

rpaths: a compatible, object-oriented path manipulation library

Introduction

Python provides a module to manipulate filenames: os.path [https://docs.python.org/2/library/os.path.html#module-os.path]. However, it
is very cumbersome to use (not object-oriented) and difficult to use safely
(because of the bytes/unicode issue).

This library provides classes allowing you to perform all the common operations
on paths easily, using ad-hoc classes.

Moreover, it aims at total Python 2/3 and Windows/POSIX interoperability. In
every case, it will behave the “right way”, even when dealing with POSIX
filenames in broken unicode encodings.

Development happens on Github: https://github.com/remram44/rpaths. Feel free to
report bugs, request features or direct your patches there.

Classes

rpaths is organized in two levels. It offers abstract path representations,
which only perform parsing/string manipulation and don’t actually perform any
operation on a file system. When dealing with abstract paths, nothing stops you
from manipulating POSIX paths on a Windows host and vice-versa.

On top of these abstract paths comes the concrete Path class,
which represents the native type for the current system. It inherits from the
correct abstract class, and adds the actual system operations allowing you to
resolve, list, create or remove files.

Note that, contrary to other path libraries, none of these types inherits from
a built-in string class. However, you can build them from strings in a variety
of ways and repr() [https://docs.python.org/2/library/functions.html#repr], bytes() and unicode() [https://docs.python.org/2/library/functions.html#unicode] will behave how you
can expect.

Abstract classes

Abstract path behavior is defined by the AbstractPath class.
You shouldn’t use that directly, use PosixPath and
WindowsPath which are its implementations.

	
class rpaths.AbstractPath(*parts)

	An abstract representation of a path.

This represents a path on a system that may not be the current one. It
doesn’t provide any way to actually interact with the local file system.

	
ancestor(n)

	Goes up n directories.

	
components

	Splits this path into its components.

The first component will be the root if this path is relative, then
each component leading to the filename.

	
expand_user()

	Replaces ~ or ~user by that user’s home directory.

	
expand_vars()

	Expands environment variables in the path.

They might be of the form $name or ${name}; references to
non-existing variables are kept unchanged.

	
ext

	The extension of this path.

	
is_absolute

	Indicates whether this path is absolute or relative.

	
lies_under(prefix)

	Indicates if the prefix is a parent of this path.

	
name

	The name of this path, i.e. the final component without directories.

	
norm_case()

	Removes the case if this flavor of paths is case insensitive.

	
parent

	The parent directory of this path.

	
rel_path_to(dest)

	Builds a relative path leading from this one to the given dest.

Note that these paths might be both relative, in which case they’ll be
assumed to start from the same directory.

	
root

	The root of this path.

This will be either a root (with optionally a drive name or UNC share)
or '.' for relative paths.

	
split_root()

	Splits this path into a pair (drive, location).

Note that, because all paths are normalized, a root of '.' will be
returned for relative paths.

	
stem

	The name of this path without the extension.

	
unicodename

	The name of this path as unicode.

	
class rpaths.PosixPath(*parts)

	An abstract representation of a POSIX path.

It is safe to build and use objects of this class even when running on
Windows.

	
class rpaths.WindowsPath(*parts)

	An abstract representation of a Windows path.

It is safe to build and use objects of this class even when not running on
Windows.

Concrete class Path

The class Path represents a native path on your system. It inherits from either
PosixPath or WindowsPath.

	
class rpaths.Path(*parts)

	A concrete representation of an actual path on this system.

This extends either WindowsPath or
PosixPath depending on the current system. It adds
concrete filesystem operations.

	
absolute()

	Returns a normalized absolutized version of the path.

	
atime()

	Returns the time of last access to this path.

This returns a number of seconds since the epoch.

	
chdir()

	Changes the current directory to this path.

	
chmod(mode)

	Changes the mode of the path to the given numeric mode.

	
chown(uid=-1, gid=-1)

	Changes the owner and group id of the path.

	
copy(target)

	Copies this file the target, which might be a directory.

The permissions are copied.

	
copyfile(target)

	Copies this file to the given target location.

	
copymode(target)

	Copies the mode of this file on the target file.

The owner is not copied.

	
copystat(target)

	Copies the permissions, times and flags from this to the target.

The owner is not copied.

	
copytree(target, symlinks=False)

	Recursively copies this directory to the target location.

The permissions and times are copied (like
copystat()).

If the optional symlinks flag is true, symbolic links in the source
tree result in symbolic links in the destination tree; if it is false,
the contents of the files pointed to by symbolic links are copied.

	
ctime()

	Returns the ctime of this path.

