement, that means all templates are defined when rsyslog
reads the config file. As such, templates are not affected by
if-statements or config nesting.

The basic structure of the template statement is as follows:

template(parameters)

In addition to this simpler syntax, list templates (to be described
below) support an extended syntax:

template(parameters) { list-descriptions }

Each template has a parameter name, which specifies the template
name, and a parameter type, which specifies the template type. The
name parameter must be unique, and behaviour is unpredictable if it is
not. The type parameter specifies different template types.
Different types simply enable different ways to specify the template
content. The template type does not affect what an (output) plugin
can do with it. So use the type that best fits your needs (from a config
writing point of view!). The following types are available:

	list

	subtree

	string

	plugin

The various types are described below.

list

In this case, the template is generated by a list of constant and
variable statements. These follow the template spec in curly braces.
This type is also primarily meant for use with structure-aware outputs,
like ommongodb. However, it also works perfectly with text-based
outputs. We recommend to use this mode if more complex property
substitutions need to be done. In that case, the list-based template
syntax is much clearer than the simple string-based one.

The list template contains the template header (with type=”list”)
and is followed by constant and property statements, given in
curly braces to signify the template statement they belong to. As the
name says, constant statements describe constant text and
property describes property access. There are many options to
property, described further below. Most of these options are used to
extract only partial property contents or to modify the text obtained
(like to change its case to upper or lower case, only).

To grasp the idea, an actual sample is:

template(name="tpl1" type="list") {
 constant(value="Syslog MSG is: '")
 property(name="msg")
 constant(value="', ")
 property(name="timereported" dateFormat="rfc3339" caseConversion="lower")
 constant(value="\n")
 }

This sample is probably primarily targeted at the usual file-based
output.

constant statement

This provides a way to specify constant text. The text is used
literally. It is primarily intended for text-based output, so that some
constant text can be included. For example, if a complex template is
built for file output, one usually needs to finish it by a newline,
which can be introduced by a constant statement. Here is an actual
sample of that use case from the rsylsog testbench:

template(name="outfmt" type="list") {
 property(name="$!usr!msgnum")
 constant(value="\n")
}

The following escape sequences are recognized inside the constant text:

	\\ - single backslash

	\n - LF

	\ooo - (three octal digits) - represents character with this
numerical value (e.g. \101 equals “A”). Note that three octal digits
must be given (in contrast to some languages, where between one and
three are valid). While we support octal notation, we recommend to
use hex notation as this is better known.

	\xhh - (where h is a hex digit) - represents character with this
numerical value (e.g. \x41 equals “A”). Note that two hexadecimal
digits must be given (in contrast to some languages where one or two
are valid).

	... some others ... list needs to be extended

Note: if an unsupported character follows a backslash, this is treated
as an error. Behaviour is unpredictable in this case.

To aid usage of the same template both for text-based outputs and
structured ones, constant text without an “outname” parameter will be
ignored when creating the name/value tree for structured outputs. So if
you want to supply some constant text e.g. to mongodb, you must include
an outname, as can be seen here:

template(name="outfmt" type="list") {
 property(name="$!usr!msgnum")
 constant(value="\n" outname="IWantThisInMyDB")
}

The “constant” statement supports the following parameters:

	value - the constant value to use

	outname - output field name (for structured outputs)

property statement

This statement is used to include property text. It can access all
properties. Also, options permit to specify picking only part of a
property or modifying it. It supports the following parameters:

	name - the name of the property to access

	outname - output field name (for structured outputs)

	dateformat - date format to use (only for date-related properties)

	date.inUTC - date shall be shown in UTC (please note that this
requires a bit more performance due to the necessary conversions)
Available since 8.18.0.

	caseconversion - permits to convert case of the text. Supported
values are “lower” and “upper”

	controlcharacters - specifies how to handle control characters.
Supported values are “escape”, which escapes them, “space”, which
replaces them by a single space, and “drop”, which simply removes
them from the string.

	securepath - used for creating pathnames suitable for use in dynafile
templates

	format - specify format on a field basis. Supported values are:
	“csv” for use when csv-data is
generated

	“json” which formats proper
json content (but without a field header)

	“jsonf” which formats as a
complete json field

	“jsonr” which avoids double
escaping the value but makes it safe for a json field

	“jsonfr” which is the
combination of “jsonf” and “jsonr”.

	position.from - obtain substring starting from this position (1 is
the first position)

	position.to - obtain substring up to this position

	position.relativeToEnd - the from and to position is relative to the
end of the string instead of the usual start of string. (available
since rsyslog v7.3.10)

	fixedwidth - changes behaviour of position.to so that it pads the
source string with spaces up to the value of position.to if the source
string is shorter. “on” or “off” (default) (available since rsyslog
v8.13.0)

	
	compressspace - compresses multiple spaces (US-ASCII SP character) inside the

	string to a single one. This compression happens at a very late
stage in processing. Most importantly, it happens after substring
extraction, so the position.from and position.to positions
are NOT affected by this option. (available since v8.18.0).

	field.number - obtain this field match

	field.delimiter - decimal value of delimiter character for field
extraction

	regex.expression - expression to use

	regex.type - either ERE or BRE

	regex.nomatchmode - what to do if we have no match

	regex.match - match to use

	regex.submatch - submatch to use

	droplastlf - drop a trailing LF, if it is present

	mandatory - signifies a field as mandatory. If set to “on”, this
field will always be present in data passed to structured outputs,
even if it is empty. If “off” (the default) empty fields will not be
passed to structured outputs. This is especially useful for outputs
that support dynamic schemas (like ommongodb).

	spifno1stsp - expert options for RFC3164 template processing

subtree

Available since rsyslog 7.1.4

In this case, the template is generated based on a complete (CEE)
subtree. This type of template is most useful for outputs that know how
to process hierarchical structure, like ommongodb. With that type, the
parameter subtree must be specified, which tells which subtree to
use. For example template(name=”tpl1” type=”subtree” subtree=”$!”)
includes all CEE data, while template(name=”tpl2” type=”subtree”
subtree=”$!usr!tpl2”) includes only the subtree starting at $!usr!tpl2.
The core idea when using this type of template is that the actual data
is prefabricated via set and unset script statements, and the resulting
structure is then used inside the template. This method MUST be used if
a complete subtree needs to be placed directly into the object’s root.
With all other template types, only subcontainers can be generated. Note
that subtree type can also be used with text-based outputs, like omfile.
HOWEVER, you do not have any capability to specify constant text, and as
such cannot include line breaks. As a consequence, using this template
type for text outputs is usually only useful for debugging or very
special cases (e.g. where the text is interpreted by a JSON parser later
on).

Use case

A typical use case is to first create a custom subtree and then include
it into the template, like in this small example:

set $!usr!tpl2!msg = $msg;
set $!usr!tpl2!dataflow = field($msg, 58, 2);
template(name="tpl2" type="subtree" subtree="$!usr!tpl2")

Here, we assume that $msg contains various fields, and the data from a
field is to be extracted and stored - together with the message - as
field content.

string

This closely resembles the legacy template statement. It has a mandatory
parameter string, which holds the template string to be applied. A
template string is a mix of constant text and replacement variables (see
property replacer). These variables are taken from message or other
dynamic content when the final string to be passed to a plugin is
generated. String-based templates are a great way to specify textual
content, especially if no complex manipulation to properties is
necessary.

This is a sample for a string-based template:

template(name="tpl3" type="string"
 string="%TIMESTAMP:::date-rfc3339% %HOSTNAME% %syslogtag%%msg:::sp-if-no-1st-sp%%msg:::drop-last-lf%\n"
)

The text between percent signs (‘%’) is interpreted by the rsyslog
property replacer. In a nutshell,
it contains the property to use as well as options for formatting
and further processing. This is very similar to what the property
object in list templates does (it actually is just a different language to
express most of the same things).

Everything outside of the percent signs is constant text. In the
above case, we have mostly spaces between the property values. At the
end of the string, an escape sequence is used.

Escape sequences permit to specify nonprintable characters. They work
very similar to escape sequences in C and many other languages. They
are initiated by the backslash characters and followed by one or more
characters that specify the actual character. For example \7 is the
US-ASCII BEL character and \n is a newline. The set is similar to
what C and perl support, but a bit more limited.

plugin

In this case, the template is generated by a plugin (which is then
called a “strgen” or “string generator”). The format is fixed as it is
coded. While this is inflexible, it provides superior performance, and
is often used for that reason (not that “regular” templates are slow -
but in very demanding environments that “last bit” can make a
difference). Refer to the plugin’s documentation for further details.
For this type, the parameter plugin must be specified and must
contain the name of the plugin as it identifies itself. Note that the
plugin must be loaded prior to being used inside a template.
Config example:

template(name="tpl4" type="plugin" plugin="mystrgen")

options

The <options> part is optional. It carries options influencing the
template as a whole and is a part of the template parameters. See details
below. Be sure NOT to mistake template options with property options -
the latter ones are processed by the property replacer and apply to a
SINGLE property, only (and not the whole template).
Template options are case-insensitive. Currently defined are:

option.sql - format the string suitable for a SQL statement in MySQL
format. This will replace single quotes (“’”) and the backslash
character by their backslash-escaped counterpart (“\’” and “\\”)
inside each field. Please note that in MySQL configuration, the
NO_BACKSLASH_ESCAPES mode must be turned off for this format to work
(this is the default).

option.stdsql - format the string suitable for a SQL statement that
is to be sent to a standards-compliant sql server. This will replace
single quotes (“’”) by two single quotes (“’‘”) inside each field. You
must use stdsql together with MySQL if in MySQL configuration the
NO_BACKSLASH_ESCAPES is turned on.

option.json - format the string suitable for a json statement. This
will replace single quotes (“’”) by two single quotes (“’‘”) inside each
field.

option.casesensitive - treat property name references as case
sensitive. The default is “off”, where all property name references are
first converted to lowercase during template definition. With this
option turned “on”, property names are looked up as defined in the
template. Use this option if you have JSON ($!*), local (!.*),
or global ($!*) properties which container uppercase letters. The
normal Rsyslog properties are case-insensitive, so this option is not
needed for properly referencing those properties.

The use the options option.sql, option.stdsql, and
option.json are mutually exclusive. Using more than one at the same
time can cause unpredictable behaviour.

Either the sql or stdsql

 rsyslog Properties

rsyslog Properties

Data items in rsyslog are called “properties”. They can have different
origin. The most important ones are those that stem from received
messages. But there are also others. Whenever you want to access data items,
you need to access the resprective property.

Properties are used in

	templates

	conditional statements

The property name is case-insensitive (prior to 3.17.0, they were case-senstive).

Message Properties

These are extracted by rsyslog parsers from the original message. All message
properties start with a letter.

The following message properties exist:

	msg

	the MSG part of the message (aka “the message” ;))

	rawmsg

	the message “as is”. Should be useful for debugging and also if a message
should be forwarded totally unaltered.
Please notice EscapecontrolCharactersOnReceive is enabled by default, so
it may be different from what was received in the socket.

	rawmsg-after-pri

	Almost the same as rawmsg, but the syslog PRI is removed.
If no PRI was present, rawmsg-after-pri is identical to
rawmsg. Note that the syslog PRI is header field that
contains information on syslog facility and severity. It is
enclosed in greater-than and less-than characters, e.g.
“<191>”. This field is often not written to log files, but
usually needs to be present for the receiver to properly
classify the message. There are some rare cases where one
wants the raw message, but not the PRI. You can use this
property to obtain that. In general, you should know that you
need this format, otherwise stay away from the property.

	hostname

	hostname from the message

	source

	alias for HOSTNAME

	fromhost

	hostname of the system the message was received from (in a relay chain,
this is the system immediately in front of us and not necessarily the
original sender). This is a DNS-resolved name, except if that is not
possible or DNS resolution has been disabled.

	fromhost-ip

	The same as fromhost, but always as an IP address. Local inputs (like
imklog) use 127.0.0.1 in this property.

	syslogtag

	TAG from the message

	programname

	the “static” part of the tag, as defined by BSD syslogd. For example,
when TAG is “named[12345]”, programname is “named”.

Precisely, the programname is terminated by either (whichever occurs first):

	end of tag

	nonprintable character

	‘:’

	‘[‘

	‘/’

The above definition has been taken from the FreeBSD syslogd sources.

Please note that some applications include slashes in the static part
of the tag, e.g. “app/foo[1234]”. In this case, programname is “app”.
If they store an absolute path name like in “/app/foo[1234]”, programname
will become empty (“”). If you need to actually store slashes as
part of the programname, you can use the global option

global(parser.permitSlashInProgramName=”on”)

to permit this. Then, a syslogtag of “/app/foo[1234]” will result in
programname being “/app/foo”. Note: this option is available starting at
rsyslogd version 8.25.0.

	pri

	PRI part of the message - undecoded (single value)

	pri-text

	the PRI part of the message in a textual form with the numerical PRI
appended in brackes (e.g. “local0.err<133>”)

	iut

	the monitorware InfoUnitType - used when talking to a
MonitorWare [http://www.monitorware.com] backend (also for
Adiscon LogAnalyzer [http://loganalyzer.adiscon.com/])

	syslogfacility

	the facility from the message - in numerical form

	syslogfacility-text

	the facility from the message - in text form

	syslogseverity

	severity from the message - in numerical form

	syslogseverity-text

	severity from the message - in text form

	syslogpriority

	an alias for syslogseverity - included for historical reasons (be
careful: it still is the severity, not PRI!)

	syslogpriority-text

	an alias for syslogseverity-text

	timegenerated

	timestamp when the message was RECEIVED. Always in high resolution

	timereported

	timestamp from the message. Resolution depends on what was provided in
the message (in most cases, only seconds)

	timestamp

	alias for timereported

	protocol-version

	The contents of the PROTCOL-VERSION field from IETF draft
draft-ietf-syslog-protcol

	structured-data

	The contents of the STRUCTURED-DATA field from IETF draft
draft-ietf-syslog-protocol

	app-name

	The contents of the APP-NAME field from IETF draft
draft-ietf-syslog-protocol

	procid

	The contents of the PROCID field from IETF draft
draft-ietf-syslog-protocol

	msgid

	The contents of the MSGID field from IETF draft
draft-ietf-syslog-protocol

	inputname

	The name of the input module that generated the message (e.g.
“imuxsock”, “imudp”). Note that not all modules necessarily provide this
property. If not provided, it is an empty string. Also note that the
input module may provide any value of its liking. Most importantly, it
is not necessarily the module input name. Internal sources can also
provide inputnames. Currently, “rsyslogd” is defined as inputname for
messages internally generated by rsyslogd, for example startup and
shutdown and error messages. This property is considered useful when
trying to filter messages based on where they originated - e.g. locally
generated messages (“rsyslogd”, “imuxsock”, “imklog”) should go to a
different place than messages generated somewhere.

jsonmesg

Available since rsyslog 8.3.0

The whole message object as JSON representation. Note that the JSON
string will not include and LF and it will contain all other message
properties specified here as respective JSON containers. It also includes
all message variables in the “$!” subtree (this may be null if none are
present).

This property is primarily meant as an interface to other systems and
tools that want access to the full property set (namely external
plugins). Note that it contains the same data items potentially multiple
times. For example, parts of the syslog tag will by containened in the
rawmsg, syslogtag, and programname properties. As such, this property
has some additional overhead. Thus, it is suggested to be used only
when there is actual need for it.

System Properties

These properties are provided by the rsyslog core engine. They are not
related to the message. All system properties start with a dollar-sign.

Special care needs to be taken in regard to time-related system variables:

	timereported contains the timestamp that is contained within the
message header. Ideally, it resembles the time when the message was
created at the original sender.
Depending on how long the message was in the relay chain, this
can be quite old.

	timegenerated contains the timestamp when the message was received
by the local system. Here “received” actually means the point in time
when the message was handed over from the OS to rsyslog’s reception
buffers, but before any actual processing takes place. This also means
a message is “received” before it is placed into any queue. Note that
depending on the input, some minimal processing like extraction of the
actual message content from the receive buffer can happen. If multiple
messages are received via the same receive buffer (a common scenario
for example with TCP-based syslog), they bear the same timegenerated
stamp because they actually were received at the same time.

	$now is not from the message. It is the system time when the
message is being processed. There is always a small difference
between timegenerated and $now because processing always
happens after reception. If the message is sitting inside a queue
on the local system, the time difference between the two can be some
seconds (e.g. due to a message burst and in-memory queueing) up to
several hours in extreme cases where a message is sitting inside a
disk queue (e.g. due to a database outage). The timereported
property is usually older than timegenerated, but may be totally
different due to differences in time and time zone configuration
between systems.

The following system properties exist:

	$bom

	The UTF-8 encoded Unicode byte-order mask (BOM). This may be useful in
templates for RFC5424 support, when the character set is know to be
Unicode.

	$myhostname

	The name of the current host as it knows itself (probably useful for
filtering in a generic way)

Time-Related System Properties

All of these system properties exist in a local time variant (e.g. $now)
and a variant that emits UTC (e.g. $now-utc). The UTC variant is always
available by appending “-utc”. Note that within a single template, only
the localtime or UTC variant should be used. It is possible to mix both
variants within a single template. However, in this case it is not
guaranteed that both variants given exactly the same time. The technical
reason behind is that rsyslog needs to re-query system time when the
variant is changed. So we strongly recommend not mixing both variants in
the same template.

Note that use in different templates will generate a consistent timestamp
within each template. However, as $now always provides local system time
at time of using it, time may advance and consequently different templates
may have different time stamp. To avoid this, use timegenerated instead.

	$now

	The current date stamp in the format YYYY-MM-DD

	$year

	The current year (4-digit)

	$month

	The current month (2-digit)

	$day

	The current day of the month (2-digit)

	$hour

	The current hour in military (24 hour) time (2-digit)

	$hhour

	The current half hour we are in. From minute 0 to 29, this is always 0
while from 30 to 59 it is always 1.

