

RPyMostat

[image: PyPi package version]
 [https://pypi.python.org/pypi/RPyMostat][image: PyPi downloads]
 [https://pypi.python.org/pypi/RPyMostat][image: GitHub Forks]
 [https://github.com/jantman/RPyMostat/network][image: GitHub Open Issues]
 [https://github.com/jantman/RPyMostat/issues][image: Project Status: Active - The project has reached a stable, usable state and is being actively developed.]
 [http://www.repostatus.org/#active]Master:

[image: travis-ci for master branch]
 [http://travis-ci.org/jantman/RPyMostat][image: Code Health]
 [https://landscape.io/github/jantman/RPyMostat/master][image: coverage report for master branch]
 [https://codecov.io/github/jantman/RPyMostat?branch=master][image: sphinx documentation for latest release]
 [https://readthedocs.org/projects/RPyMostat/?badge=latest]Develop:

[image: travis-ci for develop branch]
 [http://travis-ci.org/jantman/RPyMostat][image: Code Health]
 [https://landscape.io/github/jantman/RPyMostat/develop][image: coverage report for develop branch]
 [https://codecov.io/github/jantman/RPyMostat?branch=develop][image: sphinx documentation for develop branch]
 [https://readthedocs.org/projects/RPyMostat/?badge=develop]RPyMostat - A python-based modular intelligent home thermostat, targeted at (but not requiring) the RaspberryPi and similar small computers, with a documented API.

Contents

	Planning
	Features
	Features planned for the initial release

	Features planned for future releases

	Relevant Links / Similar Projects

	Some Technical Bits and Questions
	API

	Engine

	UI

	Testing

	Relay/Physical Control Unit

	Decision Engine / Master Control Process

	Datastore

	Physical Control Interface

	Other Hardware

	Reference Implementation

	Installation, Configuration and Usage
	Requirements

	Installation

	Configuration

	Usage

	Architecture
	Overview

	Discovery
	python-zeroconf

	pybonjour

	Avahi Bindings

	Other Options

	Twisted
	Twisted Basics

	Third-Party Twisted Modules

	ReST API
	Links

	Klein
	Links

	Signals
	Links

	Scheduling

	Testing
	Links

	Python API
	rpymostat package
	Subpackages
	rpymostat.db package

	rpymostat.engine package

	Submodules
	rpymostat.config module

	rpymostat.exceptions module

	rpymostat.runner module

	rpymostat.version module

	HTTP API

	Changelog
	x.y.z (YYYY-MM-DD)

	Development
	Guidelines

	Testing

	Acceptance Tests

	Release Checklist

Indices and tables

	Index

	Module Index

	Search Page

License

RPyMostat is licensed under the GNU Affero General Public License, version 3 or later [http://www.gnu.org/licenses/agpl.html].

Planning

A python-based intelligent home thermostat, targeted at (but not
requiring) the RaspberryPi and similar small computers. (Originally
“RaspberryPyMostat”, for ‘RaspberryPi Python Thermostat’, but that’s too
long to reasonably name a Python package).

Especially since the introduction of the Nest
thermostat [http://en.wikipedia.org/w/index.php?title=Nest_Labs&redirect=no],
a lot of people have attempted a project like this. I’d like to think
that mine is different - perhaps more polished, perhaps it stores
historical data in a real, logical way. Multiple temperatures are nice,
and the pluggable scheduling and decision engines are something I
haven’t seen in any others yet. The completely open API, and the fact
that some of the out-of-the-box components use it is new too. And after
looking at some of the options out there, I think the idea of it being
packaged and distributed properly is pretty novel too, as are my hopes
for a platform-agnostic system; a lot of the options out there are
really hardware-hacking projects, and I want to make software that works
with as many hardware options as it can. But when it comes down to it,
this is an idea that I tried a long time
ago [https://github.com/jantman/tuxostat] and never finished, and
want to have another try at regardless of whether it does something
unique or becomes just another one of the hundred pieces of software
that do the same thing. I’m also going to be playing with some
technology that I’ve never used before, so for me this is as much about
learning and exploring as it is about producing a polished final
codebase.

See:

	Architecture.md for an overview of the
architecture, and most of the documentation that currently exists.

	DISCOVERY.md for some information on service
discovery

	TWISTED.md for some docs on using Twisted for this

Features

Features planned for the initial release

	Flexible rules-based scheduling. This can include cron-like schedules (do X at a given time of day, or time of day on one or more days of week, etc.), one-time schedule overrides (“I’m going to be away from December 21st to 28th this year, just keep the temperature above Y”), or instant adjustments (“make the temperature X degress NOW”, in the web UI). The most specific schedule wins. Inital scheduling will support some mix of what can be represented by ISO8601 time intervals [http://en.wikipedia.org/wiki/ISO_8601#Time_intervals] and cron expressions [http://en.wikipedia.org/wiki/Cron#CRON_expression].

	Support for N temperature sensors, and scheduling based on them; i.e. set a daytime target temperature based on the temperature of your office, and a nighttime target based on the temperature in the bedroom.

	Web UI with robust mobile and touch support. Ideally, the entire system should be configurable by a web UI once it’s installed (which should be done with a Puppet module).

	Some sort of physical on-the-wall touchscreen control, using the web UI.

	Everything AGPL 3.0.

	Scheduling and decision (system run) implemented in plugins (packages, entry points [http://pythonhosted.org/setuptools/setuptools.html#dynamic-discovery-of-services-and-plugins]) that use a defined API; some way of reflecting this in the Web UI (maybe this should come over the master API). Initially just implement scheduling as described above and setting temperature based on one temp input; subsequent plugins could include averaging across multiple inputs, weighted average, and predictive on/off cycles (including outside temperature input).

	Support running all on one RPi, or splitting components apart; should support as many OSes as possible. Support for smaller devices as temperature sensors would be nice.

	Microservice/component architecture.

	Open, documented APIs. Aside from the main engine, it should be possible to implement the other components in other languages.

	mDNS / DNS-SD for zero configuration on devices other than the engine.

Features planned for future releases

	Data on current and desired temperature(s) and heating/cooling state will be collected. This should allow the scheduling engine to build up historical data on how long it takes to heat or cool one degree at a given temperature, and should allow us to trigger heating/cooling to reach the scheduled temperature at the scheduled time (as opposed to starting the heating/cooling at the scheduled time).

	Historical data stored in some time-series database; should include all temperature values at the beginning of a run, and every X minutes during a run.

