
rpg Documentation
Release 0.0.1

See AUTHORS in RPG source distribution.

March 16, 2016





Contents

1 RPG Command Reference 3

2 Writing plugins 5

3 Base class 7

4 Command module 9

5 Plugin class 11

6 Spec module 13

7 Indices and tables 17

Python Module Index 19

i



ii



rpg Documentation, Release 0.0.1

Warning: RPG is in alpha stage and the docs could change at any time without any notice

Contents:

Contents 1



rpg Documentation, Release 0.0.1

2 Contents



CHAPTER 1

RPG Command Reference

1.1 Synopsis

rpg [options]

1.2 Description

RPG is tool, that guides people through the creation of a RPM package. RPG makes packaging much easier due to
the automatic analysis of packaged files. Beginners can get familiar with packaging process or the advanced users can
use our tool for a quick creation of a package.

1.3 Options

-h, --help Show help message and exit.

--plugin-dir <dir> [<dir> ...] Include plugin directory.

--disable-plugin <plugin-name> [<plugin-name> ...] Exclude specific plugin.

--disable-dnf Disable loading DNF sack.

3



rpg Documentation, Release 0.0.1

4 Chapter 1. RPG Command Reference



CHAPTER 2

Writing plugins

Plugins are the main part of RPG. Their purpose is to append Spec class with tags and scripts. Whole process of
creating spec file from source code in RPG app is following:

• plugins are triggered in project directory - they set some tags/scripts in Spec instance

• guessed values from Spec are auto filled in GUI forms and user can modify them

• next spec command (%prep, %build, %install, %files) is executed and new directory is created

• repeat steps for new directory

Plugin is a class that is derived from rpg.plugin.Plugin and overrides at least one of following methods:
download, extraction, extracted, patched, compiled, installed, package_built. Each of
them takes (spec, current_dir, sack) parameters. spec is instance of Spec class, sack is initialized
sack from DNF and current_dir is pathlib.Path instance where are project files of future RPM package located.
current_dir is different in each phase.

Table 2.1: Phases

Phase Description Base call
down-
load

downloads archive from url. This is because url adress may be github repository -
then plugin only add archive/master.zip to the url and downloads it

–

extrac-
tion

method that extract files from archive. This exists because there are many types of
archives like tar, zip, ...

–

ex-
tracted

raw files are extracted from chosen archive or copied files from project working
directory

extracted
source
analysis

patched after application of patches on source files patched
source
analysis

com-
piled

after execution of %build script (e.g. calling make) compiled
source
analysis

in-
stalled

directory containing files after make install installed
source
analysis

pack-
age_built

path to final rpm package –

mock_recoverafter building project in mock enviroment, build errors (if there are any) are passed
as parameter to this method. This should fix build by parsing the errors and finding
the solution, i.e. append missing required files to build_required_files

–

5



rpg Documentation, Release 0.0.1

Inside plugin can be helper methods that should not be named as any of the phase. It should follow conventions as any
private Python method (e.g. _helper_method).

For plugin examples take a look at core plugins folder.

6 Chapter 2. Writing plugins

https://github.com/rh-lab-q/rpg/tree/master/rpg/plugins


CHAPTER 3

Base class

7



rpg Documentation, Release 0.0.1

8 Chapter 3. Base class



CHAPTER 4

Command module

9



rpg Documentation, Release 0.0.1

10 Chapter 4. Command module



CHAPTER 5

Plugin class

class plugin.Plugin
Class from which are plugins derived

def extraction(self, source, dest): pass

def download(self, source, dest): pass

def extracted(self, project_dir, spec, sack): pass

def patched(self, project_dir, spec, sack): pass

def compiled(self, project_dir, spec, sack): pass

def installed(self, project_dir, spec, sack): pass

def package_build(self, package_path, spec, sack): pass

def mock_recover(self, log, spec): pass

11



rpg Documentation, Release 0.0.1

12 Chapter 5. Plugin class



CHAPTER 6

Spec module

class spec.Spec
SPEC properties holder

Example

>>> from rpg.spec import Spec
>>> spec = Spec()
>>> spec.Name = "Example"
>>> spec.Version = "0.6.11"
>>> spec.Release = "1%{?snapshot}%{?dist}"
>>> spec.License = "GPLv2"
>>> spec.Summary = "Example ..."
>>> spec.description = ("Example ...")
>>> spec.URL = "https://github.com/example_repo"