	$qhour

	The current quarter hour we are in. Much like $HHOUR, but values range
from 0 to 3 (for the four quater hours that are in each hour)

	$minute

	The current minute (2-digit)

 The Property Replacer

The Property Replacer

The property replacer is a core component in rsyslogd’s string template
system. A syslog message has a number of well-defined properties.
Each of this properties can be accessed and manipulated by
the property replacer. With it, it is easy to use only part of a
property value or manipulate the value, e.g. by converting all
characters to lower case.

Accessing Properties

Syslog message properties are used inside templates. They are accessed
by putting them between percent signs. Properties can be modified by the
property replacer. The full syntax is as follows:

%property:fromChar:toChar:options%

Available Properties

The property replacer can use all rsyslog properties.

Character Positions

FromChar and toChar are used to build substrings. They
specify the offset within the string that should be copied. Offset
counting starts at 1, so if you need to obtain the first 2 characters of
the message text, you can use this syntax: “%msg:1:2%”. If you do not
whish to specify from and to, but you want to specify options, you still
need to include the colons. For example, if you would like to convert
the full message text to lower case, use “%msg:::lowercase%”. If you
would like to extract from a position until the end of the string, you
can place a dollar-sign (“$”) in toChar (e.g. %msg:10:$%, which will
extract from position 10 to the end of the string).

There is also support for regular expressions. To use them, you need
to place a “R” into FromChar. This tells rsyslog that a regular
expression instead of position-based extraction is desired. The actual
regular expression must then be provided in toChar. The regular
expression must be followed by the string “–end”. It denotes the
end of the regular expression and will not become part of it. If you are
using regular expressions, the property replacer will return the part of
the property text that matches the regular expression. An example for a
property replacer sequence with a regular expression is:
“%msg:R:.*Sev:. \(.*\) \[.*–end%”

It is possible to specify some parametes after the “R”. These are
comma-separated. They are:

R,<regexp-type>,<submatch>,<nomatch>,<match-number>

regexp-type is either “BRE” for Posix basic regular expressions or “ERE”
for extended ones. The string must be given in upper case. The default
is “BRE” to be consistent with earlier versions of rsyslog that did not
support ERE. The submatch identifies the submatch to be used with the
result. A single digit is supported. Match 0 is the full match, while 1
to 9 are the acutal submatches. The match-number identifies which match
to use, if the expression occurs more than once inside the string.
Please note that the first match is number 0, the second 1 and so on. Up
to 10 matches (up to number 9) are supported. Please note that it would
be more natural to have the match-number in front of submatch, but this
would break backward-compatibility. So the match-number must be
specified after “nomatch”.

nomatch specifies what should be used in
case no match is found.

The following is a sample of an ERE expression that takes the first
submatch from the message string and replaces the expression with the
full field if no match is found:

%msg:R,ERE,1,FIELD:for (vlan[0-9]*):--end%

and this takes the first submatch of the second match of said
expression:

%msg:R,ERE,1,FIELD,1:for (vlan[0-9]*):--end%

Please note: there is also a rsyslog regular expression
checker/generator [http://www.rsyslog.com/tool-regex] online tool
available. With that tool, you can check your regular expressions and
also generate a valid property replacer sequence. Usage of this tool is
recommended. Depending on the version offered, the tool may not cover
all subleties that can be done with the property replacer. It
concentrates on the most often used cases. So it is still useful to
hand-craft expressions for demanding environments.

Also, extraction can be done based on so-called “fields”. To do so,
place a “F” into FromChar. A field in its current definition is anything
that is delimited by a delimiter character. The delimiter by default is
TAB (US-ASCII value 9). However, if can be changed to any other US-ASCII
character by specifying a comma and the decimal US-ASCII value of
the delimiter immediately after the “F”. For example, to use comma (”,”)
as a delimiter, use this field specifier: “F,44”.

 Property Replacer nomatch mode

Property Replacer nomatch mode

The “nomatch-Mode” specifies which string the property replacer shall
return if a regular expression did not find the search string..
Traditionally, the string “**NO MATCH**” was returned, but many
people complained this was almost never useful. Still, this mode is
support as “DFLT” for legacy configurations.

Three additional and potentially useful modes exist: in one (BLANK)
a blank string is returned. This is probably useful for inserting values
into databases where no value shall be inserted if the expression could
not be found.

A similar mode is “ZERO” where the string “0” is returned. This is
suitable for numerical values. A use case may be that you record a
traffic log based on firewall rules and the “bytes transmitted” counter
is extracted via a regular expression. If no “bytes transmitted” counter
is available in the current message, it is probably a good idea to
return an empty string, which the database layer can turn into a zero.

The other mode is “FIELD”, in which the complete field is
returned. This may be useful in cases where absense of a match is
considered a failure and the message that triggered it shall be logged.

If in doubt, it is highly suggested to use the rsyslog online regular
expression checker and generator [http://www.rsyslog.com/tool-regex]
to see these options in action. With that online tool, you can craft
regular expressions based on samples and try out the different modes.

Summary of nomatch Modes

	Mode
	Returned

	DFLT
	“**NO MATCH**”

	BLANK
	“” (empty string)

	ZERO
	“0”

	FIELD
	full content of original field

	
	Interactive Tool [http://www.rsyslog.com/tool-regex]

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2008-2014 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 Filter Conditions

Filter Conditions

Rsyslog offers four different types “filter conditions”:

	“traditional” severity and facility based selectors

	property-based filters

	expression-based filters

	BSD-style blocks (not upward compatible)

Selectors

Selectors are the traditional way of filtering syslog messages. They
have been kept in rsyslog with their original syntax, because it is
well-known, highly effective and also needed for compatibility with
stock syslogd configuration files. If you just need to filter based on
priority and facility, you should do this with selector lines. They are
not second-class citizens in rsyslog and offer the best performance
for this job.

The selector field itself again consists of two parts, a facility and a
priority, separated by a period (”.’‘). Both parts are case insensitive
and can also be specified as decimal numbers, but don’t do that, you
have been warned. Both facilities and priorities are described in
syslog(3). The names mentioned below correspond to the similar
LOG_-values in /usr/include/syslog.h.

The facility is one of the following keywords: auth, authpriv, cron,
daemon, kern, lpr, mail, mark, news, security (same as auth), syslog,
user, uucp and local0 through local7. The keyword security should not be
used anymore and mark is only for internal use and therefore should not
be used in applications. Anyway, you may want to specify and redirect
these messages here. The facility specifies the subsystem that produced
the message, i.e. all mail programs log with the mail facility
(LOG_MAIL) if they log using syslog.

The priority is one of the following keywords, in ascending order:
debug, info, notice, warning, warn (same as warning), err, error (same
as err), crit, alert, emerg, panic (same as emerg). The keywords error,
warn and panic are deprecated and should not be used anymore. The
priority defines the severity of the message.

The behavior of the original BSD syslogd is that all messages of the
specified priority and higher are logged according to the given action.
Rsyslogd behaves the same, but has some extensions.

In addition to the above mentioned names the rsyslogd(8) understands
the following extensions: An asterisk (“*’‘) stands for all facilities
or all priorities, depending on where it is used (before or after the
period). The keyword none stands for no priority of the given facility.
You can specify multiple facilities with the same priority pattern in
one statement using the comma (”,’‘) operator. You may specify as much
facilities as you want. Remember that only the facility part from such a
statement is taken, a priority part would be skipped.

Multiple selectors may be specified for a single action using the
semicolon (”;’‘) separator. Remember that each selector in the selector
field is capable to overwrite the preceding ones. Using this behavior
you can exclude some priorities from the pattern.

Rsyslogd has a syntax extension to the original BSD source, that makes
its use more intuitively. You may precede every priority with an equals
sign (“=’‘) to specify only this single priority and not any of the
above. You may also (both is valid, too) precede the priority with an
exclamation mark (”!’‘) to ignore all that priorities, either exact this
one or this and any higher priority. If you use both extensions than the
exclamation mark must occur before the equals sign, just use it
intuitively.

Property-Based Filters

Property-based filters are unique to rsyslogd. They allow to filter on
any property, like HOSTNAME, syslogtag and msg. A list of all
currently-supported properties can be found in the property replacer
documentation (but keep in mind that only the
properties, not the replacer is supported). With this filter, each
properties can be checked against a specified value, using a specified
compare operation.

A property-based filter must start with a colon in column 1. This tells
rsyslogd that it is the new filter type. The colon must be followed by
the property name, a comma, the name of the compare operation to carry
out, another comma and then the value to compare against. This value
must be quoted. There can be spaces and tabs between the commas.
Property names and compare operations are case-sensitive, so “msg”
works, while “MSG” is an invalid property name. In brief, the syntax is
as follows:

:property, [!]compare-operation, "value"

Compare-Operations

The following compare-operations are currently supported:

	contains

	Checks if the string provided in value is contained in the property.
There must be an exact match, wildcards are not supported.

	isequal

	Compares the “value” string provided and the property contents. These
two values must be exactly equal to match. The difference to contains is
that contains searches for the value anywhere inside the property value,
whereas all characters must be identical for isequal. As such, isequal
is most useful for fields like syslogtag or FROMHOST, where you probably
know the exact contents.

	startswith

	Checks if the value is found exactly at the beginning of the property
value. For example, if you search for “val” with

:msg, startswith, "val"

it will be a match if msg contains “values are in this message” but it
won’t match if the msg contains “There are values in this message” (in
the later case, “contains” would match). Please note that “startswith” is
by far faster than regular expressions. So even once they are
implemented, it can make very much sense (performance-wise) to use
“startswith”.

	regex

	Compares the property against the provided POSIX BRE regular expression.

	ereregex

	Compares the property against the provided POSIX ERE regular expression.

You can use the bang-character (!) immediately in front of a
compare-operation, the outcome of this operation is negated. For
example, if msg contains “This is an informative message”, the following
sample would not match:

:msg, contains, "error"

but this one matches:

:msg, !contains, "error"

Using negation can be useful if you would like to do some generic
processing but exclude some specific events. You can use the discard
action in conjunction with that. A sample would be:

. /var/log/allmsgs-including-informational.log
:msg, contains, "informational" ~
. /var/log/allmsgs-but-informational.log

Do not overlook the tilde in line 2! In this sample, all messages
are written to the file allmsgs-including-informational.log. Then, all
messages containing the string “informational” are discarded. That means
the config file lines below the “discard line” (number 2 in our sample)
will not be applied to this message. Then, all remaining lines will also
be written to the file allmsgs-but-informational.log.

Value Part

Value is a quoted string. It supports some escape sequences:

	\” - the quote character (e.g. “String with \”Quotes\””)

	\\ - the backslash character (e.g. “C:\\tmp”)

Escape sequences always start with a backslash. Additional escape
sequences might be added in the future. Backslash characters must be
escaped. Any other sequence then those outlined above is invalid and may
lead to unpredictable results.

Probably, “msg” is the most prominent use case of property based
filters. It is the actual message text. If you would like to filter
based on some message content (e.g. the presence of a specific code),
this can be done easily by:

:msg, contains, "ID-4711"

This filter will match when the message contains the string “ID-4711”.
Please note that the comparison is case-sensitive, so it would not match
if “id-4711” would be contained in the message.

:msg, regex, "fatal .* error"

This filter uses a POSIX regular expression. It matches when the string
contains the words “fatal” and “error” with anything in between (e.g.
“fatal net error” and “fatal lib error” but not “fatal error” as two
spaces are required by the regular expression!).

Getting property-based filters right can sometimes be challenging. In
order to help you do it with as minimal effort as possible, rsyslogd
spits out debug information for all property-based filters during their
evaluation. To enable this, run rsyslogd in foreground and specify the
“-d” option.

Boolean operations inside property based filters (like ‘message contains
“ID17” or message contains “ID18”’) are currently not supported (except
for “not” as outlined above). Please note that while it is possible to
query facility and severity via property-based filters, it is far more
advisable to use classic selectors (see above) for those cases.

Expression-Based Filters

Expression based filters allow filtering on arbitrary complex
expressions, which can include boolean, arithmetic and string
operations. Expression filters will evolve into a full configuration
scripting language. Unfortunately, their syntax will slightly change
during that process. So if you use them now, you need to be prepared to
change your configuration files some time later. However, we try to
implement the scripting facility as soon as possible (also in respect to
stage work needed). So the window of exposure is probably not too long.

Expression based filters are indicated by the keyword “if” in column 1
of a new line. They have this format:

if expr then action-part-of-selector-line

“if” and “then” are fixed keywords that mus be present. “expr” is a
(potentially quite complex) expression. So the expression
documentation for details.
“action-part-of-selector-line” is an action, just as you know it (e.g.
“/var/log/logfile” to write to that file).

BSD-style Blocks

Note: rsyslog v7+ does no longer support BSD-style blocks
for technical reasons. So it is strongly recommended not to
use them.

Rsyslogd supports BSD-style blocks inside rsyslog.conf. Each block of
lines is separated from the previous block by a program or hostname
specification. A block will only log messages corresponding to the most
recent program and hostname specifications given. Thus, a block which
selects ‘ppp’ as the program, directly followed by a block that selects
messages from the hostname ‘dialhost’, then the second block will only
log messages from the ppp program on dialhost.

A program specification is a line beginning with ‘!prog’ and the
following blocks will be associated with calls to syslog from that
specific program. A program specification for ‘foo’ will also match any
message logged by the kernel with the prefix ‘foo: ’. Alternatively, a
program specification ‘-foo’ causes the following blocks to be applied
to messages from any program but the one specified. A hostname
specification of the form ‘+hostname’ and the following blocks will be
applied to messages received from the specified hostname. Alternatively,
a hostname specification ‘-hostname’ causes the following blocks to be
applied to messages from any host but the one specified. If the hostname
is given as ‘@’, the local hostname will be used. (NOT YET IMPLEMENTED)
A program or hostname specification may be reset by giving the program
or hostname as ‘*’.

Please note that the “#!prog”, “#+hostname” and “#-hostname” syntax
available in BSD syslogd is not supported by rsyslogd. By default, no
hostname or program is set.

Examples

. /var/log/file1 # the traditional way
if $msg contains 'error' then /var/log/errlog # the expression-based way

Right now, you need to specify numerical values if you would like to
check for facilities and severity. These can be found in RFC 5424 [https://tools.ietf.org/html/rfc5424.html].
If you don’t like that,
you can of course also use the textual property - just be sure to use
the right one. As expression support is enhanced, this will change. For
example, if you would like to filter on message that have facility
local0, start with “DEVNAME” and have either “error1” or “error0” in
their message content, you could use the following filter:

if $syslogfacility-text == 'local0' and $msg startswith 'DEVNAME' and ($msg contains 'error1' or $msg contains 'error0') then /var/log/somelog

Please note that the above must all be on one line! And if you would
like to store all messages except those that contain “error1” or
“error0”, you just need to add a “not”:

if $syslogfacility-text == 'local0' and $msg startswith 'DEVNAME' and not ($msg contains 'error1' or $msg contains 'error0') then /var/log/somelog

If you would like to do case-insensitive comparisons, use “contains_i”
instead of “contains” and “startswith_i” instead of “startswith”.
Note that regular expressions are currently NOT supported in
expression-based filters. These will be added later when function
support is added to the expression engine (the reason is that regular
expressions will be a separate loadable module, which requires some more
prequisites before it can be implemented).

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2008-2014 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 RainerScript

RainerScript

RainerScript is a scripting language specifically designed and
well-suited for processing network events and configuring event
processors.
It is the prime configuration language used for rsyslog.
Please note that RainerScript may not be abreviated as rscript,
because that’s somebody else’s trademark.

Some limited RainerScript support is available since rsyslog 3.12.0
(for expression support). In v5, “if .. then” statements are supported.
The first full implementation is available since rsyslog v6.

	Data Types

	Expressions

	Functions
	getenv(str)

	strlen(str)

	tolower(str)

	cstr(expr)

	cnum(expr)

	wrap(str, wrapper_str)

	wrap(str, wrapper_str, escaper_str)

	replace(str, substr_to_replace, replace_with)

	re_match(expr, re)

	re_extract(expr, re, match, submatch, no-found)

	field(str, delim, matchnbr)

	exec_template

	prifilt(constant)

	dyn_inc(bucket_name_litteral_string, str)

	lookup(table_name_litteral_string, key)

	num2ipv4

	ipv42num

	ltrim

	rtrim

	Control Structures
	if

	if/else-if/else

	foreach

	call

	continue

	configuration objects
	action()

	global()

	input()

	module()

	parser()

	timezone()

	Constant Strings

	Variable (Property) types
	set

	unset

	reset

	Lookup Tables

	General Queue Parameters

	The rsyslog “call” statement
	syntax

	related links

	The rsyslog “call_indirect” statement
	syntax

	examples

	additional information

	global() configuration object

 Data Types

Data Types

RainerScript is a typeless language. That doesn’t imply you don’t need
to care about types. Of course, expressions like “A” + “B” will not
return a valid result, as you can’t really add two letters (to
concatenate them, use the concatenation operator &).

 Expressions

Expressions

The language supports arbitrary complex expressions. All usual operators
are supported. The precedence of operations is as follows (with
operations being higher in the list being carried out before those lower
in the list, e.g. multiplications are done before additions.

	expressions in parenthesis

	not, unary minus

	*, /, % (modulus, as in C)

	+, -, & (string concatenation)

	==, !=, <>, <, >, <=, >=, contains (strings!), startswith (strings!)

	and

	or

For example, “not a == b” probably returns not what you intended. The
script processor will first evaluate “not a” and then compare the
resulting boolean to the value of b. What you probably intended to do is
“not (a == b)”. And if you just want to test for inequality, we highly
suggest to use ”!=” or “<>”. Both are exactly the same and are provided
so that you can pick whichever you like best. So inquality of a and b
should be tested as “a <> b”. The “not” operator should be reserved to
cases where it actually is needed to form a complex boolean expression.
In those cases, parenthesis are highly recommended.

 Functions

Functions

RainerScript supports a currently quite limited set of functions:

getenv(str)

like the OS call, returns the value of the environment
variable, if it exists. Returns an empty string if it does not exist.