Relevant Links / Similar Projects

	https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/temperature/

	https://www.adafruit.com/product/1012

	http://www.projects.privateeyepi.com/home/temperature-gauge

	http://m.instructables.com/id/Raspberry-Pi-Temperature-Humidity-Network-Monitor/

	Raspberry Pi Thermostat Part 1: System Overview - The
Nooganeer [http://www.nooganeer.com/his/projects/homeautomation/raspberry-pi-thermostat-part-1-overview/]

	Willseph/RaspberryPiThermostat [https://github.com/Willseph/RaspberryPiThermostat]

	python - Thermostat Control Algorithms - Stack
Overflow [http://stackoverflow.com/questions/8651063/thermostat-control-algorithms]

	VE2ZAZ - Smart Thermostat on the Raspberry
Pi [http://ve2zaz.net/RasTherm/RasTherm.htm]

	Raspberry Pi • View topic - Web enabled thermostat
project [http://www.raspberrypi.org/forums/viewtopic.php?f=37&t=24115]

	Rubustat - the Raspberry Pi Thermostat | Wyatt Winters | Saving
the world one computer at a
time [http://wyattwinters.com/rubustat-the-raspberry-pi-thermostat.html]

	Makeatronics: Raspberry Pi Thermostat
Hookups [http://makeatronics.blogspot.com/2013/04/raspberry-pi-thermostat-hookups.html]

	Makeatronics: Thermostat
Software [http://makeatronics.blogspot.com/2013/04/thermostat-software.html]

	Willseph/RaspberryPiThermostat: A Raspberry Pi-powered smart
thermostat written in Python and
PHP. [https://github.com/Willseph/RaspberryPiThermostat] - Python
sensors and control but PHP LAMP web UI. MIT license. Looks like it’s
got a good bit of information, especially on wiring/setup and photos
of the install on Imgur [http://imgur.com/gallery/YxElS].

	ianmtaylor1/thermostat: Raspberry Pi Thermostat
code [https://github.com/ianmtaylor1/thermostat] - Python project
that reads 1-wire temps and uses SQLAlchemy. Relatively simple beyond
that.

	chaeron/thermostat: Raspberry Pi
Thermostat [https://github.com/chaeron/thermostat] - Fairly nice
touchscreen UI and pretty complete, but one untested python file and
only one physical piece.

	mharizanov/ESP8266_Relay_Board: Three Channel WiFi
Relay/Thermostat
Board [https://github.com/mharizanov/ESP8266_Relay_Board] -
firmware source code and hardware designs for a WiFi relay/thermostat
board. Probably won’t use this, but interesting.

	mdarty/thermostat: Raspberry Pi Thermostat
Controller [https://github.com/mdarty/thermostat] - python/flask
app for a Python RPi thermostat.

	tom91136/thermostat: A simple thermostat for RaspberryPi written in
Python [https://github.com/tom91136/thermostat] - Another Flask,
DS18B20 thermostat with GPIO relays.

	jeffmcfadden/PiThermostat: Build a Raspberry Pi
Thermostat [https://github.com/jeffmcfadden/PiThermostat] - Rails
app for an RPi thermostat.

	Forever-Young/thermostat-web: Django application for thermostat
control [https://github.com/Forever-Young/thermostat-web] -
single-host

	wywin/Rubustat: A thermostat controller for Raspberry Pi on
Flask [https://github.com/wywin/Rubustat]

	tommybobbins/PiThermostat: Raspberry Pi, TMP102 and 433 Transmitter
to make an Redis based Central heating
system [https://github.com/tommybobbins/PiThermostat] -
Redis-based system using Google Calendar for scheduling

	jpardobl/django-thermostat: Django app to control a
heater [https://github.com/jpardobl/django-thermostat]

	tinkerjs/Pi-Thermostat: A Raspberry Pi based
thermostat [https://github.com/tinkerjs/Pi-Thermostat] - Python
and RPi, but single-host. Blog
post [http://technicalexplorer.blogspot.com/2015/08/the-thermostat.html]
has some nice diagrams, pictures, and information on HVAC systems.

	cakofony/thermostat: Web enabled thermostat project to run on the
raspberry pi. [https://github.com/cakofony/thermostat] - Python,
includes support for an Adafruit character LCD display.

	Raspberry Pi Thermostat Part 1: System Overview - The
Nooganeer [http://www.nooganeer.com/his/projects/homeautomation/raspberry-pi-thermostat-part-1-overview/]
- nice web UI demo

	VE2ZAZ - Smart Thermostat on the Raspberry
Pi [http://ve2zaz.net/RasTherm/RasTherm.htm] - Flask UI

	openHAB [http://www.openhab.org/] - JVM-based, vendor-agnostic
home automation “hub”. Includes web UI. Rule creation appears to be
via a Java UI though.

	home-assistant/home-assistant: Open-source home automation platform
running on Python
3 [https://github.com/home-assistant/home-assistant] - Python3
home automation server with web UI. Looks like it could be really
interesting, but not sure how much support it has for the advanced
scheduling I want.

	WTherm – a smart thermostat |
NiekProductions [http://niekproductions.com/p/wtherm/] - Arduino,
PHP but has some good concepts.

	Home | pimatic - smart home automation for the raspberry
pi [https://pimatic.org/] - node.js home automation framework.
Once again, doesn’t have support for the kind of scheduling I want.

	Matt Brenner / PyStat ·
GitLab [https://gitlab.com/madbrenner/PyStat] - multi-threaded
Ptrhon thermostat; Flask, RPi.
screenshots [http://imgur.com/a/7vkZO]. Looks nice, but doesn’t
seem to have the type of scheduling I want, and runs as a single
process/single host.

	serial_device2 [https://pypi.python.org/pypi/serial_device2/1.0]
- Extends serial.Serial to add methods such as auto discovery of
available serial ports in Linux, Windows, and Mac OS X

	pyusbg2 [https://pypi.python.org/pypi/pyusbg2] - PyUSB offers
easy USB devices communication in Python. It should work without
additional code in any environment with Python >= 2.4, ctypes and an
pre-built usb backend library (currently, libusb 0.1.x, libusb 1.x,
and OpenUSB).

Some Technical Bits and Questions

API

	raml [http://raml.org/] - RESTful API Modeling Language

	architecting version-less
APIs [http://urthen.github.io/2013/05/16/ways-to-version-your-api-part-2/]

Engine

	The main process will likely have to have a number of threads: API
serving (ReST API), timer/cron for scheduling and comparing temp
values to thresholds, main thread (am I missing anything?)

	Use workers (either real Celery, or just async calling a process/thread) to
calculate things?

	schedules and overrides

	schedules have start and end time, that are cron-like

	overrides have a specific start time, and end time that’s either specific (input can be a specific datetime, or a duration) or when the next schedule starts

	backend - when a schedule or override is input, backend recalculates the next X hours of instructions (schedule with overrides applied), caches them, makes them accessible via API

	schedules and overrides

	default temperature thresholds (how much over/under to trigger/overshoot and how often to run)

	schedules/overrides have temperature targets and thresholds - which sensors to look at, how to weight them. Can be a “simple” input (look at only one sensor, one target temp) or a weighted combination. Can save a default calculation method/sensor weighting.

	make sure we don’t start/stop the system too often

UI

	Web UI will probably use Flask, TODO: but I need to figure out
how easy it is to get that to just wrap an API.

	TODO: Is there any way that we can generate (dynamically? code generation?) the API server and client? The web UI? Is there an existing web UI “thing” to just wrap a ReST API? Would this help testing?

	I know some of the python API clients I’ve worked with do this... I just need to figure out how, because it’s an area I’ve never really looked into.

	Just provide a pretty (or usable) wrapper around the decision engine API. Honestly I’d love it if this could be generated entirely dynamically - i.e. the decision engine’s plugins know about some input data types, and the web UI knows how to render them. The web UI is just a pile of components, and pulls information about what it needs dynamically from the decision engine. That’s really complicated to implement, but OTOH, I’m not sure how else we allow pluggable scheduling and decision modules.

	visual schedule overlay like PagerDuty

	[tastejs/todomvc: Helping you select an MV* framework - Todo apps for Backbone.js, Ember.js, AngularJS, and many more](https://github.com/tastejs/todomvc) / [TodoMVC](http://todomvc.com/)

	https://en.wikipedia.org/wiki/HATEOAS

	looks good - [Writing a Javascript REST client - miguelgrinberg.com](http://blog.miguelgrinberg.com/post/writing-a-javascript-rest-client) - [Twitter Bootstrap](http://twitter.github.io/bootstrap/) for presentation (see [fluid layout model](http://getbootstrap.com/2.3.2/examples/fluid.html)), [Knockout](http://knockoutjs.com/) for MVC.

