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CHAPTER 1

RPG Command Reference

1.1 Synopsis

rpg [options]

1.2 Description

RPG is tool, that guides people through the creation of a RPM package. RPG makes packaging much easier due to
the automatic analysis of packaged files. Beginners can get familiar with packaging process or the advanced users can
use our tool for a quick creation of a package.

1.3 Options

-h, --help Show help message and exit.

--plugin-dir <dir> [<dir> ...] Include plugin directory.

--disable-plugin <plugin-name> [<plugin-name> ...] Exclude specific plugin.

--disable-dnf Disable loading DNF sack.
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CHAPTER 2

Writing plugins

Plugins are the main part of RPG. Their purpose is to append Spec class with tags and scripts. Whole process of
creating spec file from source code in RPG app is following:

• plugins are triggered in project directory - they set some tags/scripts in Spec instance

• guessed values from Spec are auto filled in GUI forms and user can modify them

• next spec command (%prep, %build, %install, %files) is executed and new directory is created

• repeat steps for new directory

Plugin is a class that is derived from rpg.plugin.Plugin and overrides at least one of following methods:
download, extraction, extracted, patched, compiled, installed, package_built. Each of
them takes (spec, current_dir, sack) parameters. spec is instance of Spec class, sack is initialized
sack from DNF and current_dir is pathlib.Path instance where are project files of future RPM package located.
current_dir is different in each phase.

Table 2.1: Phases

Phase Description Base call
down-
load

downloads archive from url. This is because url adress may be github repository -
then plugin only add archive/master.zip to the url and downloads it

–

extrac-
tion

method that extract files from archive. This exists because there are many types of
archives like tar, zip, ...

–

ex-
tracted

raw files are extracted from chosen archive or copied files from project working
directory

extracted
source
analysis

patched after application of patches on source files patched
source
analysis

com-
piled

after execution of %build script (e.g. calling make) compiled
source
analysis

in-
stalled

directory containing files after make install installed
source
analysis

pack-
age_built

path to final rpm package –

mock_recoverafter building project in mock enviroment, build errors (if there are any) are passed
as parameter to this method. This should fix build by parsing the errors and finding
the solution, i.e. append missing required files to build_required_files

–
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Inside plugin can be helper methods that should not be named as any of the phase. It should follow conventions as any
private Python method (e.g. _helper_method).

For plugin examples take a look at core plugins folder.
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https://github.com/rh-lab-q/rpg/tree/master/rpg/plugins
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Base class
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CHAPTER 4

Command module
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CHAPTER 5

Plugin class

class plugin.Plugin
Class from which are plugins derived

def extraction(self, source, dest): pass

def download(self, source, dest): pass

def extracted(self, project_dir, spec, sack): pass

def patched(self, project_dir, spec, sack): pass

def compiled(self, project_dir, spec, sack): pass

def installed(self, project_dir, spec, sack): pass

def package_build(self, package_path, spec, sack): pass

def mock_recover(self, log, spec): pass
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CHAPTER 6

Spec module

class spec.Spec
SPEC properties holder

Example

>>> from rpg.spec import Spec
>>> spec = Spec()
>>> spec.Name = "Example"
>>> spec.Version = "0.6.11"
>>> spec.Release = "1%{?snapshot}%{?dist}"
>>> spec.License = "GPLv2"
>>> spec.Summary = "Example ..."
>>> spec.description = ("Example ...")
>>> spec.URL = "https://github.com/example_repo"

BuildArch = None
initial value: “”

BuildRequires = None
initial value: set()

BuildRoot = None
initial value: “”

class Changelog(date, author, email, *message)

Spec.Conflicts = None
initial value: “”

Spec.Group = None
initial value: “”

Spec.License = None
initial value: “”

Spec.Name = None
initial value: “”

Spec.Obsoletes = None
initial value: “”

Spec.Packager = None
initial value: “”

Spec.Patch = None
initial value: “”
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Spec.Provides = None
initial value: set()

Spec.Release = None
initial value: “”

Spec.Requires = None
initial value: set()

Spec.Source = None
initial value: “”

Spec.Summary = None
initial value: “”

Spec.URL = None
initial value: “”

Spec.Vendor = None
initial value: “”

Spec.Version = None
initial value: “”

Spec.build = None
initial value: Command()

Spec.changelog = None
initial value: []

Spec.changelogs = []

Spec.check = None
initial value: Command()

Spec.clean = None
initial value: Command()

Spec.description = None
initial value: “”

Spec.files = None
initial value: []

Spec.install = None
initial value: Command()

Spec.package = None
initial value: “”

Spec.post = None
initial value: Command()

Spec.posttrans = None
initial value: Command()

Spec.postun = None
initial value: Command()

Spec.pre = None
initial value: Command()

Spec.prep = None
initial value: Command()
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Spec.pretrans = None
initial value: Command()

Spec.preun = None
initial value: Command()
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CHAPTER 7

Indices and tables

• genindex

• modindex

• search
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Python Module Index
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