The following example can be used to build a dynamic filter based on
some environment variable:

if $msg contains getenv('TRIGGERVAR') then /path/to/errfile

strlen(str)

returns the length of the provided string

tolower(str)

converts the provided string into lowercase

cstr(expr)

converts expr to a string value

cnum(expr)

converts expr to a number (integer)
Note: if the expression does not contain a numerical value,
behaviour is undefined.

wrap(str, wrapper_str)

returns the str wrapped with wrapper_str. Eg.

wrap("foo bar", "##")

produces

"##foo bar##"

wrap(str, wrapper_str, escaper_str)

returns the str wrapped with wrapper_str.
But additionally, any instances of wrapper_str appearing in str would be replaced
by the escaper_str. Eg.

wrap("foo'bar", "'", "_")

produces

"'foo_bar'"

replace(str, substr_to_replace, replace_with)

returns new string with all instances of substr_to_replace replaced
by replace_with. Eg.

replace("foo bar baz", " b", ", B")

produces

"foo, Bar, Baz".

re_match(expr, re)

returns 1, if expr matches re, 0 otherwise. Uses POSIX ERE.

re_extract(expr, re, match, submatch, no-found)

extracts data from a string (property) via a regular expression match.
POSIX ERE regular expressions are used. The variable “match” contains
the number of the match to use. This permits to pick up more than the
first expression match. Submatch is the submatch to match (max 50 supported).
The “no-found” parameter specifies which string is to be returned in case
when the regular expression is not found. Note that match and
submatch start with zero. It currently is not possible to extract
more than one submatch with a single call.

field(str, delim, matchnbr)

returns a field-based substring. str is
the string to search, delim is the delimiter and matchnbr is the
match to search for (the first match starts at 1). This works similar
as the field based property-replacer option. Versions prior to 7.3.7
only support a single character as delimiter character. Starting with
version 7.3.7, a full string can be used as delimiter. If a single
character is being used as delimiter, delim is the numerical ascii
value of the field delimiter character (so that non-printable
characters can by specified). If a string is used as delmiter, a
multi-character string (e.g. “#011”) is to be specified.

Note that when a single character is specified as string
field($msg, ",", 3) a string-based extraction is done, which is
more performance intense than the equivalent single-character
field($msg, 44 ,3) extraction. Eg.

set $!usr!field = field($msg, 32, 3); -- the third field, delimited by space

set $!usr!field = field($msg, "#011", 2); -- the second field, delmited by "#011"

exec_template

Sets a variable through the execution of a template. Basically this permits to easily
extract some part of a property and use it later as any other variable.

template(name="extract" type="string" string="%msg:F:5%")
set $!xyz = exec_template("extract");

the variable xyz can now be used to apply some filtering :

if $!xyz contains 'abc' then {action()}

or to build dynamically a file path :

template(name="DynaFile" type="string" string="/var/log/%$!xyz%-data/%timereported%-%$!xyz%.log")

Read more about it here : http://www.rsyslog.com/how-to-use-set-variable-and-exec_template

prifilt(constant)

mimics a traditional PRI-based filter (like
“*.*” or “mail.info”). The traditional filter string must be given
as a constant string. Dynamic string evaluation is not permitted
(for performance reasons).

dyn_inc(bucket_name_litteral_string, str)

Increments counter identified by str in dyn-stats bucket identified
by bucket_name_litteral_string. Returns 0 when increment is successful,
any other return value indicates increment failed.

Counters updated here are reported by impstats.

Except for special circumstances (such as memory allocation failing etc),
increment may fail due to metric-name cardinality being under-estimated.
Bucket is configured to support a maximum cardinality (to prevent abuse)
and it rejects increment-operation if it encounters a new(previously unseen)
metric-name(str) when full.

Read more about it here Dynamic Stats

lookup(table_name_litteral_string, key)

Lookup tables are a powerful construct to obtain class information based
on message content. It works on top of a data-file which maps key (to be looked
up) to value (the result of lookup).

The idea is to use a message properties (or derivatives of it) as an index
into a table which then returns another value. For example, $fromhost-ip
could be used as an index, with the table value representing the type of
server or the department or remote office it is located in.

Read more about it here Lookup Tables

num2ipv4

Converts an integer into an IPv4-address and returns the address as string.
Input is an integer with a value between 0 and 4294967295. The output format
is ‘>decimal<.>decimal<.>decimal<.>decimal<’ and ‘-1’ if the integer input is invalid
ot the function encounters a problem.

ipv42num

Converts an IPv4-address into an integer and returns the integer. Input is a string;
the expected address format may include spaces in the beginning and end, but must not
contain any other characters in between (except dots). If the format does include these, the
function results in an error and returns -1.

ltrim

Removes any spaces at the start of a given string. Input is a string, output
is the same string starting with the first non-space charakter.

rtrim

Removes any spaces at the end of a given string. Input is a string, output
is the same string ending with the last non-space charakter.

 Control Structures

Control Structures

Control structures in RainerScript are similar in semantics to a lot
of other mainstream languages such as C, Java, Javascript, Ruby,
Bash etc.
So this section assumes the reader is familier with semantics of such
structures, and goes about describing RainerScript implementation in
usage-example form rather than by formal-definition and
detailed semantics documentation.

RainerScript supports following control structures:

if

if ($msg contains "important") then {
 if ($. foo != "") then set $.foo = $.bar & $.baz;
 action(type="omfile" file="/var/log/important.log" template="outfmt")
}

if/else-if/else

if ($msg contains "important") then {
 set $.foo = $.bar & $.baz;
 action(type="omfile" file="/var/log/important.log" template="outfmt")
} else if ($msg startswith "slow-query:") then {
 action(type="omfile" file="/var/log/slow_log.log" template="outfmt")
} else {
 set $.foo = $.quux;
 action(type="omfile" file="/var/log/general.log" template="outfmt")
}

foreach

Foreach can iterate both arrays and objects. As opposed to array-iteration (which is ordered),
object-iteration accesses key-values in arbitrary order (is unordered).

For the foreach invocation below:

foreach ($.i in $.collection) do {
 ...
}

Say $.collection holds an array [1, "2", {"a": "b"}, 4], value of $.i across
invocations would be 1, "2", {"a" : "b"} and 4.

When $.collection holds an object {"a": "b", "c" : [1, 2, 3], "d" : {"foo": "bar"}}, value of $.i across
invocations would be {"key" : "a", "value" : "b"}, {"key" : "c", "value" : [1, 2, 3]} and {"key" : "d", "value" : {"foo" : "bar"}}
(not necessarily in the that order). In this case key and value will need to be accessed as $.i!key and $.i!value respectively.

Here is an example of a nested foreach statement:

foreach ($.quux in $!foo) do {
 action(type="omfile" file="./rsyslog.out.log" template="quux")
 foreach ($.corge in $.quux!bar) do {
 reset $.grault = $.corge;
 action(type="omfile" file="./rsyslog.out.log" template="grault")
 if ($.garply != "") then
 set $.garply = $.garply & ", ";
 reset $.garply = $.garply & $.grault!baz;
 }
}

Please note that asynchronous-action calls in foreach-statement body should
almost always set action.copyMsg to on. This is because action calls within foreach
usually want to work with the variable loop populates(in the above example, $.quux and $.corge)
which causes message-mutation and async-action must see message as it was in
a certain invocation of loop-body, so they must make a copy to keep it safe
from further modification as iteration continues. For instance, an async-action
invocation with linked-list based queue would look like:

foreach ($.quux in $!foo) do {
 action(type="omfile" file="./rsyslog.out.log" template="quux" queue.type="linkedlist" action.copyMsg="on")
}

call

Details here: The rsyslog “call” statement

continue

a NOP, useful e.g. inside the then part of an if

 configuration objects

configuration objects

action()

The action object is the primary means of
describing actions to be carried out.

global()

This is used to set global configuration parameters. For details, please
see the rsyslog global configuration object.

input()

The input object is the primary means of
describing inputs, which are used to gather messages for rsyslog processing.

module()

The module object is used to load plugins.

parser()

The parser object is used to define
custom parser objects.

timezone()

The timezone object is used to define
timezone settings.

 Constant Strings

Constant Strings

String constants are necessary in many places: comparisons,
configuration parameter values and function arguments, to name a few
important ones.

In constant strings, special characters are escape by prepending a
backslash in front of them – just in the same way this is done in the C
programming language or PHP.

If in doubt how to properly escape, use the RainerScript String Escape
Online
Tool [http://www.rsyslog.com/rainerscript-constant-string-escaper/].

 Variable (Property) types

Variable (Property) types

All rsyslog properties (see the properties page for a list) can be used in
RainerScript by prefixing them with “$”, for example :

set $.x!host = $hostname;

In addition, it also supports local variables. Local
variables are local to the current message, but are NOT message
properties (e.g. the “$!” all JSON property does not contain them).

Only message json (CEE/Lumberjack) properties can be modified by the
set, unset and reset statements, not any other message property. Obviously,
local variables are also modifieable.

Message JSON property names start with “$!” where the bang character
represents the root.

Local variables names start with “$.”, where the dot denotes the root.

Both JSON properties as well as local variables may contain an arbitrary
deep path before the final element. The bang character is always used as
path separator, no matter if it is a message property or a local
variable. For example “$!path1!path2!varname” is a three-level deep
message property where as the very similar looking
“$.path1!path2!varname” specifies a three-level deep local variable. The
bang or dot character immediately following the dollar sign is used by
rsyslog to separate the different types.

Note that the trailing semicolon is needed to indicate the end of expression.
If it is not given, config load will fail with a syntax error message.

Check the following usage examples to understand how these statements behave:

set

sets the value of a local-variable or json property, but the addressed
variable already contains a value its behaviour differs as follows:

merges the value if both existing and new value are objects,
but merges the new value to root rather than with value of the given key. Eg.

set $.x!one = "val_1";
results in $. = { "x": { "one": "val_1" } }
set $.y!two = "val_2";
results in $. = { "x": { "one": "val_1" }, "y": { "two": "val_2" } }

set $.z!var = $.x;
results in $. = { "x": { "one": "val_1" }, "y": { "two": "val_2" }, "z": { "var": { "one": "val_1" } } }

set $.z!var = $.y;
results in $. = { "x": { "one": "val_1" }, "y": { "two": "val_2" }, "z": { "var": { "one": "val_1" } }, "two": "val_2" }
note that the key *two* is at root level and not under *$.z!var*.

ignores the new value if old value was an object, but new value is a not an object (Eg. string, number etc). Eg:

set $.x!one = "val_1";
set $.x = "quux";
results in $. = { "x": { "one": "val_1" } }
note that "quux" was ignored

resets variable, if old value was not an object.

set $.x!val = "val_1";
set $.x!val = "quux";
results in $. = { "x": { "val": "quux" } }

unset

removes the key. Eg:

set $.x!val = "val_1";
unset $.x!val;
results in $. = { "x": { } }

reset

force sets the new value regardless of what the variable
originally contained or if it was even set. Eg.

to contrast with the set example above, here is how results would look with reset
set $.x!one = "val_1";
set $.y!two = "val_2";
set $.z!var = $.x;
results in $. = { "x": { "one": "val_1" }, "y": { "two": "val_2" }, "z": { "var": { "one": "val_1" } } }
'set' or 'reset' can be used interchangably above(3 lines), they both have the same behaviour, as variable doesn't have an existing value

reset $.z!var = $.y;
results in $. = { "x": { "one": "val_1" }, "y": { "two": "val_2" }, "z": { "var": { "two": "val_2" } } }
note how the value of $.z!var was replaced

reset $.x = "quux";
results in $. = { "x": "quux", "y": { "two": "val_2" }, "z": { "var": { "two": "val_2" } } }

 Lookup Tables

Lookup Tables

Lookup tables are a powerful construct to obtain
“class” information based on message content (e.g. to build log file
names for different server types, departments or remote offices).

 General Queue Parameters

General Queue Parameters

Queue parameters can be used together with the following statements:

	action()

	ruleset()

	main_queue()

Queues need to be configured in the action or ruleset it should affect.
If nothing is configured, default values will be used. Thus, the default
ruleset has only the default main queue. Specific Action queues are not
set up by default.

To fully understand queue parameters and how they interact, be sure to
read the queues documentation.

	queue.filename name
File name to be used for the queue files. Please note that this is
actually just the file name. A directory can NOT be specified in this
parameter. If the files shall be created in a specific directory,
specify queue.spoolDirectory for this. The filename is used to build
to complete path for queue files.

	queue.spoolDirectory name
This is the directory into which queue files will be stored. Note
that the directory must exist, it is NOT automatically created by
rsyslog. If no spoolDirectory is specified, the work directory is
used.

	queue.size number
This is the maximum size of the queue in number of messages. Note
that setting the queue size to very small values (roughly below 100
messages) is not supported and can lead to unpredictable results.
For more information on the current status of this restriction see
the rsyslog FAQ: “lower bound for queue
sizes” [http://www.rsyslog.com/lower-bound-for-queue-sizes/].

	queue.dequeuebatchsize number
default 128

	queue.maxdiskspace number
The maximum size that all queue files together will use on disk. Note
that the actual size may be slightly larger than the configured max,
as rsyslog never writes partial queue records.

	queue.highwatermark number
This applies to disk-assisted queues, only. When the queue fills up
to this number of messages, the queue begins to spool messages to
disk. Please note that this should not happen as part of usual
processing, because disk queue mode is very considerably slower than
in-memory queue mode. Going to disk should be reserved for cases
where an output action destination is offline for some period.

	queue.lowwatermark number
default 2000

	queue.fulldelaymark number
Number of messages when the queue should block delayable messages.
Messages are NO LONGER PROCESSED until the queue has sufficient space
again. If a message is delayable depends on the input. For example,
messages received via imtcp are delayable (because TCP can push back),
but those received via imudp are not (as UDP does not permit a push back).
The intent behind this setting is to leave some space in an almost-full
queue for non-delayable messages, which would be lost if the queue runs
out of space. Please note that if you use a DA queue, setting the
fulldelaymark BELOW the highwatermark makes the queue never activate
disk mode for delayable inputs. So this is probably not what you want.

	queue.lightdelaymark number

	queue.discardmark number
default 9750

	queue.discardseverity number
numerical severity! default 8 (nothing discarded)

	queue.checkpointinterval number
Disk queues by default do not update housekeeping structures every time
the queue writes to disk. This is for performance reasons. In the event of failure,
data will still be lost (except when data is mangled via the file structures).
However, disk queues can be set to write bookkeeping information on checkpoints
(every n records), so that this can be made ultra-reliable, too. If the
checkpoint interval is set to one, no data can be lost, but the queue is
exceptionally slow.

	queue.syncqueuefiles on/off (default “off”)

Disk-based queues can be made very reliable by issuing a (f)sync after each
write operation. This happens when you set the parameter to “on”.
Activating this option has a performance penalty, so it should not
be turned on without a good reason. Note that the penalty also depends on
queue.checkpointInterval frequency.

	queue.samplinginterval number

This option allows queues to be populated by events produced at a specific interval.
It provides a way to sample data each N events, instead of processing all, in order to reduce resources usage (disk, bandwidth...)
This feature is available for version 8.23 and above.

	queue.type [FixedArray/LinkedList/Direct/Disk]

	queue.workerthreads number
number of worker threads, default 1, recommended 1

	queue.timeoutshutdown number
number is timeout in ms (1000ms is 1sec!), default 0 (indefinite)

	queue.timeoutactioncompletion number
number is timeout in ms (1000ms is 1sec!), default 1000, 0 means
immediate!

	queue.timeoutenqueue number
number is timeout in ms (1000ms is 1sec!), default 2000, 0 means
discard immediate.

This timeout value is used when the queue is full. If rsyslog cannot
enqueue a message within the timeout period, the message is discarded.
Note that this is setting of last resort (assuming defaults are used
for the queue settings or proper parameters are set): all delayable
inputs (like imtcp or imfile) have already been pushed back at this
stage. Also, discarding of lower priority messages (if configured) has
already happened. So we run into one of these situations if we do not
timeout quickly enough:

	if using imuxsock and no systemd journal is involved, the system
would become unresponsive and most probably a hard reset would be
required.

	if using imuxsock with imjournal forwarding is active, messages are
lost because the journal discards them (more agressive than rsyslog does)

	if using imjournal, the journal will buffer messages. If journal
runs out of configured space, messages will be discarded. So in this
mode discarding is moved to a bit later place.

	other non-delayable sources like imudp will also loose messages

So this setting is provided in order to guard against problematic situations,
which always will result either in message loss or system hang. For
action queues, one may debate if it would be better to overflow rapidly
to the main queue. If so desired, this is easy to acomplish by setting
a very large timeout value. The same, of course, is true for the main
queue, but you have been warned if you do so!

In some other words, you can consider this scenario, using default values.
With all progress blocked (unable to deliver a message):

	all delayable inputs (tcp, relp, imfile, imjournal, etc) will block
indefinantly (assuming queue.lightdelaymark and queue.fulldelaymark
are set sensible, which they are by default).

	imudp will be loosing messages because the OS will be dropping them

	messages arriving via UDP or imuxsock that do make it to rsyslog,
and that are a severity high enough to not be filtered by
discardseverity, will block for 2 seconds trying to put the message in
the queue (in the hope that something happens to make space in the
queue) and then be dropped to avoid blocking the machine permanently.

Then the next message to be processed will also be tried for 2 seconds, etc.

	If this is going into an action queue, the log message will remain
in the main queue during these 2 seconds, and additional logs that
arrive will accumulate behind this in the main queue.

	queue.timeoutworkerthreadshutdown number
number is timeout in ms (1000ms is 1sec!), default 60000 (1 minute)

	queue.workerthreadminimummessages number
default 100

	queue.maxfilesize size_nbr
default 1m

	queue.saveonshutdown on/off

	queue.dequeueslowdown number
number is timeout in microseconds (1000000us is 1sec!), default 0 (no
delay). Simple rate-limiting!

	queue.dequeuetimebegin number

	queue.dequeuetimeend number

	queue.samplinginterval number
Sampling interval for action queue. This parameter specifies how many line
of logs will be dropped before one enqueued. default 0.