	[vinta/awesome-python: A curated list of awesome Python frameworks, libraries, software and resources](https://github.com/vinta/awesome-python#database-drivers)

	[Ajenti Core - a Web-UI Toolkit](http://ajenti.org/core/) - has a really nice UI, and is Python on the backend

	[Backbone.js](http://backbonejs.org/) - might be good... it’s an in-browser MVC. A little worried about memory use.

	[Creating a Single Page Todo App with Node and Angular | Scotch](https://scotch.io/tutorials/creating-a-single-page-todo-app-with-node-and-angular)

Testing

	Unit tests should mock out the txmongo connection. Integration tests require
Mongo, and should run a Docker container of it. Need to look into how to do
this nicely on Travis.

	We’ll need some real data fixtures, and to look into the right way to dump
and load data from/to Mongo.

	Assuming we’re going with the API-based model, unit tests should be
simple. Integration and acceptance tests are another question.

	TODO: How to test the API server and client?

	TODO: How to test the separate services, in isolation from the
server?

	TODO: Try to find a strong unit testing framework for the web UI;
we can deal with integration/acceptance testing later.

	TODO: How do I do acceptance/integration testing with service
discovery if I have this running (like, in my house) on my LAN? Just
use some “system number” variable?

Relay/Physical Control Unit

dead-simple:

	Process starts up, uses service discovery to find the decision
engine.

	Registers itself with some sort of unique ID (hardware UUID,
RaspberryPi serial number, etc.)

	Discovers available relay outputs and their states, assigns a unique
ID to each.

	POST this information to the decision engine.

	Start a web server.

	Wait for an API request from the decision engine, which is either a
GET (current status) or POST (set state).

Decision Engine / Master Control Process

Here’s where the complexity lies.

	Keep (time-series?) database of historical data on temperature,
system state, etc. (including data required for predictive system
operation)

	Determine the current and next (N) schedules.

	Constantly (every N seconds) compare temperature data to current
schedule and operate system accordingly

	Re-read schedules whenever a change takes place

	Show end-user current system state and upcoming schedules

	Provide a plugin interface for schedule algorithms

	Provide a plugin interface for decision (system run/stop) algorithms

	Support third-party web UIs via its API, which needs to include
support for the plug-in scheduling and decision algorithms (which
exist only in this process, not the web UI)

	Support versioning of ReST and internal APIs

Datastore

MongoDB 2.4. Raspbian has it for ARM.

	txmongo [https://github.com/twisted/txmongo] and its docs [https://txmongo.readthedocs.io/en/latest/]

	txmongo twisted.web example [https://github.com/twisted/txmongo/blob/master/examples/webapps/twistedweb_server.tac]

Time-Series:

	Schema Design for Time Series Data in MongoD - MongoDB Blog [http://blog.mongodb.org/post/65517193370/schema-design-for-time-series-data-in-mongodb]

	Time Series [http://learnmongodbthehardway.com/schema/chapter6/]

	MongoDB for Time Series Data Part 1: Setting the Stage for Sensor Management | MongoDB [https://www.mongodb.com/presentations/mongodb-time-series-data-part-1-setting-stage-sensor-management]

	MongoDB for Time Series Data | MongoDB [https://www.mongodb.com/presentations/mongodb-time-series-data]

	Efficient storage of non-periodic time series with MongoDB [https://bluxte.net/musings/2015/01/21/efficient-storage-non-periodic-time-series-mongodb/]

	Capped Collections — MongoDB Manual 3.2 [https://docs.mongodb.com/manual/core/capped-collections/]

	MongoDB tech behind our time series graphs - 30TB per month [https://blog.serverdensity.com/tech-behind-time-series-graphs-2bn-docs-per-day-30tb-per-month/]

	Make Interactive Time Series Charts for IoT Using Live MongoDB Data | SlamData [http://slamdata.com/news-and-blog/2016/04/18/make-interactive-time-series-charts-for-iot-using-live-mongodb-data/]

	Storing time-series data with MongoDB and TokuMX [https://www.percona.com/blog/2015/05/26/storing-time-series-data-with-mongodb-and-tokumx/]

	MongoDB Time Series: Introducing the Aggregation Framework - DZone Database [https://dzone.com/articles/mongodb-time-series]

	comSysto Blog: Processing and analysing sensor data [https://comsysto.com/blog-post/processing-and-analysing-sensor-data]

	MongoDB time series: Introducing the aggregation framework | Vlad Mihalcea’s Blog [https://vladmihalcea.com/2014/01/10/mongodb-time-series-introducing-the-aggregation-framework/]

Physical Control Interface

	Wall mount tablet for the UI? There’s some
cheap [http://www.amazon.com/s/ref=sr_st_price-asc-rank?lo=computers&rh=n%3A172282%2Cn%3A!493964%2Cn%3A541966%2Cn%3A13896617011%2Cn%3A1232597011%2Cp_n_operating_system_browse-bin%3A3077590011&qid=1463663130&sort=price-asc-rank]
ones, and AutoStart - No root - Android Apps on Google
Play [https://play.google.com/store/apps/details?id=com.autostart&hl=en]
to autostart an app (browser) at boot...

	Wall mount touchscreens:
- https://www.adafruit.com/products/1892
- https://www.adafruit.com/products/2033
- https://www.adafruit.com/products/2534
- https://www.adafruit.com/products/2260
- Could just use an old phone for now... or set it up somewhere on a bookcase or table...
- https://blog.adafruit.com/2014/09/05/wall-mounted-touchscreen-raspberry-pi-home-server-piday-raspberrypi-raspberry_pi/
- http://www.neosecsolutions.com//products.php?62&cPath=21
- http://www.modmypi.com/blog/raspberry-pi-7-touch-sreen-display-case-assembly-instructions
- http://www.thingiverse.com/thing:1082431
- http://www.thingiverse.com/thing:1034194
- https://www.element14.com/community/docs/DOC-78156/l/raspberry-pi-7-touchscreen-display

	Pi3 Model B - $35-40 - - https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
- wifi (2.4GHz 802.11n??? - might need USB?)
- USB
- GPIO
- HDMI
- DSI display interface

	Pi Zero - https://www.raspberrypi.org/products/pi-zero/ - sold out everywhere :(
- Mini HDMI
- USB On-The-Go
- MicroUSB power
- HAT-compatible 40-pin header
- onboard wifi hack: https://www.raspberrypi.org/forums/viewtopic.php?f=63&t=127449
- starter kit - https://www.adafruit.com/products/2816
- would need USB WiFi dongle and GPIO sensors

	RPi DS18B20
- https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/temperature/
- https://learn.adafruit.com/adafruits-raspberry-pi-lesson-11-ds18b20-temperature-sensing/hardware
- http://www.modmypi.com/blog/ds18b20-one-wire-digital-temperature-sensor-and-the-raspberry-pi
- https://www.raspberrypi.org/forums/viewtopic.php?t=54238&p=431812

Other Hardware

	Miniature WiFi 802.11b/g/n Module: For Raspberry Pi and more ID: 814
- $11.95 : Adafruit Industries, Unique & fun DIY electronics and
kits [https://www.adafruit.com/products/814]

	USB WiFi 802.11b/g/n Module: For Raspberry Pi and more ID: 1012 -
$12.95 : Adafruit Industries, Unique & fun DIY electronics and
kits [https://www.adafruit.com/product/1012]