BuildArch = None
initial value: “”

BuildRequires = None
initial value: set()

BuildRoot = None
initial value: “”

class Changelog(date, author, email, *message)

Spec.Conflicts = None
initial value: “”

Spec.Group = None
initial value: “”

Spec.License = None
initial value: “”

Spec.Name = None
initial value: “”

Spec.Obsoletes = None
initial value: “”

Spec.Packager = None
initial value: “”

Spec.Patch = None
initial value: “”

13



rpg Documentation, Release 0.0.1

Spec.Provides = None
initial value: set()

Spec.Release = None
initial value: “”

Spec.Requires = None
initial value: set()

Spec.Source = None
initial value: “”

Spec.Summary = None
initial value: “”

Spec.URL = None
initial value: “”

Spec.Vendor = None
initial value: “”

Spec.Version = None
initial value: “”

Spec.build = None
initial value: Command()

Spec.changelog = None
initial value: []

Spec.changelogs = []

Spec.check = None
initial value: Command()

Spec.clean = None
initial value: Command()

Spec.description = None
initial value: “”

Spec.files = None
initial value: []

Spec.install = None
initial value: Command()

Spec.package = None
initial value: “”

Spec.post = None
initial value: Command()

Spec.posttrans = None
initial value: Command()

Spec.postun = None
initial value: Command()

Spec.pre = None
initial value: Command()

Spec.prep = None
initial value: Command()

14 Chapter 6. Spec module



rpg Documentation, Release 0.0.1

Spec.pretrans = None
initial value: Command()

Spec.preun = None
initial value: Command()

15



rpg Documentation, Release 0.0.1

16 Chapter 6. Spec module



CHAPTER 7

Indices and tables

• genindex

• modindex

• search

17



rpg Documentation, Release 0.0.1

18 Chapter 7. Indices and tables



Python Module Index

p
plugin, 11

s
spec, 13

19



rpg Documentation, Release 0.0.1

20 Python Module Index



Index

B
build (spec.Spec attribute), 14
BuildArch (spec.Spec attribute), 13
BuildRequires (spec.Spec attribute), 13
BuildRoot (spec.Spec attribute), 13

C
changelog (spec.Spec attribute), 14
changelogs (spec.Spec attribute), 14
check (spec.Spec attribute), 14
clean (spec.Spec attribute), 14
Conflicts (spec.Spec attribute), 13

D
description (spec.Spec attribute), 14

F
files (spec.Spec attribute), 14

G
Group (spec.Spec attribute), 13

I
install (spec.Spec attribute), 14

L
License (spec.Spec attribute), 13

N
Name (spec.Spec attribute), 13

O
Obsoletes (spec.Spec attribute), 13

P
package (spec.Spec attribute), 14
Packager (spec.Spec attribute), 13
Patch (spec.Spec attribute), 13
Plugin (class in plugin), 11

plugin (module), 11
post (spec.Spec attribute), 14
posttrans (spec.Spec attribute), 14
postun (spec.Spec attribute), 14
pre (spec.Spec attribute), 14
prep (spec.Spec attribute), 14
pretrans (spec.Spec attribute), 14
preun (spec.Spec attribute), 15
Provides (spec.Spec attribute), 13

R
Release (spec.Spec attribute), 14
Requires (spec.Spec attribute), 14

S
Source (spec.Spec attribute), 14
Spec (class in spec), 13
spec (module), 13
Spec.Changelog (class in spec), 13
Summary (spec.Spec attribute), 14

U
URL (spec.Spec attribute), 14

V
Vendor (spec.Spec attribute), 14
Version (spec.Spec attribute), 14

21


	RPG Command Reference
	Writing plugins
	Base class
	Command module
	Plugin class
	Spec module
	Indices and tables
	Python Module Index