Sample:

The following is a sample of a TCP forwarding action with its own queue.

action(type="omfwd" target="192.168.2.11" port="10514" protocol="tcp"
 queue.filename="forwarding" queue.size="1000000" queue.type="LinkedList"
)

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2013-2014 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 3 or higher.

 The rsyslog “call” statement

The rsyslog “call” statement

The rsyslog “call” statement is used to tie rulesets together. It is
modelled after the usual programming language “call” statement. Think of
a ruleset as a subroutine (what it really is!) and you get the picture.

The “call” statement can be used to call into any type of rulesets. If a
rule set has a queue assigned, the message will be posted to that queue
and processed asynchronously. Otherwise, the ruleset will be executed
synchronously and control returns to right after the call when the rule
set has finished execution.

Note that there is an important difference between asynchronous and
synchronous execution in regard to the “stop” statement. It will not
affect processing of the original message when run asynchronously.

The “call” statement replaces the deprecated omruleset module. It offers
all capabilities omruleset has, but works in a much more efficient way.
Note that omruleset was a hack that made calling rulesets possible
within the constraints of the pre-v7 engine. “call” is the clean
solution for the new engine. Especially for rulesets without associated
queues (synchronous operation), it has zero overhead (really!).
omruleset always needs to duplicate messages, which usually means at
least ~250 bytes of memory writes, some allocs and frees - and even more
performance-intense operations.

syntax

call rulesetname

Where “rulesetname” is the name of a ruleset that is defined elsewhere
inside the configration. If the call is synchronous or asynchronous
depends on the ruleset parameters. This cannot be overriden by the
“call” statement.

related links

	Blog posting announcing “call” statement (with
sample) [http://blog.gerhards.net/2012/10/how-to-use-rsyslogs-ruleset-and-call.html]

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2013-2014 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 The rsyslog “call_indirect” statement

The rsyslog “call_indirect” statement

The rsyslog “call_indirect” statement is equivalent to
“call” statement
except that the name of the to be called ruleset is not constant but an
expression and so can be computed at runtime.

If the ruleset name cannot be found when call_indirect is used, an error
message as emitted and the call_indirect statement is ignored. Execution
continues with the next statement.

syntax

call_indirect expression;

Where “expression” is any valid expression. See
expressions
for more information. Note that the trailing semicolon is needed to
indicate the end of expression. If it is not given, config load will
fail with a syntax error message.

examples

The potentially most useful use-case for “call_indirect” is calling a
ruleset based on a message variable. Let us assume that you have named
your rulesets according to syslog tags expected. Then you can use

call_indirect $syslogtag;

To call these rulesets. Note, however, that this may be misused by a
malicious attacker, who injects invalid syslog tags. This could especially
be used to redirect message flow to known standard rulesets. To somewhat
mitigate against this, the ruleset name can be slightly mangled by creating
a unique prefix (do not use the one from this sample). Let us assume
the prefix “changeme-” is used, then all your rulesets should start with that
string. Then, the following call can be used:

call_indirect "changeme-" & $syslogtag;

While it is possible to call a ruleset via a constant name:

call_indirect "my_ruleset";

It is advised to use the “call” statement for this, as it offers superior
performance in this case.

additional information

We need to have two different statements, “call” and “call_indirect” because
“call” already existed at the time “call_indirect” was added. We could not
extend “call” to support expressions, as that would have broken existing
configs. In that case call ruleset would have become invalid and
call "ruleset" would have to be used instead. Thus we decided to
add the additional “call_indirect” statement for this use case.

 global() configuration object

global() configuration object

The global configuration object permits to set global parameters. Note
that each parameter can only be set once and cannot be re-set
thereafter. If a parameter is set multiple times, the behaviour is
unpredictable.

The following parameters can be set:

	action.reportSuspension - binary, default “on”, v7.5.8+

If enabled (“on”) action will log message under syslog.* when an
action suspends or resumes itself. This usually happens when there are
problems connecting to backend systems. If disabled (“off”), these
messages are not generated. These messages can be useful in detecting
problems with backend systems. Most importantly, frequent suspension
and resumption points to a problem area.

	action.reportSuspensionContinuation - binary, default “off”, v7.6.1+, v8.2.0+

If enabled (“on”) the action will not only report the first suspension but
each time the suspension is prolonged. Otherwise, the follow-up messages
are not logged. If this setting is set to “on”, action.reportSuspension is
also automaticaly turned “on”.

	workDirectory

	dropMsgsWithMaliciousDNSPtrRecords

	localHostname

	preserveFQDN

	defaultNetstreamDriverCAFile

For TLS syslog [http://www.rsyslog.com/doc/rsyslog_secure_tls.html],
the CA certificate that can verify the machine keys and certs (see below)

	defaultNetstreamDriverKeyFile

Machine private key

	defaultNetstreamDriverCertFile

Machine public key (certificate)

	debug.gnutls (0-10; default:0)

Any other parameter than 0 enables the debug messages of GnuTLS. the
amount of messages given depends on the height of the parameter, 0
being nothing and 10 being very much. Caution! higher parameters may
give out way more information than needed. We advise you to first use
small parameters to prevent that from happening.
This parameter only has an effect if general debugging is enabled.

	processInternalMessages binary (on/off)

This tells rsyslog if it shall process internal messages itself. The
default mode of operations (“off”) makes rsyslog send messages to the
system log sink (and if it is the only instance, receive them back from there).
This also works with systemd journal and will make rsyslog messages show up in the
systemd status control information.

If this (instance) of rsyslog is not the main instance and there is another
main logging system, rsyslog internal messages will be inserted into
the main instance’s syslog stream. In this case, setting to (“on”) will
let you receive the internal messages in the instance they originate from.

Note that earlier versions of rsyslog worked the opposite way. More
information about the change can be found in rsyslog-error-reporting-improved [http://www.rsyslog.com/rsyslog-error-reporting-improved].

	stdlog.channelspec

Permits to set the liblogging-stdlog channel specifier string. This
in turn permits to send rsyslog log messages to a destination different
from the system default. Note that this parameter has only effect if
processInternalMessages is set to “off”. Otherwise it is silently
ignored.

	defaultNetstreamDriver

Set it to “gtls” to enable TLS for TLS syslog [http://www.rsyslog.com/doc/rsyslog_secure_tls.html]

	maxMessageSize

The maximum message size rsyslog can process. Default is 8K. Anything
above the maximum size will be truncated.

	janitor.interval [minutes], available since 8.3.3

Sets the interval at which the
janitor process
runs.

	debug.onShutdown available in 7.5.8+

If enabled (“on”), rsyslog will log debug messages when a system
shutdown is requested. This can be used to track issues that happen
only during shutdown. During normal operations, system performance is
NOT affected.
Note that for this option to be useful, the debug.logFile parameter
must also be set (or the respective environment variable).

	debug.logFile available in 7.5.8+

This is used to specify the debug log file name. It is used for all
debug output. Please note that the RSYSLOG_DEBUGLOG environment
variable always overrides the value of debug.logFile.

	net.ipprotocol available in 8.6.0+

This permits to instruct rsyslog to use IPv4 or IPv6 only. Possible
values are “unspecified”, in which case both protocols are used,
“ipv4-only”, and “ipv6-only”, which restrict usage to the specified
protocol. The default is “unspecified”.

Note: this replaces the former -4 and -6 rsyslogd command line
options.

	net.aclAddHostnameOnFail available in 8.6.0+

If “on”, during ACL processing, hostnames are resolved to IP addresses for
performance reasons. If DNS fails during that process, the hostname
is added as wildcard text, which results in proper, but somewhat
slower operation once DNS is up again.

The default is “off”.

	net.aclResolveHostname available in 8.6.0+

If “off”, do not resolve hostnames to IP addresses during ACL processing.

The default is “on”.

	net.enableDNS [on/off] available in 8.6.0+

Default: on

Can be used to turn DNS name resolution on or off.

	net.permitACLWarning [on/off] available in 8.6.0+

Default: on

If “off”, suppress warnings issued when messages are received
from non-authorized machines (those, that are in no AllowedSender list).

	parser.parseHostnameAndTag [on/off] available in 8.6.0+

Default: on

This controls wheter the parsers try to parse HOSTNAME and TAG fields
from messages. The default is “on”, in which case parsing occurs. If
set to “off”, the fields are not parsed. Note that this usually is
not what you want to have.

It is highly suggested to change this setting to “off” only if you
know exactly why you are doing this.

	parser.permitSlashInHostname [on/off] available in 8.25.0+

Default: off

This controls whether slashes in the “programname” property are
permitted or not. This property bases on a BSD concept, and by
BSD syslogd sources, slashes are NOT permitted inside the program
name. However, some Linux tools (including most importantly the
journal) store slashes as part of the program name inside the
syslogtag. In those cases, the programname is truncated at the
first slash. If this setting is changed to “on”, slashes are
permitted and will not terminate programname parsing.

	senders.keepTrack [on/off] available 8.17.0+

Default: off

If turned on, rsyslog keeps track of known senders and also reports
statistical data for them via the impstats mechanism.

A list of active senders is kept. When a new sender is detected, an
informational message is emitted. Senders are purged from the list
only after a timeout (see senders.timoutAfter parameter). Note
that we do not intentionally remove a sender when a connection is
closed. The whole point of this sender-tracking is to have the ability
to provide longer-duration data. As such, we would not like to drop
information just because the sender has disconnected for a short period
of time (e.g. for a reboot).

Senders are tracked by their hostname (taken at connection establishment).

Note: currently only imptcp and imtcp support sender tracking.

	senders.timeoutAfter [seconds] available 8.17.0+

Default: 12 hours (12*60*60 seconds)

Specifies after which period a sender is considered to “have gone
away”. For each sender, rsyslog keeps track of the time it least
received messages from it. When it has not received a message during
that interval, rsyslog considers the sender to be no longer present.
It will then a) emit a warning message (if configured) and b) purge
it from the active senders list. As such, the sender will no longer
be reported in impstats data once it has timed out.

	senders.reportGoneAway [on/off] available 8.17.0+

Default: off

Emit a warning message when now data has been received from a sender
within the senders.timeoutAfter interval.

	senders.reportNew [on/off] available 8.17.0+

Default: off

If sender tracking is active, report a sender that is not yet inside
the cache. Note that this means that senders which have been timed out
due to prolonged inactivity are also reported once they connect again.

	debug.unloadModules [on/off] available 8.17.0+

Default: on

This is primarily a debug setting. If set to “off”, rsyslog will never
unload any modules (including plugins). This usually causes no operational
problems, but may in extreme cases. The core benefit of this setting is
that it makes valgrind stack traces readable. In previous versions, the
same functionality was only available via a special build option.

	debug.files [ARRAY of filenames] available 8.29.0+

Default: none

This can be used to configure rsyslog to only show debug-output generated in
certain files. If the option is set, but no filename is given, the
debug-output will behave as if the option is turned off.

Do note however that due to the way the configuration works, this might not
effect the first few debug-outputs, while rsyslog is reading in the configuration.
For optimal results we recommend to put this parameter at the very start of
your configuration to minmize unwanted output.

See debug.whitelist for more information.

	debug.whitelist [on/off] available 8.29.0+

Default: on

This parameter is an assisting parameter of debug.files. If debug.files
is used in the configuration, debug.whitelist is a switch for the files named
to be either white- or blacklisted from displaying debug-output. If it is set to
on, the listed files will generate debug-output, but no other files will.
The reverse principle applies if the parameter is set to off.

See debug.files for more information.

	environment [ARRAY of environment variable=value strings] available 8.23.0+

Default: none

This permits to set environment variables via rsyslog.conf. The prime
motivation for having this is that for many libraries, defaults can be
set via environment variables, but setting them via operating system
service startup files is cumbersome and different on different platforms.
So the environment parameter provides a handy way to set those
variables.

A common example is to set the http_proxy variable, e.g. for use with
KSI signing or ElasticSearch. This can be done as follows:

global(environment="http_proxy=http://myproxy.example.net")

Note that an environment variable set this way must contain an equal sign,
and the variable name must not be longer than 127 characters.

It is possible to set multiple environment variables in a single
global statement. This is done in regular array syntax as follows:

global(environment=["http_proxy=http://myproxy.example.net",
 "another_one=this string is=ok!"
)

As usual, whitespace is irrelevant in regard to parameter placing. So
the above sample could also have been written on a single line.

	internalmsg.ratelimit.interval [positive integer] available 8.29.0+

Default: 5

Specifies the interval in seconds onto which rate-limiting is to be
applied to internal messgaes generated by rsyslog(i.e. error messages).
If more than internalmsg.ratelimit.burst messages are read during
that interval, further messages up to the end of the interval are
discarded.

	internalmsg.ratelimit.burst [positive integer] available 8.29.0+

Default: 500

Specifies the maximum number of internal messages that can be emitted within
the ratelimit.interval interval. For futher information, see
description there.

Caution: Environment variables are set immediately when the
corresponding statement is encountered. Likewise, modules are loaded when
the module load statement is encountered. This may create sequence
dependencies inside rsyslog.conf. To avoid this, it is highly suggested
that environment variables are set right at the top of rsyslog.conf.
Also, rsyslog-related environment variables may not apply even when set
right at the top. It is safest to still set them in operating system
start files. Note that rsyslog environment variables are usually intended
only for developers so there should hardly be a need to set them for a
regular user. Also, many settings (e.g. debug) are also available as
configuration objects.

 Actions

Actions

The Action object describe what is to be done with a message. They are
implemented via output modules.

The action object has different parameters:

	those that apply to all actions and are action specific. These are
documented below.

	parameters for the action queue. While they also apply to all
parameters, they are queue-specific, not action-specific (they are
the same that are used in rulesets, for example). The are documented
separately under queue parameters.

	action-specific parameters. These are specific to a certain type of
actions. They are documented by the output modules
in question.

General Action Parameters

	name word

This names the action. The name is used for statistics gathering
and documentation. If no name is given, one is dynamically generated
based on the occurence of this action inside the rsyslog configuration.
Actions are sequentially numbered from 1 to n.

	type string
Mandatory parameter for every action. The name of the module that
should be used.

	action.writeAllMarkMessages on/off
This setting tells if mark messages are always written (“on”, the
default) or only if the action was not recently executed (“off”). By
default, recently means within the past 20 minutes. If this setting
is “on”, mark messages are always sent to actions, no matter how
recently they have been executed. In this mode, mark messages can be
used as a kind of heartbeat. This mode also enables faster processing
inside the rule engine. So it should be set to “off” only when there
is a good reason to do so.

	action.execOnlyEveryNthTime integer
If configured, the next action will only be executed every n-th time.
For example, if configured to 3, the first two messages that go into
the action will be dropped, the 3rd will actually cause the action to
execute, the 4th and 5th will be dropped, the 6th executed under the
action, ... and so on.

	action.execOnlyEveryNthTimeout integer
Has a meaning only if Action.ExecOnlyEveryNthTime is also configured
for the same action. If so, the timeout setting specifies after which
period the counting of “previous actions” expires and a new action
count is begun. Specify 0 (the default) to disable timeouts. Why is
this option needed? Consider this case: a message comes in at, eg.,
10am. That’s count 1. Then, nothing happens for the next 10 hours. At
8pm, the next one occurs. That’s count 2. Another 5 hours later, the
next message occurs, bringing the total count to 3. Thus, this
message now triggers the rule. The question is if this is desired
behavior? Or should the rule only be triggered if the messages occur
within an e.g. 20 minute window? If the later is the case, you need a
Action.ExecOnlyEveryNthTimeTimeout=”1200”
This directive will timeout previous messages seen if they are older
than 20 minutes. In the example above, the count would now be always
1 and consequently no rule would ever be triggered.

	action.execOnlyOnceEveryInterval integer
Execute action only if the last execute is at last seconds in the
past (more info in ommail, but may be used with any action)

	action.execOnlyWhenPreviousIsSuspended on/off
This directive allows to specify if actions should always be executed
(“off,” the default) or only if the previous action is suspended
(“on”). This directive works hand-in-hand with the multiple actions
per selector feature. It can be used, for example, to create rules
that automatically switch destination servers or databases to a (set
of) backup(s), if the primary server fails. Note that this feature
depends on proper implementation of the suspend feature in the output
module. All built-in output modules properly support it (most
importantly the database write and the syslog message forwarder).
Note, however, that a failed action may not immediately be detected.
For more information, see the rsyslog
execOnlyWhenPreviousIsSpuspended
preciseness [http://www.rsyslog.com/action-execonlywhenpreviousissuspended-preciseness/]
FAQ article.

	action.repeatedmsgcontainsoriginalmsg on/off
“last message repeated n times” messages, if generated, have a
different format that contains the message that is being repeated.
Note that only the first “n” characters are included, with n to be at
least 80 characters, most probably more (this may change from version
to version, thus no specific limit is given). The bottom line is that
n is large enough to get a good idea which message was repeated but
it is not necessarily large enough for the whole message. (Introduced
with 4.1.5).

	action.resumeRetryCount integer
[default 0, -1 means eternal]

	action.resumeInterval integer
Sets the ActionResumeInterval for the action. The interval provided
is always in seconds. Thus, multiply by 60 if you need minutes and
3,600 if you need hours (not recommended). When an action is
suspended (e.g. destination can not be connected), the action is
resumed for the configured interval. Thereafter, it is retried. If
multiple retries fail, the interval is automatically extended. This
is to prevent excessive resource use for retries. After each 10
retries, the interval is extended by itself. To be precise, the
actual interval is (numRetries / 10 + 1) * Action.ResumeInterval. so
after the 10th try, it by default is 60 and after the 100th try it is
330.

	action.reportSuspension on/off
Configures rsyslog to report suspension and reactivation
of the action. This is useful to note which actions have
problems (e.g. connecting to a remote system) and when.
The default for this setting is the equally-named global
parameter.

	action.reportSuspensionContinuation on/off
Configures rsyslog to report continuation of action suspension.
This emits new messages whenever an action is to be retried, but
continues to fail. If set to “on”, action.reportSuspension is
also automatically set to “on”.
The default for this setting is the equally-named global
parameter.

	action.copyMsg on/off
Configures action to copy the message if on. Defaults to
off (which is how actions have worked traditionally), which
causes queue to refer to the original message object, with
reference-counting. (Introduced with 8.10.0).