	Assembled Pi Cobbler Plus - Breakout Cable for Pi B+/A+/Pi 2/Pi 3
ID: 2029 - $6.95 : Adafruit Industries, Unique & fun DIY electronics
and kits [https://www.adafruit.com/products/2029]

	Assembled Pi T-Cobbler Plus - GPIO Breakout for RasPi A+/B+/Pi 2/Pi
3 ID: 2028 - $7.95 : Adafruit Industries, Unique & fun DIY
electronics and kits [https://www.adafruit.com/products/2028]

	GPIO Header for Raspberry Pi A+/B+/Pi 2/Pi 3 2x20 Female Header ID:
2222 - $1.50 : Adafruit Industries, Unique & fun DIY electronics and
kits [https://www.adafruit.com/products/2222]

	0.1 2x20-pin Strip Right Angle Female Header ID: 2823 - $1.50 :
Adafruit Industries, Unique & fun DIY electronics and
kits [https://www.adafruit.com/products/2823]

RPyMostat Reference Implementation

My planned reference implementation of the system is:

	RaspberryPi 2+ physical control unit - USB relay output for control, and
a temperature sensor, connecting via WiFi.
	DS18B20 [https://www.sparkfun.com/products/245] temperature
sensor using GPIO

	For system control, either a
PiFace [https://www.sparkfun.com/products/11772] or a
Phidgets
1014 [http://www.phidgets.com/products.php?product_id=1014] USB
4 relay kit, both of which I already have.

	2x RaspberryPi Zero temperature sensors in other rooms, connecting via WiFi.
	DS18B20 [https://www.sparkfun.com/products/245] temperature
sensor using GPIO

	Engine, web UI and a third (USB OWFS) temperature input on my
desktop computer.
	DS18S20 [https://www.sparkfun.com/products/retired/8366]
temperature sensor connected via
DS9490R [http://www.maximintegrated.com/en/products/comms/ibutton/DS9490R.html]
usb-to-1-wire adapter

RPyMostat Installation, Configuration and Usage

Requirements

	Python 2.7 or 3.3+ (currently tested with 2.7, 3.3, 3.4, 3.5; tested on pypy but does not support pypy3)

	Python VirtualEnv [http://www.virtualenv.org/] and pip (recommended installation method; your OS/distribution should have packages for these)

	MongoDB (developed against 2.4, which is available in the Debian and Raspbian repos)

Installation

It’s recommended that you install into a virtual environment (virtualenv /
venv). See the virtualenv usage documentation [http://www.virtualenv.org/en/latest/]
for information on how to create a venv. If you really want to install
system-wide, you can (using sudo).

pip install rpymostat

Configuration

The RPyMostat Engine is configured solely via environment variables. This is intended
to make it simple to run at the command line, as a system service, or in a container.

Usage

Something.

RaspberryPyMostat Architecture

Overview

The architecture of RaspberryPyMostat is made up of four main
components:

	Engine - the main control process, which handles the actual data evaluation,
schedling and control decisions. This also connects directly to the
databases, and provides a ReST API.

	UI - The web interface (desktop and mobile), currently planned to be
Flask. This is a standalone “thing”, which simply communicates with
the main control process via its ReST API.

	Control - One (or more) physical control processes, which receive instructions
from the main control process via a ReST API, and control relays (or
whatever is needed to drive the actual HVAC equipment).

	Sensor - One or more temperature sensors, which send their results back to the
main control process via its ReST API.

While the typical implementation will likely place all of these
components on a RaspberryPi (single host deployment), this is by no
means a requirement. Each of the three non-main services (web UI,
physical control and temperature sensors) are completely independent.
They detect the master control process via
DNS-SD [http://en.wikipedia.org/wiki/Zero-configuration_networking#DNS-SD]
meaning that they can live on different machines on the same LAN, and
find each other without any manual configuration.

All of the separate components communicate with each other over ReST
APIs, meaning that temperature inputs, physical control outputs, and web
interfaces can be replaced with any third-party code that conforms to
the API.

Service Discovery

There are a few options out there for service discovery. I’m only
considering ones that are cross-platform and language-agnostic, so this
pretty much means
DNS-SD [http://en.wikipedia.org/wiki/Zero-configuration_networking#DNS-SD]
or SLP [http://en.wikipedia.org/wiki/Service_Location_Protocol].

python-zeroconf

python-zeroconf [https://github.com/jstasiak/python-zeroconf]
appears to be the current winner.

	Native pure-python implementation; no annoying ctypes or external
dependencies

	hosted on pypi

	an actual package, complete with tests (TravisCI) and coverage
reports

	Little to no logging; I have a
branch [https://github.com/jantman/python-zeroconf/tree/more_logging]
that fixes this and a few other things

	re-registration of services seems broken (see issue
16 [https://github.com/jstasiak/python-zeroconf/issues/16]) as
does responding to requests

	the examples actually run; I got them working on 2 separate machines,
but only if the browser was started before the registration
happened

	some issues around logging (see issue
15 [https://github.com/jstasiak/python-zeroconf/issues/15])

	updated relatively recently

	Need to see if this will run in Twisted, or if I’d just run it as a
separate process or thread...

pybonjour

pybonjour [https://code.google.com/p/pybonjour/] is one option, but
it has a lot of drawbacks

	the example code dies for me with mysterious, meaningless exceptions

	not Python3 compatible; there’s a
fork [https://github.com/depl0y/pybonjour-python3] that is, but
its examples don’t even work under python3

	no testing

	download isn’t actually hosted on pypi

	seems relatively abandoned

	depends on Avahi’s bonjour compatibility libs, or Bonjour, depending
on platform

Avahi Bindings

Avahi’s official bindings [http://avahi.org/wiki/Bindings]

	they’re stable, because they’re used by Avahi itself

	testing would be a pain, because they require a bunch of libraries
like DBUS and Avahi itself

	uses Avahi over DBUS - doesn’t do things itself, and requires Avahi
to be running

	massive external dependencies, no real package

Other Options

	anyMesh [https://github.com/AnyMesh/anyMesh-Python] - A
multi-platform, decentralized, auto-discover and auto-connect mesh
networking and messaging API

	Twisted and UDP multicast?

	python-brisa UPnP
framework [http://brisa.garage.maemo.org/doc/html/upnp/ssdp.html]
SSDP Server

	mdns [https://github.com/svinota/mdns] - Python, no docs, no
readme

	txbonjour [https://github.com/jdcumpson/txbonjour] - a Twisted
plugin for Bonjour; looks simple, it might be the right thing if it
works - based on pybonjour, so probably a no-go

Twisted for RPyMostat

This documents my initial tests for using
Twisted [https://twistedmatrix.com/] as the framework for the
main/hub process.

First, a really good basic doc on
Deferreds [http://ezyang.com/twisted/defer2.html] and a not-so-short
introduction to Asynchronous
programming [http://krondo.com/blog/?p=1209].

Twisted Basics

	Reactors [https://twistedmatrix.com/documents/current/core/howto/reactor-basics.html]

	Spawning
Processes [https://twistedmatrix.com/documents/current/core/howto/process.html]

	Deferreds [https://twistedmatrix.com/documents/current/core/howto/defer-intro.html];
Deferred
Reference [https://twistedmatrix.com/documents/current/core/howto/defer.html]

	Writing
Servers [https://twistedmatrix.com/documents/current/core/howto/servers.html]

	Scheduling [https://twistedmatrix.com/documents/current/core/howto/time.html]
- “run in X seconds” or “run every N seconds”

	Threading [https://twistedmatrix.com/documents/current/core/howto/threading.html]
- “most code in Twisted is not thread-safe”

	Application
Framework [https://twistedmatrix.com/documents/current/core/howto/application.html]
- seems like this might be too baisc for my needs?

	Logging [https://twistedmatrix.com/documents/current/core/howto/logging.html#using-the-standard-library-logging-module]
using the logging module, and capturing Twisted’s internal messages;
note this can block logging

The more I read about this, the more I think Twisted is probably not
the solution I need (I seem to need real threading or multiprocessing,
not just async network IO). i.e. see this really important FAQ, Why
does it take a long time for data I send with transport.write to arrive
at the other side of the
connection? [http://twistedmatrix.com/trac/wiki/FrequentlyAskedQuestions#WhydoesittakealongtimefordataIsendwithtransport.writetoarriveattheothersideoftheconnection].

Third-Party Twisted Modules

	Paisley [https://launchpad.net/paisley] CouchDB client

	sAsync [https://pypi.python.org/pypi/sAsync/0.7] Async SQLAlchemy

	TxScheduling [https://github.com/benliles/TxScheduling] cron-like
scheduling

	txAMQP [https://launchpad.net/txamqp]

	txrdq [https://launchpad.net/txrdq] resizable dispatch queue

ReST API

	we need to serve it nicely (not a horrible hack)

	read/write from database used by other threads (DB tech still
unknown; maybe flat files for now?)

	read/write to some shared global memory (or main thread)

Links

	web development with
Twisted [http://twistedmatrix.com/trac/wiki/WebDevelopmentWithTwisted]

	web services with
twisted [http://zenmachine.wordpress.com/web-services-and-twisted/]

	Building RESTful, Service-Oriented Architectures with
Twisted [http://lanyrd.com/2012/pycon-za/syyfm/] video and slide
deck

	Twisted community code and
add-ons [https://twistedmatrix.com/trac/wiki/ProjectsUsingTwisted]

	Klein [http://klein.readthedocs.org/en/latest/] a web
micro-framework

	Going asynchronous: from Flask to Twisted
Klein [http://tavendo.com/blog/post/going-asynchronous-from-flask-to-twisted-klein/]

Klein

Links

	some [https://github.com/SamuelMarks/cscie90-hw8/blob/baae8d648420c2cd8c07391a5bc425152a996af1/hw8/server.py]
other [https://github.com/rackerlabs/otter/blob/master/otter/rest/application.py]
projects [https://github.com/rackerlabs/otter/blob/master/otter/rest/otterapp.py]
appear [https://github.com/rackerlabs/otter/blob/master/otter/rest/admin.py]
to [https://github.com/therve/ersid/blob/1bc409851ee104ccef22ff4835daa00cdb29a8c2/ersid/rest.py]
use [https://github.com/armooo/jukebox/blob/24e41bb2d20aff6859c7133ca4d7fc37ad3eaba5/jukebox/httpd.py]
klein [https://github.com/radix/coverapi/blob/7611797095c5ffd35f21363bd7cdc4150c15fd6a/coverapi/httpapi.py]
(in non-trivial ways)

	this blog
post [http://tavendo.com/blog/post/mixing-web-and-wamp-code-with-twisted-klein/]
was actually VERY helpful

Signals

	Signals or some other sort of notification mechanism

Links

	helga [https://github.com/shaunduncan/helga] uses
smokesignal [https://github.com/shaunduncan/smokesignal] quite
nicely

Scheduling

	Scheduled tasks

Testing

	test-ability (i.e. pytest, possibly something else to test the
threading/network)

Links

	pytest-twisted [https://pypi.python.org/pypi/pytest-twisted]

	Twisted TDD/Trial
docs [https://twistedmatrix.com/documents/14.0.0/core/howto/trial.html]

	TwistedTrial [http://twistedmatrix.com/trac/wiki/TwistedTrial]

	Unit Tests in
Twisted [http://twistedmatrix.com/documents/14.0.0/core/development/policy/test-standard.html]
(internal to Twisted itself)

	some
notes [http://www.mechanicalcat.net/richard/log/Python/Tips_for_Testing_Twisted]
on using nose to test Twisted

	Random selection of GitHub projects using pytest-twisted:
scrapy [https://github.com/scrapy/scrapy],
pyrake [https://github.com/elkingtowa/pyrake],
snappy [https://github.com/russell/snappy/blob/master/snappy/tests/test_webserver.py],
pokerthproto [https://github.com/FlorianWilhelm/pokerthproto/blob/master/tests/test_protocol.py],
mcloud [https://github.com/modera/mcloud]

	Interestingly, I can’t find anything on GitHub that uses
pytest-twisted’s pytest.blockon. pytest.inlineCallbacks is
used by a number of mcloud
tests [https://github.com/modera/mcloud/blob/c5adea19b05c71d8dc76487112e034e57b703fd1/tests/test_txhttp.py],
jukebox [https://github.com/armooo/jukebox/blob/fc6322c05c67bc96566500d0edeb0a988cbcf19c/test/test_storage.py],
webmonitor [https://github.com/eddwardo/webmonitor/blob/529a0cacaf60f1d9a1acf1decef50ef0fa93e543/tests/test_monitor.py]
and
spiral [https://github.com/habnabit/spiral/blob/060dbf90fee1d1bbc9905f9d2a5e6667f2eb89b2/spiral/test/test_acceptance.py]

rpymostat

	rpymostat package
	Subpackages
	rpymostat.db package
	Submodules

	rpymostat.engine package
	Subpackages

	Submodules

	Submodules
	rpymostat.config module

	rpymostat.exceptions module

	rpymostat.runner module

	rpymostat.version module

rpymostat package

Subpackages

	rpymostat.db package
	Submodules
	rpymostat.db.sensors module

	rpymostat.engine package
	Subpackages
	rpymostat.engine.api package
	Subpackages
	rpymostat.engine.api.v1 package
	Submodules
	rpymostat.engine.api.v1.sensors module

	rpymostat.engine.api.v1.status module

	Submodules
	rpymostat.engine.apiserver module

	rpymostat.engine.site_hierarchy module

Submodules

	rpymostat.config module

	rpymostat.exceptions module

	rpymostat.runner module

	rpymostat.version module

rpymostat.db package

	
rpymostat.db.connect_mongodb(host, port)

	Run setup_mongodb(). If that succeeds, connect to MongoDB via
txmongo. Return a txmongo ConnectionPool.

	Parameters:	
	host (str [https://docs.python.org/2.7/library/functions.html#str]) – host to connect to MongoDB on.

	port (int [https://docs.python.org/2.7/library/functions.html#int]) – port to connect to MongoDB on.

	Returns:	MongoDB connection pool

	Return type:	txmongo.connection.ConnectionPool [http://txmongo.readthedocs.io/en/latest/txmongo.html#txmongo.connection.ConnectionPool]

	
rpymostat.db.get_collection(db_conn, collection_name)

	Return the specified collection object from the database.

	Parameters:	
	db_conn (txmongo.connection.ConnectionPool [http://txmongo.readthedocs.io/en/latest/txmongo.html#txmongo.connection.ConnectionPool]) – MongoDB ConnectionPool

	collection_name (str [https://docs.python.org/2.7/library/functions.html#str]) – name of the collection to get; should be a
constant in this module

	Returns:	txmongo.collection.Collection

	
rpymostat.db.setup_mongodb(host, port)

	Connect synchronously (outside/before the reactor loop) to MongoDB
and setup whatever we need. Raise an exception if this fails. This mainly
exists to test that the DB is running and accessible before running the
reactor loop.