Useful Links

	Rainer’s blog posting on the performance of main and action queue
worker
threads [http://blog.gerhards.net/2013/06/rsyslog-performance-main-and-action.html]

Legacy Format

Be warned that legacy action format is hard to get right. It is
recommended to use RainerScript-Style action format whenever possible!
A key problem with legacy format is that a single action is defined via
multiple configurations lines, which may be spread all across
rsyslog.conf. Even the definition of multiple actions may be intermixed
(often not intentional!). If legacy actions format needs to be used
(e.g. some modules may not yet implement the RainerScript format), it is
strongly recommended to place all configuration statements pertaining to
a single action closely together.

Please also note that legacy action parameters do not affect
RainerScript action objects. So if you define for example:

$actionResumeRetryCount 10
action(type="omfwd" target="server1.example.net")
@@server2.example.net

server1’s “action.resumeRetryCount” parameter is not set, instead
server2’s is!

A goal of the new RainerScript action format was to avoid confusion
which parameters are actually used. As such, it would be
counter-productive to honor legacy action parameters inside a
RainerScript definition. As result, both types of action definitions are
strictly (and nicely) separated from each other. The bottom line is that
if RainerScript actions are used, one does not need to care about which
legacy action parameters may (still...) be in effect.

Note that not all modules necessarily support legacy action format.
Especially newer modules are recommended to NOT support it.

Legacy Description

Templates can be used with many actions. If used, the specified template
is used to generate the message content (instead of the default
template). To specify a template, write a semicolon after the action
value immediately followed by the template name.
Beware: templates MUST be defined BEFORE they are used. It is OK to
define some templates, then use them in selector lines, define more
templates and use use them in the following selector lines. But it is
NOT permitted to use a template in a selector line that is above its
definition. If you do this, the action will be ignored.

You can have multiple actions for a single selector

 Input

Input

The input object, as its name suggests, describes message input sources.
Without input, no processing happens at all, because no messages enter the
rsyslog system.
Inputs are implemented via input modules.

The input object has different parameters:

	those that apply to all input and are generally available for
all inputs. These are documented below.

	input-specific parameters. These are specific to a certain type of
input. They are documented by the input module
in question.

General Input Parameters

	
type <type-string>

	Mandatory

The <type-string> is a string identifying the input module as given
it each module’s documentation. For example, the
UDP syslog input is named “imudp”.

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2008-2014 by Rainer
Gerhards [http://www.gerhards.net/rainer] and
Adiscon [http://www.adiscon.com/]. Released under the GNU GPL version
2 or higher.

 Parser

Parser

The parser object, as its name suggests, describes message parsers.
Message parsers have a standard parser name, which can be used by simply
loading the parser module. Only when specific parameters need to be set
the parser object is needed.

In that case, it is used to define a new parser name (aka “parser definition”)
which configures this name to use the parser module with set parameters.
This is important as the ruleset() object does not support to set parser
parameters. Instead, if parameters are needed, a proper parser name must
be defined using the parser() object. A parser name defined via the
parser() object can be used whereever a parser name can occur.

Note that not all message parser modules are supported in the parser()
object. The reason is that many do not have any user-selectable
parameters and as such, there is no point in issuing a parser() object
for them.

The parser object has different parameters:

	those that apply to all parser and are generally available for
all of them. These are documented below.

	parser-specific parameters. These are specific to a certain parser
module. They are documented by the parser module
in question.

General Parser Parameters

	
name <name-string>

	Mandatory

This names the parser. Names starting with “rsyslog.” are reserved for
rsyslog use and must not be used. It is suggested to replace “rsyslog.”
with “custom.” and keep the rest of the name descriptive. However, this
is not enforced and just good practice.

	
type <type-string>

	Mandatory

The <type-string> is a string identifying the parser module as given
it each module’s documentation. Do not mistake the parser module name
with its default parser name.
For example, the
Cisco IOS message parser module parser module
name is “pmciscoios”, whereas it’s default parser name is
“rsyslog.pmciscoios”.

Samples

The following example creates a custom parser definition and uses it within a ruleset:

module(load="pmciscoios")
parser(name="custom.pmciscoios.with_origin" type="pmciscoios")

ruleset(name="myRuleset" parser="custom.pmciscoios.with_origin") {
 ... do something here ...
}

The following example uses multiple parsers within a ruleset without a parser object (the order is important):

module(load="pmaixforwardedfrom")
module(load="pmlastmsg")

ruleset(name="myRuleset" parser=["rsyslog.lastline","rsyslog.aixforwardedfrom","rsyslog.rfc5424","rsyslog.rfc3164"]) {
 ... do something here ...
}

A more elaborate example can also be found in the
Cisco IOS message parser module documentation.

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2014 by Rainer Gerhards [http://www.gerhards.net/rainer] and
Adiscon [http://www.adiscon.com/]. Released under the GNU GPL version
2 or higher.

 timezone

timezone

The timezone object, as its name suggests, describes timezones.
Currently, they are used by message parser modules to interpret
timestamps that contain timezone information via a timezone string
(but not an offset, e.g. “CET” but not “-01:00”). The object describes
an UTC offset for a given timezone ID.

Each timestamp object adds the zone definition to a global table
with timezone information. Duplicate IDs are forbidden, but the
same offset may be used with multiple IDs.

Parameters

	
id <name-string>

	Mandatory

This identifies the timezone. Note that this id must match the zone
name as reported within the timestamps. Different devices and vendors
use different, often non-standard, names and so it is important to use
the actual ids that messages contain. For multiple devices, this may
mean that you may need to include multiple definitions, each one with a
different id, for the same time zone. For example, it is seen that
some devices report “CEST” for central European daylight savings time
while others report “METDST” for it.

	
offset <[+/-]><hh>:<mm>

	Mandatory

This defines the timezone offset over UTC. It must always be 6 characters
and start with a “+” (east of UTC) or “-” (west uf UTC) followed by a
two-digit hour offset, a colon and a two-digit minute offset. Hour offsets
can be in the range from zero to twelve, minute offsets in the range from
zero to 59. Any other format is invalid.

Sample

The following sample defines UTC time. From rsyslog PoV, it doesn’t
matter if a plus or minus offset prefix is used. For consistency,
plus is suggested.

timezone(id="UTC" offset="+00:00")

The next sample defines some common timezones:

timezone(id="CET" offset="+01:00")
timezone(id="CEST" offset="+02:00")
timezone(id="METDST" offset="+02:00") # duplicate to support differnt formats
timezone(id="EST" offset="-05:00")
timezone(id="EDT" offset="-04:00")
timezone(id="PST" offset="-08:00")
timezone(id="PDT" offset="-07:00")

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2014 by Rainer Gerhards [http://www.gerhards.net/rainer] and
Adiscon [http://www.adiscon.com/]. Released under the GNU GPL version
2 or higher.

 Examples

Examples

Below are example for templates and selector lines. I hope they are
self-explanatory.

Templates

Please note that the samples are split across multiple lines. A template
MUST NOT actually be split across multiple lines.

	A template that resembles traditional syslogd file output:

	$template TraditionalFormat,”%timegenerated% %HOSTNAME%
%syslogtag%%msg:::drop-last-lf%\n”

	A template that tells you a little more about the message:

	$template precise,”%syslogpriority%,%syslogfacility%,%timegenerated%,%HOSTNAME%,
%syslogtag%,%msg%\n”

	A template for RFC 3164 format:

	$template RFC3164fmt,”<%PRI%>%TIMESTAMP% %HOSTNAME% %syslogtag%%msg%”

	A template for the format traditonally used for user messages:

	$template usermsg,” XXXX%syslogtag%%msg%\n\r”

	And a template with the traditonal wall-message format:

	$template wallmsg,”\r\n\7Message from syslogd@%HOSTNAME% at %timegenerated%

	A template that can be used for the database write (please note the SQL template option)

	$template MySQLInsert,”insert iut, message, receivedat values
(‘%iut%’, ‘%msg:::UPPERCASE%’, ‘%timegenerated:::date-mysql%’)
into systemevents\r\n”, SQL

The following template emulates
WinSyslog [http://www.winsyslog.com/en/] format (it’s an
Adiscon [http://www.adiscon.com/] format, you do not feel bad if
you don’t know it ;)). It’s interesting to see how it takes different
parts out of the date stamps. What happens is that the date stamp is
split into the actual date and time and the these two are combined with
just a comma in between them.

$template WinSyslogFmt,"%HOSTNAME%,%timegenerated:1:10:date-rfc3339%,
%timegenerated:12:19:date-rfc3339%,%timegenerated:1:10:date-rfc3339%,
%timegenerated:12:19:date-rfc3339%,%syslogfacility%,%syslogpriority%,
%syslogtag%%msg%\\n"

Selector lines

Store critical stuff in critical
#
*.=crit;kern.none /var/adm/critical

This will store all messages with the priority crit in the file
/var/adm/critical, except for any kernel message.

Kernel messages are first, stored in the kernel
file, critical messages and higher ones also go
to another host and to the console. Messages to
the host server.example.net are forwarded in RFC 3164
format (using the template defined above).
#
kern.* /var/adm/kernel
kern.crit @server.example.net;RFC3164fmt
kern.crit /dev/console
kern.info;kern.!err /var/adm/kernel-info

The first rule direct any message that has the kernel facility to the
file /var/adm/kernel.

The second statement directs all kernel messages of the priority crit
and higher to the remote host server.example.net. This is useful, because if the
host crashes and the disks get irreparable errors you might not be able
to read the stored messages. If they’re on a remote host, too, you still
can try to find out the reason for the crash.

The third rule directs these messages to the actual console, so the
person who works on the machine will get them, too.

The fourth line tells rsyslogd to save all kernel messages that come
with priorities from info up to warning in the file /var/adm/kernel-info.
Everything from err and higher is excluded.

The tcp wrapper loggs with mail.info, we display
all the connections on tty12
#
mail.=info /dev/tty12

This directs all messages that uses mail.info (in source LOG_MAIL |
LOG_INFO) to /dev/tty12, the 12th console. For example the tcpwrapper
tcpd(8) uses this as it’s default.

Store all mail concerning stuff in a file
#
mail.*;mail.!=info /var/adm/mail

This pattern matches all messages that come with the mail facility,
except for the info priority. These will be stored in the file
/var/adm/mail.

Log all mail.info and news.info messages to info
#
mail,news.=info /var/adm/info

This will extract all messages that come either with mail.info or with
news.info and store them in the file /var/adm/info.

Log info and notice messages to messages file
#
.=info;.=notice;\
mail.none /var/log/messages

This lets rsyslogd log all messages that come with either the info or
the notice facility into the file /var/log/messages, except for all
messages that use the mail facility.

Log info messages to messages file
#
*.=info;\
mail,news.none /var/log/messages

This statement causes rsyslogd to log all messages that come with the
info priority to the file /var/log/messages. But any message coming
either with the mail or the news facility will not be stored.

Emergency messages will be displayed to all users
#
.=emerg :omusrmsg:

This rule tells rsyslogd to write all emergency messages to all
currently logged in users.

Messages of the priority alert will be directed
to the operator
#
*.alert root,rgerhards

This rule directs all messages with a priority of alert or higher to
the terminals of the operator, i.e. of the users “root’’ and
“rgerhards’’ if they’re logged in.

. @server.example.net

This rule would redirect all messages to a remote host called
server.example.net. This is useful especially in a cluster of machines where all
syslog messages will be stored on only one machine.

In the format shown above, UDP is used for transmitting the message.
The destination port is set to the default auf 514. Rsyslog is also
capable of using much more secure and reliable TCP sessions for message
forwarding. Also, the destination port can be specified. To select TCP,
simply add one additional @ in front of the host name (that is, @host is
UPD, @@host is TCP). For example:

. @@server.example.net

To specify the destination port on the remote machine, use a colon
followed by the port number after the machine name. The following
forwards to port 1514 on server.example.net:

. @@server.example.net:1514

This syntax works both with TCP and UDP based syslog. However, you will
probably primarily need it for TCP, as there is no well-accepted port
for this transport (it is non-standard). For UDP, you can usually stick
with the default auf 514, but might want to modify it for security reasons.
If you would like to do that, it’s quite easy:

. @server.example.net:1514
. >dbhost,dbname,dbuser,dbpassword;dbtemplate

This rule writes all message to the database “dbname” hosted on
“dbhost”. The login is done with user “dbuser” and password
“dbpassword”. The actual table that is updated is specified within the
template (which contains the insert statement). The template is called
“dbtemplate” in this case.

:msg,contains,"error" @server.example.net

This rule forwards all messages that contain the word “error” in the msg
part to the server “errorServer”. Forwarding is via UDP. Please note the
colon in fron

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2008-2014 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 Legacy Configuration Directives

Legacy Configuration Directives

All legacy configuration directives need to be specified on a line by their own
and must start with a dollar-sign.

Note that legacy configuration directives that set object options (e.g. for
inputs or actions) only affect those objects that are defined via legacy
constructs. Objects defined via new-style RainerScript objects (e.g.
action(), input()) are not affected by legacy directives. The reason
is that otherwise we would again have the ability to mess up a configuration
file with hard to understand constructs. This is avoided by not permitting
to mix and match the way object values are set.

	Configuration Parameter Types

	Legacy Global Configuration Statements
	True Global Directives

	main queue specific Directives

	Legacy Directives affecting Input Modules
	Legacy Directives affecting multiple Input Modules

	immark-specific Directives

	Legacy Action-Specific Configuration Statements
	Generic action configuration Statements

	omfile-specific Configuration Statements

	omfwd-specific Configuration Statements

	omgssapi-specific Configuration Statements

	action-queue specific Configuration Statements

	Ruleset-Specific Legacy Configuration Statements
	$RulesetCreateMainQueue

	$RulesetParser

 Configuration Parameter Types

Configuration Parameter Types

Configuration parameter values have different data types.
Unfortunately, the type currently must be guessed from the description
(consider contributing to the doc to help improve it). In general, the
following types are used:

	numbers

The traditional integer format. Numbers may include ‘.’ and ‘,’
for readability. So you can for example specify either “1000” or
“1,000” with the same result. Please note that rsyslogd simply
ignores the punctuation. From it’s point of view, “1,,0.0.,.,0”
also has the value 1000.

	sizes

Used for things like file size, main message queue sizes and the like.
These are integers, but support modifier after the number part.
For example, 1k means 1024. Supported are
k(ilo), m(ega), g(iga), t(era), p(eta) and e(xa). Lower case letters
refer to the traditional binary defintion (e.g. 1m equals 1,048,576)
whereas upper case letters refer to their new 1000-based definition (e.g
1M equals 1,000,000).

	complete line

A string consisting of multiple characters. This is relatively
seldom used and sometimes looks confusing (rsyslog v7+ has a much better
approach at these types of values).

	single word

This is used when only a single word can be provided. A “single
word” is a string without spaces in it. No quoting is necessary
nor permitted (the quotes would become part of the word).

	character

A single (printable) character. Must not be quoted.

	boolean

The traditional boolean type, specified as “on” (1) or “off” (0).

Note that some other value types are occasionally used. However, the
majority of types is one of those listed above. The list is updated
as need arises and time permits.

 Legacy Global Configuration Statements

Legacy Global Configuration Statements

Global configuration statements, as their name implies, usually affect
some global features. However, some also affect main queues, which
are “global” to a ruleset.

True Global Directives

	$AbortOnUncleanConfig

	$DebugPrintCFSyslineHandlerList

	$DebugPrintModuleList

	$DebugPrintTemplateList

	$FailOnChownFailure

	$GenerateConfigGraph

	$IncludeConfig

	$MainMsgQueueSize

	$MaxOpenFiles

	$ModDir

	$ModLoad

	$UMASK

	$ResetConfigVariables

	$MaxMessageSize <size_nbr>, default 8k - allows to specify
maximum supported message size (both for sending and receiving). The
default should be sufficient for almost all cases. Do not set this
below 1k, as it would cause interoperability problems with other
syslog implementations.

Important: In order for this directive to work correctly,
it must be placed right at the top of rsyslog.conf
(before any input is defined).

Change the setting to e.g. 32768 if you would like to support large
message sizes for IHE (32k is the current maximum needed for IHE). I
was initially tempted to set the default to 32k, but there is a some
memory footprint with the current implementation in rsyslog.
If you intend to receive Windows Event Log data (e.g. via
EventReporter [http://www.eventreporter.com/]), you might want to
increase this number to an even higher value, as event log messages
can be very lengthy (“$MaxMessageSize 64k” is not a bad idea). Note:
testing showed that 4k seems to be the typical maximum for UDP
based syslog. This is an IP stack restriction. Not always ... but
very often. If you go beyond that value, be sure to test that
rsyslogd actually does what you think it should do ;) It is highly
suggested to use a TCP based transport instead of UDP (plain TCP
syslog, RELP). This resolves the UDP stack size restrictions.
Note that 2k, is the smallest size that must be
supported in order to be compliant to the upcoming new syslog RFC
series.

	$LocalHostName [name] - this directive permits to overwrite the
system hostname with the one specified in the directive. If the
directive is given multiple times, all but the last one will be
ignored. Please note that startup error messages may be issued with
the real hostname. This is by design and not a bug (but one may argue
if the design should be changed ;)). Available since 4.7.4+, 5.7.3+,
6.1.3+.

	$LogRSyslogStatusMessages [on/off] - If set to on (the
default), rsyslog emits message on startup and shutdown as well as
when it is HUPed. This information might be needed by some log
analyzers. If set to off, no such status messages are logged, what
may be useful for other scenarios. [available since 4.7.0 and 5.3.0]

	$DefaultRuleset [name] - changes the default ruleset for unbound
inputs to the provided name (the default default ruleset is named
“RSYSLOG_DefaultRuleset”). It is advised to also read our paper on
using multiple rule sets in rsyslog.

	$DefaultNetstreamDriver <drivername>, the default
network stream driver to use.
Defaults to ptcp.

	$DefaultNetstreamDriverCAFile </path/to/cafile.pem>

	$DefaultNetstreamDriverCertFile </path/to/certfile.pem>

	$DefaultNetstreamDriverKeyFile </path/to/keyfile.pem>

	$RepeatedMsgContainsOriginalMsg [on/off] - “last message
repeated n times” messages, if generated, have a different format
that contains the message that is being repeated. Note that only the
first “n” characters are included, with n to be at least 80
characters, most probably more (this may change from version to
version, thus no specific limit is given). The bottom line is that n
is large enough to get a good idea which message was repeated but it
is not necessarily large enough for the whole message. (Introduced
with 4.1.5). Once set, it affects all following actions.

	$OptimizeForUniprocessor [on/off] - turns on optimizatons
which lead to better performance on uniprocessors. If you run on
multicore-machiens, turning this off lessens CPU load. The default
may change as uniprocessor systems become less common. [available
since 4.1.0]

	$PreserveFQDN [on/off) - if set to off (legacy default to remain
compatible to sysklogd), the domain part from a name that is within
the same domain as the receiving system is stripped. If set to on,
full names are always used.

	$WorkDirectory <name> (directory for spool and other work files. Do
not use trailing slashes)

	$PrivDropToGroup

	$PrivDropToGroupID

	$PrivDropToUser

	$PrivDropToUserID

	$Sleep <seconds> - puts the rsyslog main thread to sleep for the
specified number of seconds immediately when the directive is
encountered. You should have a good reason for using this directive!

	$LocalHostIPIF <interface name> - (available since 5.9.6) - if
provided, the IP of the specified interface (e.g. “eth0”) shall be
used as fromhost-ip for locall-originating messages. If this
directive is not given OR the interface cannot be found (or has no IP
address), the default of “127.0.0.1” is used. Note that this
directive can be given only once. Trying to reset will result in an
error message and the new value will be ignored. Please note that
modules must have support for obtaining the local IP address set via
this directive. While this is the case for rsyslog-provided modules,
it may not always be the case for contributed plugins.
Important: This directive shall be placed right at the top of
rsyslog.conf. Otherwise, if error messages are triggered before
this directive is processed, rsyslog will fix the local host IP to
“127.0.0.1”, what than can not be reset.

	$ErrorMessagesToStderr [on|off] - direct rsyslogd error
message to stderr (in addition to other targets)

	$SpaceLFOnReceive [on/off] - instructs rsyslogd to replace LF
with spaces during message reception (sysklogd compatibility aid).
This is applied at the beginning of the parser stage and cannot
be overridden (neither at the input nor parser level). Consequently,
it affects all inputs and parsers.

main queue specific Directives

Note that these directives modify ruleset main message queues.
This includes the default ruleset’s main message queue, the one
that is always present. To do this, specify directives outside of
a ruleset definition.

To understand queue parameters, read
queues in rsyslog.

	$MainMsgQueueCheckpointInterval <number>

	$MainMsgQueueDequeueBatchSize <number> [default 32]

	$MainMsgQueueDequeueSlowdown <number> [number is timeout in
microseconds (1000000us is 1sec!), default 0 (no delay). Simple
rate-limiting!]

	$MainMsgQueueDiscardMark <number> [default 9750]

	$MainMsgQueueDiscardSeverity <severity> [either a textual or
numerical severity! default 4 (warning)]

	$MainMsgQueueFileName <name>

	$MainMsgQueueHighWaterMark <number> [default 8000]

	$MainMsgQueueImmediateShutdown [on/off]

	$MainMsgQueueLowWaterMark <number> [default 2000]

	$MainMsgQueueMaxFileSize <size_nbr>, default 1m

	$MainMsgQueueTimeoutActionCompletion <number> [number is timeout in
ms (1000ms is 1sec!), default 1000, 0 means immediate!]

	$MainMsgQueueTimeoutEnqueue <number> [number is timeout in ms (1000ms
is 1sec!), default 2000, 0 means discard immediately]

	$MainMsgQueueTimeoutShutdown <number> [number is timeout in ms
(1000ms is 1sec!), default 0 (indefinite)]

	$MainMsgQueueWorkerTimeoutThreadShutdown <number> [number is timeout
in ms (1000ms is 1sec!), default 60000 (1 minute)]

	$MainMsgQueueType [FixedArray/LinkedList/Direct/Disk]

	$MainMsgQueueSaveOnShutdown

 $AbortOnUncleanConfig

 rsyslog.conf configuration directive

$AbortOnUncleanConfig

Type: global configuration directive

Parameter Values: boolean (on/off, yes/no)

Available since: 5.3.1+

Default: off

Description:

This directive permits to prevent rsyslog from running when the
configuration file is not clean. “Not Clean” means there are errors or
some other annoyances that rsyslgod reports on startup. This is a
user-requested feature to have a strict startup mode. Note that with the
current code base it is not always possible to differentiate between an
real error and a warning-like condition. As such, the startup will also
prevented if warnings are present. I consider this a good thing in being
“strict”, but I admit there also currently is no other way of doing it.

Caveats:

Note that the consequences of a failed rsyslogd startup can be much more
serious than a startup with only partial configuration. For example, log
data may be lost or systems that depend on the log server in question
will not be able to send logs, what in the ultimate result could result
in a system hang on those systems. Also, the local system may hang when
the local log socket has become full and is not read. There exist many
such scenarios. As such, it is strongly recommended not to turn on this
directive.

[rsyslog site [http://www.rsyslog.com/]]

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.

Copyright © 2009-2014 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $DebugPrintCFSyslineHandlerList

$DebugPrintCFSyslineHandlerList

Type: global configuration directive

Default: on

Description:

Specifies whether or not the configuration file sysline handler list
should be written to the debug log. Possible values: on/off. Default is
on. Does not affect operation if debugging is disabled.

Sample:

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2007 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $DebugPrintModuleList

$DebugPrintModuleList

Type: global configuration directive

Default: on

Description:

Specifies whether or not the module list should be written to the debug
log. Possible values: on/off. Default is on. Does not affect operation
if debugging is disabled.

Sample:

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2007 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $DebugPrintTemplateList

$DebugPrintTemplateList

Type: global configuration directive

Default: on

Description:

Specifies whether or not the template list should be written to the
debug log. Possible values: on/off. Default is on. Does not affect
operation if debugging is disabled..

Sample:

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2007 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $FailOnChownFailure

$FailOnChownFailure

Type: global configuration directive

Default: on

Description:

This option modifies behaviour of dynaFile creation. If different owners
or groups are specified for new files or directories and rsyslogd fails
to set these new owners or groups, it will log an error and NOT write to
the file in question if that option is set to “on”. If it is set to
“off”, the error will be ignored and processing continues. Keep in mind,
that the files in this case may be (in)accessible by people who should
not have permission. The default is “on”.

Sample:

$FailOnChownFailure off

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2007 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $GenerateConfigGraph

$GenerateConfigGraph

Type: global configuration directive

Default:

Available Since: 4.3.1 CURRENTLY NOT AVAILABLE

Description:

This directive is currently not supported. We had to disable it when
we improved the rule engine. It is considerable effort to re-enable it.
On the other hand, we are about to add a new config system, which will
make yet another config graph method necessary. As such we have decided
to currently disable this functionality and re-introduce it when the new
config system has been instantiated.

This directive permits to create (hopefully) good-looking visualizations
of rsyslogd’s configuration. It does not affect rsyslog operation. If
the directive is specified multiple times, all but the last are ignored.
If it is specified, a graph is created. This happens both during a
regular startup as well a config check run. It is recommended to include
this directive only for documentation purposes and remove it from a
production configuraton.

The graph is not drawn by rsyslog itself. Instead, it uses the great
open source tool Graphviz [http://www.graphviz.org] to do the actual
drawing. This has at least two advantages:

	the graph drawing support code in rsyslog is extremly slim and
without overhead

	the user may change or further annotate the generated file, thus
potentially improving his documentation

The drawback, of course, is that you need to run Graphviz once you have
generated the control file with rsyslog. Fortunately, the process to do
so is rather easy:

	add “$GenerateConfigGraph /path/to/file.dot” to rsyslog.conf (from
now on, I will call the file just file.dot). Optionally, add
“$ActionName” statement in front of those actions that you like
to use friendly names with. If you do this, keep the names short.

	run rsyslog at least once (either in regular or configuration check
mode)

	remember to remove the $GenerateConfigGraph directive when you no
longer need it (or comment it out)

	change your working directory to where you place the dot file

	if you would like to edit the rsyslog-generated file, now is the time
to do so

	do “dot -Tpng file.dot > file.png”

	remember that you can use “convert -resize 50% file.png resized.png”
if dot’s output is too large (likely) or too small. Resizing can be
especially useful if you intend to get a rough overview over your
configuration.

After completing these steps, you should have a nice graph of your
configuration. Details are missing, but that is exactly the point. At
the start of the graph is always (at least in this version, could be
improved) a node called “inputs” in a tripple hexagon shape. This
represents all inputs active in the system (assuming you have defined
some, what the current version does not check). Next comes the main
queue. It is given in a hexagon shape. That shape indicates that a queue
is peresent and used to de-couple the inbound from the outbound part of
the graph. In technical terms, here is a threading boundary. Action with
“real” queues (other than in direct mode) also utilize this shape. For
actions, notice that a “hexagon action” creates a deep copy of the
message. As such, a “discard hexagon action” actually does nothing,
because it duplicates the message and then discards the duplicate.
At the end of the diagram, you always see a “discard” action. This
indicates that rsyslog discards messages which have been run through all
available rules.

Edges are labeled with information about when they are taken. For
filters, the type of filter, but not any specifics, are given. It is
also indicated if no filter is applied in the configuration file (by
using a “*.*” selector). Edges without labels are unconditionally
taken. The actions themselfs are labeled with the name of the output
module that handles them. If provided, the name given via “ActionName”
is used instead. No further details are provided.

If there is anything in red, this should draw your attention. In this
case, rsyslogd has detected something that does not look quite right. A
typical example is a discard action which is followed by some other
actions in an action unit. Even though something may be red, it can be
valid - rsyslogd’s graph generator does not yet check each and every
speciality, so the configuration may just cover a very uncommon case.

Now let’s look at some examples. The graph below was generated on a
fairly standard Fedora rsyslog.conf file. It had only the usually
commented-out last forwarding action activated:

[image: rsyslog configuration graph for a default fedora rsyslog.conf]
rsyslog configuration graph for a default fedora rsyslog.conf

This is the typical structure for a simple rsyslog configuration. There
are a couple of actions, each guarded by a filter. Messages run from top
to bottom and control branches whenever a filter evaluates to true. As
there is no discard action, all messages will run through all filters
and discarded in the system default discard action right after all
configured actions.

A more complex example can be seen in the next graph. This is a
configuration I created for testing the graph-creation features, so it
contains a little bit of everything. However, real-world configurations
can look quite complex, too (and I wouldn’t say this one is very
complex):

[image:]

Here, we have a user-defined discard action. You can immediately see
this because processing branches after the first “builtin-file” action.
Those messages where the filter evaluates to true for will never run
through the left-hand action branch. However, there is also a
configuration error present: there are two more actions (now shown red)
after the discard action. As the message is discarded, these will never
be executed. Note that the discard branch contains no further filters.
This is because these actions are all part of the same action unit,
which is guarded only by an entry filter. The same is present a bit
further down at the node labeled “write_system_log_2”. This note has
one more special feature, that is label was set via “ActionName”, thus
is does not have standard form (the same happened to the node named
“Forward” right at the top of the diagram. Inside this diagram, the
“Forward” node is executed asynchonously on its own queue. All others
are executed synchronously.

Configuration graphs are useful for documenting a setup, but are also a
great troubleshooting resource. It is important
to remember that these graphs are generated from rsyslogd’s in-memory
action processing structures. You can not get closer to understanding
on how rsyslog interpreted its configuration files. So if the graph does
not look what you intended to do, there is probably something worng in
rsyslog.conf.

If something is not working as expected, but you do not spot the error
immediately, I recommend to generate a graph and zoom it so that you see
all of it in one great picture. You may not be able to read anything,
but the structure should look good to you and so you can zoom into those
areas that draw your attention.

Sample:

$DirOwner /path/to/graphfile-file.dot

 $IncludeConfig

$IncludeConfig

Type: global configuration directive

Default:

Description:

This directive allows to include other files into the main configuration
file. As soon as an IncludeConfig directive is found, the contents of
the new file is processed. IncludeConfigs can be nested. Please note
that from a logical point of view the files are merged. Thus, if the
include modifies some parameters (e.g. $DynaFileChacheSize), these new
parameters are in place for the “calling” configuration file when the
include is completed. To avoid any side effects, do a
$ResetConfigVariables after the $IncludeConfig. It may also be a good
idea to do a $ResetConfigVariables right at the start of the include, so
that the module knows exactly what it does. Of course, one might
specifically NOT do this to inherit parameters from the main file. As
always, use it as it best fits...

Note: if multiple files are included, they are processed in ascending
sort order of the file name. We use the “glob()” C library function
for obtaining the sorted list. On most platforms, especially Linux,
this means the the sort order is the same as for bash.

If all regular files in the /etc/rsyslog.d directory are included, then
files starting with ”.” are ignored - so you can use them to place
comments into the dir (e.g. “/etc/rsyslog.d/.mycomment” will be
ignored). Michael Biebl had the idea to this
functionality [http://sourceforge.net/tracker/index.php?func=detail&aid=1764088&group_id=123448&atid=696555].
Let me quote him:

	Say you can add an option

	$IncludeConfig /etc/rsyslog.d/
(which probably would make a good default)
to /etc/rsyslog.conf, which would then merge and include all

	*.conf files

	in /etc/rsyslog.d/.
This way, a distribution can modify its packages easily to drop a

	simple

	config file into this directory upon installation.
As an example, the network-manager package could install a simple

	config

	file /etc/rsyslog.d/network-manager.conf which would contain.
:programname, contains, “NetworkManager”

	-/var/log/NetworkManager.log

	Upon uninstallation, the file could be easily removed again. This

	approach

	would be much cleaner and less error prone, than having to munge

	around

	with the /etc/rsyslog.conf file directly.

Sample:

$IncludeConfig /etc/some-included-file.conf

Directories can also be included. To do so, the name must end on a
slash:

$IncludeConfig /etc/rsyslog.d/

And finally, only specific files matching a wildcard my be included
from a directory:

$IncludeConfig /etc/rsyslog.d/*.conf

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2007 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $MainMsgQueueSize

$MainMsgQueueSize

Type: global configuration directive

Default: 10000

Description:

This allows to specify the maximum size of the message queue. This
directive is only available when rsyslogd has been compiled with
multithreading support. In this mode, receiver and output modules are
de-coupled via an in-memory queue. This queue buffers messages when the
output modules are not capable to process them as fast as they are
received. Once the queue size is exhausted, messages will be dropped.
The slower the output (e.g. MySQL), the larger the queue should be.
Buffer space for the actual queue entries is allocated on an as-needed
basis. Please keep in mind that a very large queue may exhaust available
system memory and swap space. Keep this in mind when configuring the max
size. The actual size of a message depends largely on its content and
the originator. As a rule of thumb, typically messages should not take
up more then roughly 1k (this is the memory structure, not what you see
in a network dump!). For typical linux messages, 512 bytes should be a
good bet. Please also note that there is a minimal amount of memory
taken for each queue entry, no matter if it is used or not. This is one
pointer value, so on 32bit systems, it should typically be 4 bytes and
on 64bit systems it should typically be 8 bytes. For example, the
default queue size of 10,000 entries needs roughly 40k fixed overhead on
a 32 bit system.

Sample:

$MainMsgQueueSize 100000 # 100,000 may be a value to handle burst traffic

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2007 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $MaxOpenFiles

$MaxOpenFiles

Available Since: 4.3.0

Type: global configuration directive

Default: operating system default

Description:

Set the maximum number of files that the rsyslog process can have open
at any given time. Note that this includes open tcp sockets, so this
setting is the upper limit for the number of open TCP connections as
well. If you expect a large nubmer of concurrent connections, it is
suggested that the number is set to the max number connected plus 1000.
Please note that each dynafile also requires up to 100 open file
handles.

The setting is similar to running “ulimit -n number-of-files”.

Please note that depending on permissions and operating system
configuration, the setrlimit() request issued by rsyslog may fail, in
which case the previous limit is kept in effect. Rsyslog will emit a
warning message in this case.

Sample:

$MaxOpenFiles 2000

Bugs:

For some reason, this settings seems not to work on all platforms. If
you experience problems, please let us know so that we can (hopefully)
narrow down the issue.

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.

Copyright © 2009 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 3 or higher.

 $ModDir

$ModDir

Type: global configuration directive

Default: system default for user libraries, e.g.
/usr/local/lib/rsyslog/

Description:

Provides the default directory in which loadable modules reside. This
may be used to specify an alternate location that is not based on the
system default. If the system default is used, there is no need to
specify this directive. Please note that it is vitally important to end
the path name with a slash, else module loads will fail.

Sample:

$ModDir /usr/rsyslog/libs/

 $ModLoad

$ModLoad

Type: global configuration directive

Default:

Description:

Dynamically loads a plug-in into rsyslog’s address space and activates
it. The plug-in must obey the rsyslog module API. Currently, only MySQL
and Postgres output modules are available as a plugins, but users may
create their own. A plug-in must be loaded BEFORE any configuration file
lines that reference it.

Modules must be present in the system default destination for rsyslog
modules. You can also set the directory via the
$ModDir directive.

If a full path name is specified, the module is loaded from that path.
The default module directory is ignored in that case.

Sample:

$ModLoad ommysql # load MySQL functionality $ModLoad /rsyslog/modules/ompgsql.so # load the postgres module via absolute path

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.