	Parameters:	
	host (str [https://docs.python.org/2.7/library/functions.html#str]) – host to connect to MongoDB on.

	port (int [https://docs.python.org/2.7/library/functions.html#int]) – port to connect to MongoDB on.

Submodules

	rpymostat.db.sensors module

rpymostat.db.sensors module

	
rpymostat.db.sensors.update_sensor(*args, **kwargs)

	Update data for a single sensor in the database.

	Parameters:	
	dbconn (txmongo.connection.ConnectionPool [http://txmongo.readthedocs.io/en/latest/txmongo.html#txmongo.connection.ConnectionPool]) – MongoDB database connection

	host_id (str [https://docs.python.org/2.7/library/functions.html#str]) – host_id that the sensor is reporting from

	sensor_id (str [https://docs.python.org/2.7/library/functions.html#str]) – unique sensor ID

	value (float [https://docs.python.org/2.7/library/functions.html#float]) – sensor reading in degress Celsius

	sensor_type (str [https://docs.python.org/2.7/library/functions.html#str]) – description of the type of sensor

	sensor_alias (str [https://docs.python.org/2.7/library/functions.html#str]) – human-readable alias for the sensor

	extra (str [https://docs.python.org/2.7/library/functions.html#str]) – extra information about the sensor

	Returns:	database record ID

	Return type:	str [https://docs.python.org/2.7/library/functions.html#str]

rpymostat.engine package

Subpackages

	rpymostat.engine.api package
	Subpackages
	rpymostat.engine.api.v1 package
	Submodules
	rpymostat.engine.api.v1.sensors module

	rpymostat.engine.api.v1.status module

Submodules

	rpymostat.engine.apiserver module

	rpymostat.engine.site_hierarchy module

rpymostat.engine.api package

Subpackages

	rpymostat.engine.api.v1 package
	Submodules
	rpymostat.engine.api.v1.sensors module

	rpymostat.engine.api.v1.status module

rpymostat.engine.api.v1 package

	
class rpymostat.engine.api.v1.APIv1(apiserver, app, dbconn, parent_prefix)

	Bases: rpymostat.engine.site_hierarchy.SiteHierarchy

Implementation of API v1. All pieces of the v1 API are initialized here,
and routes are setup.

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 29

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
prefix_part = 'v1'

	

	
setup_routes()

	Setup routes for subparts of the hierarchy.

Submodules

	rpymostat.engine.api.v1.sensors module

	rpymostat.engine.api.v1.status module

rpymostat.engine.apiserver module

	
class rpymostat.engine.apiserver.APIServer(dbconn=None)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Main class for the Klein-based API server.

	
app

	Global class attribute pointing to a Klein instance.

	
handle_root(_self, request)

	root resource (/) request handler. This should only be called by
the Kelin app as a route.

This serves the GET / endpoint.

@TODO this should return some helpful information, like the server
version and a link to the docs, as well as where to obtain the source
code and a link to the status page.

	Parameters:	
	_self – another reference to self, sent by Klein.

	request (instance of twisted.web.server.Request [http://twistedmatrix.com/documents/current/api/twisted.web.server.Request.html]) – the Request

rpymostat.engine.site_hierarchy module

	
class rpymostat.engine.site_hierarchy.SiteHierarchy(apiserver, app, dbconn, parent_prefix)

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

Helper class to implement hierarchical sites in Klein. All engine
classes that provide routes must implement this.

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 29

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_parse_json_request(request)

	Parse a JSON request; return the deserialized request or raise
an exception.

	Parameters:	request (instance of twisted.web.server.Request [http://twistedmatrix.com/documents/current/api/twisted.web.server.Request.html]) – the request

	Returns:	deserialized request JSON

	Return type:	str [https://docs.python.org/2.7/library/functions.html#str]

	
add_route(func, path=None, methods=['GET'])

	Add a route to app, mapping func (a callable method in this class)
to path (under self.prefix). If path is none, it will be
mapped directly to self.prefix.

	Parameters:	
	func – callable in this class to map to path

	path (str [https://docs.python.org/2.7/library/functions.html#str]) – path to map method to

	methods (list) – methods allowed for this route

	
make_prefix(parent_list, prefix_str)

	Given a list of the parent’s prefix and our prefix string, construct
a new list with our prefix.

	Parameters:	
	parent_list (list) – parent’s prefix

	prefix_str (str [https://docs.python.org/2.7/library/functions.html#str]) – our prefix string

	Returns:	our prefix list

	Return type:	list

	
prefix_list_to_str(prefix_list)

	Convert a prefix list to a string path prefix.

	Parameters:	prefix_list (list) – the list to convert

	Returns:	prefix string

	Return type:	str [https://docs.python.org/2.7/library/functions.html#str]

	
prefix_part = 'base'

	

	
setup_routes()

	Setup all routes for this class. Must be implemented by subclasses.

rpymostat.config module

	
class rpymostat.config.Config

	Bases: object [https://docs.python.org/2.7/library/functions.html#object]

RPyMostat configuration. Reads configuration from environmnet variables,
sets defaults for anything missing.

	
_config_vars = {'mongo_port': {'default_value': 27017, 'is_int': True, 'description': 'port number to connect to MongoDB at', 'env_var_name': 'MONGODB_PORT'}, 'api_port': {'default_value': 8088, 'is_int': True, 'description': 'port number to run API server on', 'env_var_name': 'API_PORT'}, 'verbose': {'default_value': 0, 'is_int': True, 'description': 'log verbosity; set to 0 for warning, 1 for info or 2 for debug', 'env_var_name': 'VERBOSE'}, 'mongo_host': {'default_value': 'localhost', 'is_int': False, 'description': 'host/IP to connect to MongoDB at', 'env_var_name': 'MONGODB_HOST'}}

	

	
_get_from_env()

	Build self._config from env vars and defaults
(self._config_vars).

	Returns:	effective configuration dict

	
as_dict

	Return the full configuration dictionary, setting names to values.

	Returns:	configuration dict

	Return type:	dict [https://docs.python.org/2.7/library/stdtypes.html#dict]

	
get(setting_name)

	Return the effective value for the configuration option setting_name

	Parameters:	setting_name (str [https://docs.python.org/2.7/library/functions.html#str]) – the config setting to get

	Returns:	str or int configuration value

	
get_var_info()

	Return information about configuration variables. Returns a dict keyed
by setting name. Values are dicts with keys:

	env_var_name - environment variable name for this setting

	description - description of this variable

	is_int - boolean, whether the value should be an int or a str

	default_value - default value if not present in os.environ

	Returns:	dict describing configuration variables

	Return type:	dict [https://docs.python.org/2.7/library/stdtypes.html#dict]

rpymostat.exceptions module

	
exception rpymostat.exceptions.RequestParsingException(message)

	Bases: exceptions.Exception [https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception]

rpymostat.runner module

	
rpymostat.runner.main(args=None)

	Run the Engine API server

	
rpymostat.runner.parse_args(argv)

	Use Argparse to parse command-line arguments.