Copyright © 2007 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $UMASK

$UMASK

Type: global configuration directive

Default:

Description:

The $umask directive allows to specify the rsyslogd processes’ umask. If
not specified, the system-provided default is used. The value given must
always be a 4-digit octal number, with the initial digit being zero.

If $umask is specified multiple times in the configuration file, results
may be somewhat unpredictable. It is recommended to specify it only
once.

Sample:

$umask 0000

This sample removes all restrictions.

[rsyslog site [http://www.rsyslog.com/]]

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.

Copyright © 2007-2014 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $ResetConfigVariables

$ResetConfigVariables

Type: global configuration directive

Default:

Description:

Resets all configuration variables to their default value. Any settings
made will not be applied to configuration lines following the
$ResetConfigVariables. This is a good method to make sure no
side-effects exists from previous directives. This directive has no
parameters.

Sample:

$ResetConfigVariables

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.

Copyright © 2007 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 Legacy Directives affecting Input Modules

Legacy Directives affecting Input Modules

Legacy Directives affecting multiple Input Modules

While these directives only affect input modules, they are global in
the sense that they cannot be overwritten for specific input
instances. So they apply globally for all inputs that support these
directives.

	$AllowedSender

	$DropMsgsWithMaliciousDnsPTRRecords

	$ControlCharacterEscapePrefix

	$DropTrailingLFOnReception

	$Escape8BitCharactersOnReceive

	$EscapeControlCharactersOnReceive

immark-specific Directives

	$MarkMessagePeriod

 $AllowedSender

$AllowedSender

Type: input configuration directive

Default: all allowed

Description:

Note: this feature is supported for backward-compatibility, only.
The rsyslog team recommends to use proper firewalling instead of
this feature.

Allowed sender lists can be used to specify which remote systems are
allowed to send syslog messages to rsyslogd. With them, further hurdles
can be placed between an attacker and rsyslogd. If a message from a
system not in the allowed sender list is received, that message is
discarded. A diagnostic message is logged, so that the fact is recorded
(this message can be turned off with the “-w” rsyslogd command line
option).

Allowed sender lists can be defined for UDP and TCP senders separately.
There can be as many allowed senders as needed. The syntax to specify
them is:

$AllowedSender <type>, ip[/bits], ip[/bits]

“$AllowedSender” is the directive - it must be written exactly as shown
and the $ must start at the first column of the line. “<type>” is either “UDP”
or “TCP” (or “GSS”, if this is enabled during compilation).
It must immediately be followed by the comma, else you will
receive an error message. “ip[/bits]” is a machine or network ip address
as in “192.0.2.0/24” or “127.0.0.1”. If the “/bits” part is omitted, a
single host is assumed (32 bits or mask 255.255.255.255). “/0” is not
allowed, because that would match any sending system. If you intend to
do that, just remove all $AllowedSender directives. If more than 32 bits
are requested with IPv4, they are adjusted to 32. For IPv6, the limit is
128 for obvious reasons. Hostnames, with and without wildcards, may also
be provided. If so, the result of revers DNS resolution is used for
filtering. Multiple allowed senders can be specified in a
comma-delimited list. Also, multiple $AllowedSender lines can be given.
They are all combined into one UDP and one TCP list. Performance-wise,
it is good to specify those allowed senders with high traffic volume
before those with lower volume. As soon as a match is found, no further
evaluation is necessary and so you can save CPU cycles.

Rsyslogd handles allowed sender detection very early in the code, nearly
as the first action after receiving a message. This keeps the access to
potential vulnerable code in rsyslog at a minimum. However, it is still
a good idea to impose allowed sender limitations via firewalling.

WARNING: by UDP design, rsyslogd can not identify a spoofed sender
address in UDP syslog packets. As such, a malicious person could spoof
the address of an allowed sender, send such packets to rsyslogd and
rsyslogd would accept them as being from the faked sender. To prevent
this, use syslog via TCP exclusively. If you need to use UDP-based
syslog, make sure that you do proper egress and ingress filtering at the
firewall and router level.

Rsyslog also detects some kind of malicious reverse DNS entries. In any
case, using DNS names adds an extra layer of vulnerability. We recommend
to stick with hard-coded IP addresses wherever possible.

Sample:

$AllowedSender UDP, 127.0.0.1, 192.0.2.0/24, [::1]/128, *.example.net, somehost.example.com

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2007-2014 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $DropMsgsWithMaliciousDnsPTRRecords

$DropMsgsWithMaliciousDnsPTRRecords

Type: global configuration directive

Default: off

Description:

Rsyslog contains code to detect malicious DNS PTR records (reverse name
resolution). An attacker might use specially-crafted DNS entries to make
you think that a message might have originated on another IP address.
Rsyslog can detect those cases. It will log an error message in any
case. If this option here is set to “on”, the malicious message will be
completely dropped from your logs. If the option is set to “off”, the
message will be logged, but the original IP will be used instead of the
DNS name.

Sample:

$DropMsgsWithMaliciousDnsPTRRecords on

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2007 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $ControlCharacterEscapePrefix

$ControlCharacterEscapePrefix

Type: global configuration directive

Default: \

Description:

This option specifies the prefix character to be used for control
character escaping (see option $EscapeControlCharactersOnReceive). By
default, it is ‘\’, which is backwards-compatible with sysklogd. Change
it to ‘#’ in order to be compliant to the value that is somewhat
suggested by Internet-Draft syslog-protocol.

IMPORTANT: do not use the ‘ character. This is reserved and will
most probably be used in the future as a character delimiter. For the
same reason, the syntax of this directive will probably change in future
releases.

Sample:

$EscapeControlCharactersOnReceive #

 $DropTrailingLFOnReception

$DropTrailingLFOnReception

Type: global configuration directive

Default: on

Description:

Syslog messages frequently have the line feed character (LF) as the last
character of the message. In almost all cases, this LF should not really
become part of the message. However, recent IETF syslog standardization
recommends against modifying syslog messages (e.g. to keep digital
signatures valid). This option allows to specify if trailing LFs should
be dropped or not. The default is to drop them, which is consistent with
what sysklogd does.

Sample:

$DropTrailingLFOnRecption on

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2007 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $Escape8BitCharactersOnReceive

$Escape8BitCharactersOnReceive

Type: global configuration directive

Default: off

Available Since: 5.5.2

Description:

This directive instructs rsyslogd to replace non US-ASCII characters
(those that have the 8th bit set) during reception of the message. This
may be useful for some systems. Please note that this escaping breaks
Unicode and many other encodings. Most importantly, it can be assumed
that Asian and European characters will be rendered hardly readable by
this settings. However, it may still be useful when the logs themself
are primarily in English and only occasionally contain local script. If
this option is turned on, all control-characters are converted to a
3-digit octal number and be prefixed with the
$ControlCharacterEscapePrefix character (being ‘#’ by default).

Warning:

	turning on this option most probably destroys non-western character
sets (like Japanese, Chinese and Korean) as well as European
character sets.

	turning on this option destroys digital signatures if such exists
inside the message

	if turned on, the drop-cc, space-cc and escape-cc property
replacer options do not work as expected
because control characters are already removed upon message
reception. If you intend to use these property replacer options, you
must turn off $Escape8BitCharactersOnReceive.

Sample:

$Escape8BitCharactersOnReceive on

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2010 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 3 or higher.

 $EscapeControlCharactersOnReceive

$EscapeControlCharactersOnReceive

Type: global configuration directive

Default: on

Description:

This directive instructs rsyslogd to replace control characters during
reception of the message. The intent is to provide a way to stop
non-printable messages from entering the syslog system as whole. If this
option is turned on, all control-characters are converted to a 3-digit
octal number and be prefixed with the $ControlCharacterEscapePrefix
character (being ‘\’ by default). For example, if the BEL character
(ctrl-g) is included in the message, it would be converted to “\007”.
To be compatible to sysklogd, this option must be turned on.

Warning:

	turning on this option most probably destroys non-western character
sets (like Japanese, Chinese and Korean)

	turning on this option destroys digital signatures if such exists
inside the message

	if turned on, the drop-cc, space-cc and escape-cc property
replacer options do not work as expected
because control characters are already removed upon message
reception. If you intend to use these property replacer options, you
must turn off $EscapeControlCharactersOnReceive.

Sample:

$EscapeControlCharactersOnReceive on

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2007 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $MarkMessagePeriod

$MarkMessagePeriod

Type: specific to immark input module

Default: 1200 (20 minutes)

Description:

This specifies when mark messages are to be written to output modules.
The time specified is in seconds. Specifying 0 is possible and disables
mark messages. In that case, however, it is more efficient to NOT load
the immark input module.

So far, there is only one mark message process and any subsequent
$MarkMessagePeriod overwrites the previous.

This directive is only available after the immark input module has
been loaded.

Sample:

$MarkMessagePeriod

 Legacy Action-Specific Configuration Statements

Legacy Action-Specific Configuration Statements

Statements modify the next action(s) that is/are defined via legacy syntax
after the respective statement.
Actions defined via the action() object are not affected by the
legacy statements listed here. Use the action() object properties
instead.

Generic action configuration Statements

These statements can be used with all types of actions.

	$ActionExecOnlyWhenPreviousIsSuspended

	$ActionResumeInterval

	$RepeatedMsgReduction
	Description

	What is a repeated message

	Discussion

	Sample

	$ActionName <a_single_word> - used primarily for documentation,
e.g. when generating a configuration graph. Available sice 4.3.1.

	$ActionExecOnlyOnceEveryInterval <seconds> - execute action only if
the last execute is at last <seconds> seconds in the past (more info
in ommail, but may be used with any action). To
disable this setting, use value 0.

	$ActionExecOnlyEveryNthTime <number> - If configured, the next
action will only be executed every n-th time. For example, if
configured to 3, the first two messages that go into the action will
be dropped, the 3rd will actually cause the action to execute, the
4th and 5th will be dropped, the 6th executed under the action, ...
and so on. Note: this setting is automatically re-set when the actual
action is defined.

	$ActionExecOnlyEveryNthTimeTimeout <number-of-seconds> - has a
meaning only if $ActionExecOnlyEveryNthTime is also configured for
the same action. If so, the timeout setting specifies after which
period the counting of “previous actions” expires and a new action
count is begun. Specify 0 (the default) to disable timeouts.
Why is this option needed? Consider this case: a message comes in
at, eg., 10am. That’s count 1. Then, nothing happens for the next 10
hours. At 8pm, the next one occurs. That’s count 2. Another 5 hours
later, the next message occurs, bringing the total count to 3. Thus,
this message now triggers the rule.
The question is if this is desired behavior? Or should the rule only
be triggered if the messages occur within an e.g. 20 minute window?
If the later is the case, you need a
$ActionExecOnlyEveryNthTimeTimeout 1200
This directive will timeout previous messages seen if they are older
than 20 minutes. In the example above, the count would now be always
1 and consequently no rule would ever be triggered.

	$ActionResumeRetryCount <number> [default 0, -1 means eternal]

	$ActionWriteAllMarkMessages [on/off]- [available since 5.1.5]
- normally, mark messages are written to actions only if the action
was not recently executed (by default, recently means within the past
20 minutes). If this setting is switched to “on”, mark messages are
always sent to actions, no matter how recently they have been
executed. In this mode, mark messages can be used as a kind of
heartbeat. Note that this option auto-resets to “off”, so if you
intend to use it with multiple actions, it must be specified in front
off all selector lines that should provide this functionality.

omfile-specific Configuration Statements

These statements are specific to omfile-based actions.

	$omfileForceChown

	$DirGroup

	$DirOwner

	$DynaFileCacheSize

	$FileCreateMode

	$FileGroup

	$FileOwner

	$CreateDirs [on/off] - create directories on an as-needed
basis

	$ActionFileDefaultTemplate [templateName] - sets a new default
template for file actions

	$ActionFileEnableSync [on/off] - enables file syncing capability of
omfile

	$OMFileAsyncWriting [on/off], if turned on, the files will be
written in asynchronous mode via a separate thread. In that case,
double buffers will be used so that one buffer can be filled while
the other buffer is being written. Note that in order to enable
$OMFileFlushInterval, $OMFileAsyncWriting must be set to “on”.
Otherwise, the flush interval will be ignored. Also note that when
$OMFileFlushOnTXEnd is “on” but $OMFileAsyncWriting is off, output
will only be written when the buffer is full. This may take several
hours, or even require a rsyslog shutdown. However, a buffer flush
can be forced in that case by sending rsyslogd a HUP signal.

	$OMFileZipLevel 0..9 [default 0] - if greater 0, turns on gzip
compression of the output file. The higher the number, the better the
compression, but also the more CPU is required for zipping.

	$OMFileIOBufferSize <size_nbr>, default 4k, size of the buffer
used to writing output data. The larger the buffer, the potentially
better performance is. The default of 4k is quite conservative, it is
useful to go up to 64k, and 128K if you used gzip compression (then,
even higher sizes may make sense)

	$OMFileFlushOnTXEnd <[on/off]>, default on. Omfile has the
capability to write output using a buffered writer. Disk writes are
only done when the buffer is full. So if an error happens during that
write, data is potentially lost. In cases where this is unacceptable,
set $OMFileFlushOnTXEnd to on. Then, data is written at the end of
each transaction (for pre-v5 this means after each log message)
and the usual error recovery thus can handle write errors without
data loss. Note that this option severely reduces the effect of zip
compression and should be switched to off for that use case. Note
that the default -on- is primarily an aid to preserve the traditional
syslogd behaviour.

omfwd-specific Configuration Statements

These statements are specific to omfwd-based actions.

	$ActionForwardDefaultTemplate [templateName] - sets a new default
template for UDP and plain TCP forwarding action

	$ActionSendResendLastMsgOnReconnect <[on/off]> specifies if the
last message is to be resend when a connecition breaks and has been
reconnected. May increase reliability, but comes at the risk of
message duplication.

	$ActionSendStreamDriver <driver basename> just like
$DefaultNetstreamDriver, but for the specific action

	$ActionSendStreamDriverMode <mode>, default 0, mode to use with the
stream driver (driver-specific)

	$ActionSendStreamDriverAuthMode <mode>,

 $ActionExecOnlyWhenPreviousIsSuspended

$ActionExecOnlyWhenPreviousIsSuspended

Type: global configuration directive

Default: off

Description:

This directive allows to specify if actions should always be executed
(“off,” the default) or only if the previous action is suspended (“on”).
This directive works hand-in-hand with the multiple actions per selector
feature. It can be used, for example, to create rules that automatically
switch destination servers or databases to a (set of) backup(s), if the
primary server fails. Note that this feature depends on proper
implementation of the suspend feature in the output module. All built-in
output modules properly support it (most importantly the database write
and the syslog message forwarder).

This selector processes all messages it receives (*.*). It tries to
forward every message to primary-syslog.example.com (via tcp). If it can
not reach that server, it tries secondary-1-syslog.example.com, if that
fails too, it tries secondary-2-syslog.example.com. If neither of these
servers can be connected, the data is stored in /var/log/localbuffer.
Please note that the secondaries and the local log buffer are only used
if the one before them does not work. So ideally, /var/log/localbuffer
will never receive a message. If one of the servers resumes operation,
it automatically takes over processing again.

We strongly advise not to use repeated line reduction together with
ActionExecOnlyWhenPreviousIsSuspended. It may lead to “interesting” and
undesired results (but you can try it if you like).

Sample:

. @@primary-syslog.example.com $ActionExecOnlyWhenPreviousIsSuspended on & @@secondary-1-syslog.example.com # & is used to have more than one action for & @@secondary-2-syslog.example.com # the same selector - the mult-action feature & /var/log/localbuffer $ActionExecOnlyWhenPreviousIsSuspended off # to re-set it for the next selector

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.

Copyright © 2007 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $ActionResumeInterval

$ActionResumeInterval

Type: global configuration directive

Default: 30

Description:

Sets the ActionResumeInterval for all following actions. The interval
provided is always in seconds. Thus, multiply by 60 if you need minutes
and 3,600 if you need hours (not recommended).

When an action is suspended (e.g. destination can not be connected), the
action is resumed for the configured interval. Thereafter, it is
retried. If multiple retries fail, the interval is automatically
extended. This is to prevent excessive resource use for retries. After
each 10 retries, the interval is extended by itself. To be precise, the
actual interval is (numRetries / 10 + 1) * $ActionResumeInterval. so
after the 10th try, it by default is 60 and after the 100th try it is
330.

Sample:

$ActionResumeInterval 30

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.

Copyright © 2007 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $RepeatedMsgReduction

$RepeatedMsgReduction

Type: global configuration directive

Default: off

Description

This directive models old sysklogd legacy. Note that many people,
including the rsyslog authors, consider this to be a misfeature. See
Discussion below to learn why.

This directive specifies whether or not repeated messages should be
reduced (this is the “Last line repeated n times” feature). If set to
on, repeated messages are reduced. If kept at off, every message is
logged. In very early versions of rsyslog, this was controlled by the
-e command line option.

What is a repeated message

For a message to be classified as repeated, the following properties
must be identical:

	msg

	hostname

	procid

	appname

Note that rate-limiters are usually applied to specific input sources
or processes. So first and foremost the input source must be the same
to classify a messages as a duplicated.

You may want to check out
testing rsyslog ratelimiting [http://www.rsyslog.com/first-try-to-test-rate-limiting/]
for some extra information on the per-process ratelimiting.

Discussion

	Very old versions of rsyslog did not have the ability to include the
repeated message itself within the repeat message.

	Versions before 7.3.2 applied repeat message reduction to the output
side. This had some implications:
	they did not account for the actual message origin, so two processes
emitting an equally-looking messsage triggered the repeated message
reduction code

	repeat message processing could be set on a per-action basis, which
has switched to per-input basis for 7.3.2 and above

	While turning this feature on can save some space in logs, most log analysis
tools need to see the repeated messages, they can’t handle the
“last message repeated” format.

	This is a feature that worked decades ago when logs were small and reviewed
by a human, it fails badly on high volume logs processed by tools.

Sample

This turns on repeated message reduction (not recommended):

$RepeatedMsgReduction on # do not log repeated messages

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2007-2014 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $omfileForceChown

$omfileForceChown

Type: global configuration directive

Parameter Values: boolean (on/off, yes/no)

Available: 4.7.0+, 5.3.0-5.8.x, NOT available in 5.9.x or higher

Note: this directive has been removed and is no longer available. The
documentation is currently being retained for historical reaons.
Expect it to go away at some later stage as well.

Default: off

Description:

Forces rsyslogd to change the ownership for output files that already
exist. Please note that this tries to fix a potential problem that
exists outside the scope of rsyslog. Actually, it tries to fix invalid
ownership/permission settings set by the original file creator.

Rsyslog changes the ownership during initial execution with root
privileges. When a privelege drop is configured, privileges are dropped
after the file owner ship is changed. Not that this currently is a
limitation in rsyslog’s privilege drop code, which is on the TODO list
to be removed. See Caveats section below for the important implications.

Caveats:

This directive tries to fix a problem that actually is outside the scope
of rsyslog. As such, there are a couple of restrictions and situations
in which it will not work. Users are strongly encouraged to fix their
system instead of turning this directive on - it should only be used
as a last resort.

At least in the following scenario, this directive will fail expectedly:

It does not address the situation that someone changes the ownership
after rsyslogd has started. Let’s, for example, consider a log
rotation script.

	rsyslog is started

	ownership is changed

	privileges dropped

	log rotation (lr) script starts

	lr removes files

	lr creates new files with root:adm (or whatever else)

	lr HUPs rsyslogd

	rsyslogd closes files

	rsyslogd tries to open files

	rsyslogd tries to change ownership –> fail as we are non-root now

	file open fails

Please note that once the privilege drop code is refactored, this
directive will no longer work, because then privileges will be dropped
before any action is performed, and thus we will no longer be able to
chown files that do not belong to the user rsyslogd is configured to run
under.

So expect the directive to go away. It will not be removed in
version 4, but may disappear at any time for any version greater than 4.

Sample:

$FileOwner loguser $omfileForceChown on

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.

Copyright © 2007 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $DirGroup

$DirGroup

Type: global configuration directive

Default:

Description:

Set the group for directories newly created. Please note that this
setting does not affect the group of directories already existing. The
parameter is a group name, for which the groupid is obtained by rsyslogd
on during startup processing. Interim changes to the user mapping are
not detected.

Sample:

$DirGroup loggroup

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2007 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $DirOwner

$DirOwner

Type: global configuration directive

Default:

Description:

Set the file owner for directories newly created. Please note that this
setting does not affect the owner of directories already existing. The
parameter is a user name, for which the userid is obtained by rsyslogd
during startup processing. Interim changes to the user mapping are not
detected.

Sample:

$DirOwner loguser

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2007 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $DynaFileCacheSize

$DynaFileCacheSize

Type: global configuration directive

Default: 10

Description:

This directive specifies the maximum size of the cache for
dynamically-generated file names. Selector lines with dynamic files
names (‘?’ indicator) support writing to multiple files with a single
selector line. This setting specifies how many open file handles should
be cached. If, for example, the file name is generated with the hostname
in it and you have 100 different hosts, a cache size of 100 would ensure
that files are opened once and then stay open. This can be a great way
to increase performance. If the cache size is lower than the number of
different files, the least recently used one is discarded (and the file
closed). The hardcoded maximum is 10,000 - a value that we assume should
already be very extreme. Please note that if you expect to run with a
very large number of files, you probably need to reconfigure the kernel
to support such a large number. In practice, we do NOT recommend to use
a cache of more than 1,000 entries. The cache lookup would probably
require more time than the open and close operations. The minimum value
is 1.

Numbers are always in decimal. Leading zeros should be avoided (in some
later version, they may be mis-interpreted as being octal). Multiple
directives may be given. They are applied to selector lines based on
order of appearance.

Sample:

$DynaFileCacheSize 100

 $FileCreateMode

$FileCreateMode

Type: global configuration directive

Default: 0644

Description:

The $FileCreateMode directive allows to specify the creation mode with
which rsyslogd creates new files. If not specified, the value 0644 is
used (which retains backward-compatibility with earlier releases). The
value given must always be a 4-digit octal number, with the initial
digit being zero.

Please note that the actual permission depend on rsyslogd’s process
umask. If in doubt, use “$umask 0000” right at the beginning of the
configuration file to remove any restrictions.

$FileCreateMode may be specified multiple times. If so, it specifies the
creation mode for all selector lines that follow until the next
$FileCreateMode directive. Order of lines is vitally important.

Sample:

$FileCreateMode 0600

This sample lets rsyslog create files with read and write access only
for the users it runs under.

The following sample is deemed to be a complete rsyslog.conf:

$umask 0000 # make sure nothing interferes with the following definitions *.* /var/log/file-with-0644-default $FileCreateMode 0600 *.* /var/log/file-with-0600 $FileCreateMode 0644 *.* /var/log/file-with-0644

As you can see, open modes depend on position in the config file. Note
the first line, which is created with the hardcoded default creation
mode.

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2007 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 3 or higher.

 $FileGroup

$FileGroup

Type: global configuration directive

Default:

Description:

Set the group for dynaFiles newly created. Please note that this setting
does not affect the group of files already existing. The parameter is a
group name, for which the groupid is obtained by rsyslogd during startup
processing. Interim changes to the user mapping are not detected.

Sample:

$FileGroup loggroup

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2007 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $FileOwner

$FileOwner

Type: global configuration directive

Default:

Description:

Set the file owner for dynaFiles newly created. Please note that this
setting does not affect the owner of files already existing. The
parameter is a user name, for which the userid is obtained by rsyslogd
during startup processing. Interim changes to the user mapping are not
detected.

Sample:

$FileOwner loguser

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2007 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $GssForwardServiceName

$GssForwardServiceName

Type: global configuration directive

Default: host

Provided by: omgssapi

Description:

Specifies the service name used by the client when forwarding GSS-API
wrapped messages.

The GSS-API service names are constructed by appending ‘@’ and a
hostname following “@@” in each selector.

Sample:

$GssForwardServiceName rsyslog

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2007 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $GssMode

$GssMode

Type: global configuration directive

Default: encryption

Provided by: omgssapi

Description:

Specifies GSS-API mode to use, which can be “integrity” - clients
are authenticated and messages are checked for integrity,
“encryption” - same as “integrity”, but messages are also
encrypted if both sides support it.

Sample:

$GssMode Encryption

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2007 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 Ruleset-Specific Legacy Configuration Statements

Ruleset-Specific Legacy Configuration Statements

These statements can be used to set ruleset parameters. To set
these parameters, first use $Ruleset, then use the other
configuration directives. Please keep in mind
that each ruleset has a main queue. To specify parameter for these
ruleset (main) queues, use the main queue configuration directives.

	$RulesetCreateMainQueue

	$RulesetParser

	$Ruleset name - starts a new ruleset or switches back to one
already defined. All following actions belong to that new rule set.
the name does not yet exist, it is created. To switch back to
rsyslog’s default ruleset, specify “RSYSLOG_DefaultRuleset”) as the
name. All following actions belong to that new rule set. It is
advised to also read our paper on
using multiple rule sets in rsyslog.

 $RulesetCreateMainQueue

 rsyslog.conf configuration directive

$RulesetCreateMainQueue

Type: ruleset-specific configuration directive

Parameter Values: boolean (on/off, yes/no)

Available since: 5.3.5+

Default: off

Description:

Rulesets may use their own “main” message queue for message submission.
Specifying this directive, inside a ruleset definition, turns this
on. This is both a performance enhancement and also permits different
rulesets (and thus different inputs within the same rsyslogd instance)
to use different types of main message queues.

The ruleset queue is created with the parameters that are specified for
the main message queue at the time the directive is given. If different
queue configurations are desired, different main message queue
directives must be used in front of the $RulesetCreateMainQueue
directive. Note that this directive may only be given once per ruleset.
If multiple statements are specified, only the first is used and for the
others error messages are emitted.

Note that the final set of ruleset configuration directives specifies
the parameters for the default main message queue.

To learn more about this feature, please be sure to read about
multi-ruleset support in rsyslog.

Caveats:

The configuration statement “$RulesetCreateMainQueue off” has no effect
at all. The capability to specify this is an artifact of the legacy
configuration language.

Example:

This example sets up a tcp server with three listeners. Each of these
three listener is bound to a specific ruleset. As a performance
optimization, the rulesets all receive their own private queue. The
result is that received messages can be independently processed. With
only a single main message queue, we would have some lock contention
between the messages. This does not happen here. Note that in this
example, we use different processing. Of course, all messages could also
have been processed in the same way ($IncludeConfig may be useful in
that case!).

$ModLoad imtcp
at first, this is a copy of the unmodified rsyslog.conf
#define rulesets first
$RuleSet remote10514
$RulesetCreateMainQueue on # create ruleset-specific queue
. /var/log/remote10514

$RuleSet remote10515
$RulesetCreateMainQueue on # create ruleset-specific queue
. /var/log/remote10515

$RuleSet remote10516
$RulesetCreateMainQueue on # create ruleset-specific queue
mail.* /var/log/mail10516
& ~
note that the discard-action will prevent this messag from
being written to the remote10516 file - as usual...
. /var/log/remote10516

and now define listeners bound to the relevant ruleset
$InputTCPServerBindRuleset remote10514
$InputTCPServerRun 10514

$InputTCPServerBindRuleset remote10515
$InputTCPServerRun 10515

$InputTCPServerBindRuleset remote10516
$InputTCPServerRun 10516

Note the positions of the directives. With the legacy language,
position is very important. It is highly suggested to use
the ruleset() object in RainerScript config language if you intend
to use ruleset queues. The configuration is much more straightforward in
that language and less error-prone.

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.
Copyright © 2009-2014 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 $RulesetParser

$RulesetParser

Type: ruleset-specific configuration directive

Parameter Values: string

Available since: 5.3.4+

Default: rsyslog.rfc5424 followed by rsyslog.rfc3164

Description:

This directive permits to specify which message
parsers should be used for the ruleset in
question. It no ruleset is explicitely specified, the default ruleset is
used. Message parsers are contained in (loadable) parser modules with
the most common cases (RFC3164 and RFC5424) being build-in into
rsyslogd.

When this directive is specified the first time for a ruleset, it will
not only add the parser to the ruleset’s parser chain, it will also wipe
out the default parser chain. So if you need to have them in addition to
the custom parser, you need to specify those as well.

Order of directives is important. Parsers are tried one after another,
in the order they are specified inside the config. As soon as a parser
is able to parse the message, it will do so and no other parsers will be
executed. If no matching parser can be found, the message will be
discarded and a warning message be issued (but only for the first 1,000
instances of this problem, to prevent message generation loops).

Note that the rfc3164 parser will always be able to parse a message
- it may just not be the format that you like. This has two important
implications: 1) always place that parser at the END of the parser list,
or the other parsers after it will never be tried and 2) if you would
like to make sure no message is lost, placing the rfc3164 parser at the
end of the parser list ensures that.

Multiple parser modules are very useful if you have various devices that
emit messages that are malformed in various ways. The route to take then
is

	make sure you find a custom parser for that device; if there is no
one, you may consider writing one yourself (it is not that hard) or
getting one written as part of Adiscon’s professional services for
rsyslog [http://www.rsyslog.com/professional-services].

	load your custom parsers via $ModLoad

	create a ruleset for each malformed format; assign the custom parser
to it

	create a specific listening port for all devices that emit the same
malformed format

	bind the listener to the ruleset with the required parser

Note that it may be cumbersome to add all rules to all rulesets. To
avoid this, you can either use $Include or omruleset
(what probably provides the best solution).

More information about rulesets in general can be found in
multi-ruleset support in rsyslog.

Caveats:

currently none known

Example:

This example assumes there are two devices emiting malformed messages
via UDP. We have two custom parsers for them, named “device1.parser” and
“device2.parser”. In addition to that, we have a number of other devices
sending wellformed messages, also via UDP.

The solution is to listen for data from the two devices on two special
ports (10514 and 10515 in this example), create a ruleset for each and
assign the custom parsers to them. The rest of the messages are received
via port 514 using the regular parsers. Processing shall be equal for
all messages. So we simply forward the malformed messages to the regular
queue once they are parsed (keep in mind that a message is never again
parsed once any parser properly processed it).

$ModLoad imudp
$ModLoad pmdevice1 # load parser "device1.parser" for device 1
$ModLoad pmdevice2 # load parser "device2.parser" for device 2

define ruleset for the first device sending malformed data
$Ruleset maldev1
$RulesetCreateMainQueue on # create ruleset-specific queue
$RulesetParser "device1.parser" # note: this deactivates the default parsers
forward all messages to default ruleset:
$ActionOmrulesetRulesetName RSYSLOG_DefaultRuleset
. :omruleset:

define ruleset for the second device sending malformed data
$Ruleset maldev2 $RulesetCreateMainQueue on # create ruleset-specific queue
$RulesetParser "device2.parser" # note: this deactivates the default parsers
forward all messages to default ruleset:
$ActionOmrulesetRulesetName RSYSLOG_DefaultRuleset
. :omruleset:

switch back to default ruleset
$Ruleset RSYSLOG_DefaultRuleset
. /path/to/file
auth.info @authlogger.example.net
whatever else you usually do...

now define the inputs and bind them to the rulesets
first the default listener (utilizing the default ruleset)
$UDPServerRun 514

now the one with the parser for device type 1:
$InputUDPServerBindRuleset maldev1
$UDPServerRun 10514

and finally the one for device type 2:
$InputUDPServerBindRuleset maldev2
$UDPServerRun 10515

For an example of how multiple parser can be chained (and an actual use
case), please see the example section on the
pmlastmsg parser module.

Note the positions of the directives. With the current config language,
sequence of statements is very important. This is ugly, but
unfortunately the way it currently works.

This documentation is part of the rsyslog [http://www.rsyslog.com/]
project.

Copyright © 2009 by Rainer Gerhards [http://www.gerhards.net/rainer]
and Adiscon [http://www.adiscon.com/]. Released under the GNU GPL
version 2 or higher.

 rsyslog statistic counter

rsyslog statistic counter

Rsyslog supports statistic counters via the impstats module.
It is important to know that impstats and friends only provides an infrastructure
where core components and plugins can register statistics counter. This FAQ entry
tries to describe all counters available, but please keep in mind that there may exist
that we do not know about.

When interpreting rsyslog statistics, please keep in mind that statistics records are
processed as regular syslog messages. As such, the statistics messages themselves
increment counters when they are emitted via the regular syslog stream, which is the
default (and so counters keep slowly increasing even if there is absolutely no other
traffic). Also keep in mind that a busy rsyslog system is very dynamic. Most
importantly, this means that the counters may not be 100% consistent, but some slight
differences may exist. Avoiding such inconsistencies would be possible only at the
price of a very tight locking discipline, which would cause serious performance
bottlenecks. Thus, this is not done. Finally, though extremely unlikely, some counters
may experience an overflow and restart at 0 for that reasons. However, most counters
are 64-bit, so this is extremely unlikely. Those which are not 64 bit are typically
taken from some internal data structure that uses lower bits for performance reasons
and guards against overflow.

The listing starts with the core component or plugin that creates the counters and
than specifies various counters that exist for the sub-entities. The listing below is
extended as new counters are added. Some counters probably do not exist in older
releases of rsyslog.

Queue

For each queue inside the system its own set of statistics counters is created.
If there are multiple action (or main) queues, this can become a rather lengthy list.
The stats record begins with the queue name (e.g. “main Q” for the main queue;
ruleset queues have the name of the ruleset they are associated to, action queues
the name of the action).

	size - currently active messages in queue

	enqueued - total number of messages enqueued into this queue since startup

	maxsize - maximum number of active messages the queue ever held

	full - number of times the queue was actually full and could not accept additional messages

	discarded.full - number of messages discarded because the queue was full

	discarded.nf - number of messages discarded because the queue was nearly full. Starting at this point, messages of lower-than-configured severity are discarded to save space for higher severity ones.

Actions

	processed - total number of messages processed by this action. This includes those messages that failed actual execution (so it is a total count of messages ever seen, but not necessarily successfully processed)

	failed - total number of messages that failed during processing. These are actually lost if they have not been processed by some other action. Most importantly in a failover chain the messages are flagged as “failed” in the failing actions even though they are forwarded to the failover action (the failover action’s “processed” count should equal to failing actions “fail” count in this scenario)a

	suspended - (7.5.8+) – total number of times this action suspended itself. Note that this counts the number of times the action transitioned from active to suspended state. The counter is no indication of how long the action was suspended or how often it was retried. This is intentional, as the counter as it currently is permits to tell how often the action ran into a failure condition.

	suspended.duration - (7.5.8+) – the total number of seconds this action was disabled. Note that the second count is incremented as soon as the action is suspended for another interval. As such, the time may be higher than it should be at the reporting point of time. If the pstats interval is shorter than the suspension timeout, the same suspended.duration value may be reported for successive pstats outputs. For a long-running system, this is considered a minimal difference. In general, note that this setting is not totally accurate, especially when running with multiple worker threads. In rsyslog v8, this is the total suspended time for all worker instances of this action.

	resumed - (7.5.8+) – total number of times this action resumed itself. A resumption occurs after the action has detected that a failure condition does no longer exist.

Plugins

imuxsock

imudp

imtcp

imptcp

imrelp

impstats

omfile

omelasticsearch

 Modules

Modules

Rsyslog has a modular design. This enables functionality to be
dynamically loaded from modules, which may also be written by any third
party. Rsyslog itself offers all non-core functionality as modules.
Consequently, there is a growing number of modules. Here is the entry
point to their documentation and what they do (list is currently not
complete)

Please note that each module provides configuration directives, which
are NOT necessarily being listed below. Also remember, that a modules
configuration directive (and functionality) is only available if it has
been loaded (using $ModLoad).

It is relatively easy to write a rsyslog module. If none of the
provided modules solve your need, you may consider writing one or have
one written for you by Adiscon’s professional services for
rsyslog [http://www.rsyslog.com/professional-services] (this often
is a very cost-effective and efficient way of getting what y