	Parameters:	argv (list) – list of arguments to parse (sys.argv[1:])

	Returns:	parsed arguments

	Return type:	argparse.Namespace [https://docs.python.org/2.7/library/argparse.html#argparse.Namespace]

	
rpymostat.runner.set_log_debug()

	set logger level to DEBUG, and debug-level output format

	
rpymostat.runner.set_log_info()

	set logger level to INFO

	
rpymostat.runner.set_log_level_format(level, format)

	Set logger level and format.

	Parameters:	
	level (int [https://docs.python.org/2.7/library/functions.html#int]) – logging level; see the logging [https://docs.python.org/2.7/library/logging.html#module-logging] constants.

	format (str [https://docs.python.org/2.7/library/functions.html#str]) – logging formatter format string

	
rpymostat.runner.show_config(conf)

	Show configuration variable information.

	Parameters:	conf (Config) – config

rpymostat.version module

RPyMostat Engine HTTP API

	
GET /

	Simple informational page that returns HTML describing the program and
version, where to find the source code, and links to the documentation
and status page.

Served by handle_root().

Example request:

GET / HTTP/1.1
Host: example.com

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no error

	
GET /v1/sensors

	Return application status information. Currently just returns the
text string “Status: Running”.

Served by list().

Example request:

GET /v1/sensors HTTP/1.1
Host: example.com

Example Response:

HTTP/1.1 200 OK
Content-Type: application/json

{}

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – no errors

	
PUT /v1/sensors/update

	Update current data/readings for sensors from a remote RPyMostat-sensor
device.

Served by update().

Example request:

PUT /v1/sensors/update HTTP/1.1
Host: example.com

{
 'host_id': 'myhostid',
 'sensors': {
 '1058F50F01080047': {
 'type': 'DS18S20',
 'value': 24.3125,
 'alias': 'some_alias',
 'extra': 'arbitrary string'
 },
 ...
 }
}

Sensor Data Objects:

The sensors request attribute is itself an object (dict/hash). Keys
are globally-unique sensor IDs. The value is an object with the
following fields/attributes/keys:

	type: (string) descriptive type, such as the sensor model

	value: (float/decimal or null) decimal current temperature
reading in degrees Celsius, or null if the current reading cannot
be determined.

	alias: (optional; string) a human-readable alias or name for
this sensor, if the system it runs on contains this information. This
is not to be confused with the name that RPyMostat maintains for the
sensor.

	extra: (optional; string) arbitrary further information about
this sensor, to be included in details about it.

Example Response:

HTTP/1.1 202 OK
Content-Type: application/json

{"status": "ok", "ids": ["id_1", "id_2"]}

Example Response:

HTTP/1.1 422 Unprocessable Entity
Content-Type: application/json

{"status": "error", "error": "host_id field is missing"}

	Request JSON Object:

	 	
	host_id – (string) the unique identifier of the sending host

	sensors – (object) array of sensor data objects, conforming to
the description above.

	Response JSON Object:

	 	
	status – (string) the status of the update;
accepted or done

	id – (int) unique identifier for the update

	Status Codes:	
	201 Created [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – update has been made in the database

	
GET /v1/status

	Return application status information (mainly dependent services).

Served by status().

Example request:

GET /v1/status HTTP/1.1
Host: example.com

Example Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
 "status": true,
 "dependencies": {
 "mongodb": true
 }
}

	Status Codes:	
	200 OK [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – operational

	503 Service Unavailable [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4] – non-operational

Changelog

x.y.z (YYYY-MM-DD)

	something

RPyMostat Development

To install for development:

	Fork the RPyMostat [https://github.com/jantman/RPyMostat] repository on GitHub

	Create a new branch off of master in your fork.

$ git clone git@github.com:YOURNAME/RPyMostat.git
$ cd RPyMostat
$ virtualenv . && source bin/activate
$ pip install -r requirements_dev.txt
$ python setup.py develop

The git clone you’re now in will probably be checked out to a specific commit,
so you may want to git checkout BRANCHNAME.

Guidelines

	pep8 compliant with some exceptions (see pytest.ini)

	100% test coverage with pytest (with valid tests)

Testing

Testing is done via pytest [http://pytest.org/latest/], driven by tox [http://tox.testrun.org/].

	testing is as simple as:
	pip install tox

	tox

	If you want to see code coverage: tox -e cov
	this produces two coverage reports - a summary on STDOUT and a full report in the htmlcov/ directory

	If you want to pass additional arguments to pytest, add them to the tox command line after “–”. i.e., for verbose pytext output on py27 tests: tox -e py27 -- -v

Acceptance Tests

Acceptance tests run against a real MongoDB. When running locally, they assume
that Docker is present and usable, and will pull and run a container from
jantman/mongodb24 [https://hub.docker.com/r/jantman/mongodb24/]. When running
on TravisCI, they will use the mongodb service [https://docs.travis-ci.com/user/database-setup/#MongoDB]
provided by Travis. The Travis MongoDB service currently runs [https://travis-ci.org/jantman/RPyMostat]
2.4.12 as of 2016-06-11, which I’m considering close enough to the Debian 2.4.10
that we’re targeting. If Travis upgrades that, we may need to look into alternate
ways of running Mongo for the Travis tests.

By default, when run locally, the acceptance tests will start up the MongoDB
container when the test session starts, and stop and remove it when the session
is over. To leave the container running and reuse it for further test sessions,
export the LEAVE_MONGO_RUNNING environment variable.

Release Checklist

	Open an issue for the release; cut a branch off master for that issue.

	Confirm that there are CHANGES.rst entries for all major changes.

	Ensure that Travis tests passing in all environments.

	Ensure that test coverage is no less than the last release (ideally, 100%).

	Increment the version number in RPyMostat/version.py and add version and release date to CHANGES.rst, then push to GitHub.

	Confirm that README.rst renders correctly on GitHub.

	Upload package to testpypi, confirm that README.rst renders correctly.
	Make sure your ~/.pypirc file is correct

	python setup.py register -r https://testpypi.python.org/pypi

	python setup.py sdist upload -r https://testpypi.python.org/pypi

	Check that the README renders at https://testpypi.python.org/pypi/rpymostat

	Create a pull request for the release to be merge into master. Upon successful Travis build, merge it.

	Tag the release in Git, push tag to GitHub:
	tag the release. for now the message is quite simple: git tag -a vX.Y.Z -m 'X.Y.Z released YYYY-MM-DD'

	push the tag to GitHub: git push origin vX.Y.Z

	Upload package to live pypi:
	python setup.py sdist upload

	make sure any GH issues fixed in the release were closed.

 HTTP Routing Table

 / |
 /v1

 		 	

 		
 /	

 	
 	
 GET /	

 		 	

 		
 /v1	

 	
 	
 GET /v1/sensors	

 	
 	
 GET /v1/status	

 	
 	
 PUT /v1/sensors/update	

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 rpymostat	

 	
 	
 rpymostat.config	

 	
 	
 rpymostat.db	

 	
 	
 rpymostat.db.sensors	

 	
 	
 rpymostat.engine	

 	
 	
 rpymostat.engine.api	

 	
 	
 rpymostat.engine.api.v1	

 	
 	
 rpymostat.engine.api.v1.sensors	

 	
 	
 rpymostat.engine.api.v1.status	

 	
 	
 rpymostat.engine.apiserver	

 	
 	
 rpymostat.engine.site_hierarchy	

 	
 	
 rpymostat.exceptions	

 	
 	
 rpymostat.runner	

 	
 	
 rpymostat.version	

Index

 _
 | A
 | C
 | G
 | H
 | L
 | M
 | P
 | R
 | S
 | U

_

 	
 	_abc_cache (rpymostat.engine.api.v1.APIv1 attribute)

 	(rpymostat.engine.api.v1.sensors.Sensors attribute)

 	(rpymostat.engine.api.v1.status.Status attribute)

 	(rpymostat.engine.site_hierarchy.SiteHierarchy attribute)

 	_abc_negative_cache (rpymostat.engine.api.v1.APIv1 attribute)

 	(rpymostat.engine.api.v1.sensors.Sensors attribute)

 	(rpymostat.engine.api.v1.status.Status attribute)

 	(rpymostat.engine.site_hierarchy.SiteHierarchy attribute)

 	_abc_negative_cache_version (rpymostat.engine.api.v1.APIv1 attribute)

 	(rpymostat.engine.api.v1.sensors.Sensors attribute)

 	(rpymostat.engine.api.v1.status.Status attribute)

 	(rpymostat.engine.site_hierarchy.SiteHierarchy attribute)

 	
 	_abc_registry (rpymostat.engine.api.v1.APIv1 attribute)

 	(rpymostat.engine.api.v1.sensors.Sensors attribute)

 	(rpymostat.engine.api.v1.status.Status attribute)

 	(rpymostat.engine.site_hierarchy.SiteHierarchy attribute)

 	_config_vars (rpymostat.config.Config attribute)

 	_get_from_env() (rpymostat.config.Config method)

 	_parse_json_request() (rpymostat.engine.site_hierarchy.SiteHierarchy method)

A

 	
 	add_route() (rpymostat.engine.site_hierarchy.SiteHierarchy method)

 	APIServer (class in rpymostat.engine.apiserver)

 	
 	APIv1 (class in rpymostat.engine.api.v1)

 	app (rpymostat.engine.apiserver.APIServer attribute)

 	as_dict (rpymostat.config.Config attribute)

C

 	
 	Config (class in rpymostat.config)

 	
 	connect_mongodb() (in module rpymostat.db)

G

 	
 	get() (rpymostat.config.Config method)

 	
 	get_collection() (in module rpymostat.db)

 	get_var_info() (rpymostat.config.Config method)

H

 	
 	handle_root() (rpymostat.engine.apiserver.APIServer method)

L

 	
 	list() (rpymostat.engine.api.v1.sensors.Sensors method)

M

 	
 	main() (in module rpymostat.runner)

 	
 	make_prefix() (rpymostat.engine.site_hierarchy.SiteHierarchy method)

P

 	
 	parse_args() (in module rpymostat.runner)

 	prefix_list_to_str() (rpymostat.engine.site_hierarchy.SiteHierarchy method)

 	prefix_part (rpymostat.engine.api.v1.APIv1 attribute)

 	(rpymostat.engine.api.v1.sensors.Sensors attribute)

 	(rpymostat.engine.api.v1.status.Status attribute)

 	(rpymostat.engine.site_hierarchy.SiteHierarchy attribute)

R

 	
 	RequestParsingException

 	rpymostat (module)

 	rpymostat.config (module)

 	rpymostat.db (module)

 	rpymostat.db.sensors (module)

 	rpymostat.engine (module)

 	rpymostat.engine.api (module)

 	
 	rpymostat.engine.api.v1 (module)

 	rpymostat.engine.api.v1.sensors (module)

 	rpymostat.engine.api.v1.status (module)

 	rpymostat.engine.apiserver (module)

 	rpymostat.engine.site_hierarchy (module)

 	rpymostat.exceptions (module)

 	rpymostat.runner (module)

 	rpymostat.version (module)

S

 	
 	Sensors (class in rpymostat.engine.api.v1.sensors)

 	set_log_debug() (in module rpymostat.runner)

 	set_log_info() (in module rpymostat.runner)

 	set_log_level_format() (in module rpymostat.runner)

 	setup_mongodb() (in module rpymostat.db)

 	setup_routes() (rpymostat.engine.api.v1.APIv1 method)

 	(rpymostat.engine.api.v1.sensors.Sensors method)

 	(rpymostat.engine.api.v1.status.Status method)

 	(rpymostat.engine.site_hierarchy.SiteHierarchy method)

 	
 	show_config() (in module rpymostat.runner)

 	SiteHierarchy (class in rpymostat.engine.site_hierarchy)

 	Status (class in rpymostat.engine.api.v1.status)

 	status() (rpymostat.engine.api.v1.status.Status method)

U

 	
 	update() (rpymostat.engine.api.v1.sensors.Sensors method)

 	
 	update_sensor() (in module rpymostat.db.sensors)

rpymostat.engine.api.v1.status module

	
class rpymostat.engine.api.v1.status.Status(apiserver, app, dbconn, parent_prefix)

	Bases: rpymostat.engine.site_hierarchy.SiteHierarchy

Manages the v1/status portion of the API.

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 29

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
prefix_part = 'status'

	

	
setup_routes()

	Setup routes for subparts of the hierarchy.

	
status(*args, **kwargs)

	Report on application and dependency status.

This serves GET /v1/status

	Parameters:	
	_self – another reference to self sent by Klein

	request (instance of twisted.web.server.Request [http://twistedmatrix.com/documents/current/api/twisted.web.server.Request.html]) – the Request

rpymostat.engine.api.v1.sensors module

	
class rpymostat.engine.api.v1.sensors.Sensors(apiserver, app, dbconn, parent_prefix)

	Bases: rpymostat.engine.site_hierarchy.SiteHierarchy

Manages the v1/sensors portion of the API.

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 29

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
list(_self, request)

	Handle sensor list API endpoint - return a list of known sensors.

This serves the GET /v1/sensors endpoint.

	Parameters:	
	_self – another reference to self sent by Klein

	request (instance of twisted.web.server.Request [http://twistedmatrix.com/documents/current/api/twisted.web.server.Request.html]) – the Request

	
prefix_part = 'sensors'

	

	
setup_routes()

	Setup routes for subparts of the hierarchy.

	
update(*args, **kwargs)

	Handle updating data from a remote sensor.

This serves PUT /v1/sensors/update endpoint.

@TODO Handle sensor data update.

	Parameters:	
	_self – another reference to self sent by Klein

	request (instance of twisted.web.server.Request [http://twistedmatrix.com/documents/current/api/twisted.web.server.Request.html]) – the Request

 _static/ajax-loader.gif

_static/down.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

nav.xhtml

 Table of Contents

 		RPyMostat

 		Planning

 		Features

 		Features planned for the initial release

 		Features planned for future releases

 		Relevant Links / Similar Projects

 		Some Technical Bits and Questions

 		API

 		Engine

 		UI

 		Testing

 		Relay/Physical Control Unit

 		Decision Engine / Master Control Process

 		Datastore

 		Physical Control Interface

 		Other Hardware

 		Reference Implementation

 		Installation, Configuration and Usage

 		Requirements

 		Installation

 		Configuration

 		Usage

 		Architecture

 		Overview

 		Discovery

 		python-zeroconf

 		pybonjour

 		Avahi Bindings

 		Other Options

 		Twisted

 		Twisted Basics

 		Third-Party Twisted Modules

 		ReST API

 		Links

 		Klein

 		Links

 		Signals

 		Links

 		Scheduling

 		Testing

 		Links

 		Python API

 		rpymostat package

 		Subpackages

 		Submodules

 		HTTP API

 		Changelog

 		x.y.z (YYYY-MM-DD)

 		Development

 		Guidelines

 		Testing

 		Acceptance Tests

 		Release Checklist

_static/comment-bright.png

_static/up.png

_static/down-pressed.png