On some systems, this is the time of last metadata change, and on
others (like Windows), it is the creation time for path. In any case,
it is a number of seconds since the epoch.

	
classmethod cwd()

	Returns the current directory.

	
exists()

	True if the file exists, except for broken symlinks where it’s
False.

	
hardlink(newpath)

	Creates a hard link to this path at the given newpath.

	
in_dir(**kwds)

	Context manager that changes to this directory then changes back.

	
is_dir()

	True if this file exists and is a directory.

	
is_file()

	True if this file exists and is a regular file.

	
is_link()

	True if this file exists and is a symbolic link.

	
is_mount()

	True if this file is a mount point.

	
lexists()

	True if the file exists, even if it’s a broken symbolic link.

	
listdir(pattern=None)

	Returns a list of all the files in this directory.

The special entries '.' and '..' will not be returned.

	Parameters

	pattern (NoneType | Callable | Pattern | unicode | bytes) – A pattern to match directory entries against.

	
mkdir(name=None, parents=False, mode=511)

	Creates that directory, or a directory under this one.

path.mkdir(name) is a shortcut for (path/name).mkdir().

	Parameters

	
	name – Path component to append to this path before creating the
directory.

	parents – If True, missing directories leading to the path will
be created too, recursively. If False (the default), the parent of
that path needs to exist already.

	mode – Permissions associated with the directory on creation,
without race conditions.

	
move(target)

	Recursively moves a file or directory to the given target location.

	
mtime()

	Returns the time of last modification of this path.

This returns a number of seconds since the epoch.

	
open(mode=u'r', name=None, **kwargs)

	Opens this file, or a file under this directory.

path.open(mode, name) is a shortcut for (path/name).open(mode).

Note that this uses io.open() [https://docs.python.org/2/library/io.html#io.open] which behaves differently from
open() on Python 2; see the appropriate documentation.

	Parameters

	name – Path component to append to this path before opening the
file.

	
read_link(absolute=False)

	Returns the path this link points to.

If absolute is True, the target is made absolute.

	
recursedir(pattern=None, top_down=True, follow_links=False, handle_errors=None)

	Recursively lists all files under this directory.

	Parameters

	
	pattern (NoneType | Callable | Pattern | unicode | bytes) – An extended patterns, where:

	a slash ‘/’ always represents the path separator

	a backslash ‘’ escapes other special characters

	an initial slash ‘/’ anchors the match at the beginning of the
(relative) path

	a trailing ‘/’ suffix is removed

	an asterisk ‘*’ matches a sequence of any length (including 0)
of any characters (except the path separator)

	a ‘?’ matches exactly one character (except the path separator)

	’[abc]’ matches characters ‘a’, ‘b’ or ‘c’

	two asterisks ‘**’ matches one or more path components (might
match ‘/’ characters)

	follow_links – If False, symbolic links will not be followed (the
default). Else, they will be followed, but directories reached
through different names will not be listed multiple times.

	handle_errors – Can be set to a callback that will be called when
an error is encountered while accessing the filesystem (such as a
permission issue). If set to None (the default), exceptions will be
propagated.

	
rel_path_to(dest)

	Builds a relative path leading from this one to another.

Note that these paths might be both relative, in which case they’ll be
assumed to be considered starting from the same directory.

Contrary to AbstractPath’s version, this will also
work if one path is relative and the other absolute.

	
relative()

	Builds a relative version of this path from the current directory.

This is the same as Path.cwd().rel_path_to(thispath).

	
remove()

	Removes this file.

	
rename(new, parents=False)

	Renames this path to the given new location.

	Parameters

	
	new – New path where to move this one.

	parents – If set to True, it will create the parent directories
of the target if they don’t exist.

	
resolve()

	Expands the symbolic links in the path.

	
rewrite(**kwds)

	Replaces this file with new content.

This context manager gives you two file objects, (r, w), where r is
readable and has the current content of the file, and w is writable
and will replace the file at the end of the context (unless an
exception is raised, in which case it is rolled back).

Keyword arguments will be used for both files, unless they are prefixed
with read_ or write_. For instance:

with Path('test.txt').rewrite(read_newline='\n',
 write_newline='\r\n') as (r, w):
 w.write(r.read())

	Parameters

	
	name – Path component to append to this path before opening the
file.

	temp – Temporary file name to write, and then move over this one.
By default it’s this filename with a ~ suffix.

	tempext – Extension to add to this file to get the temporary file
to write then move over this one. Defaults to ~.

	
rmdir(parents=False)

	Removes this directory, provided it is empty.

Use rmtree() if it might still contain files.

	Parameters

	parents – If set to True, it will also destroy every empty
directory above it until an error is encountered.

	
rmtree(ignore_errors=False)

	Deletes an entire directory.

If ignore_errors is True, failed removals will be ignored; else,
an exception will be raised.

	
same_file(other)

	Returns True if both paths refer to the same file or directory.

In particular, this identifies hard links.

	
size()

	Returns the size, in bytes, of the file.

	
symlink(target)

	Create a symbolic link here, pointing to the given target.

	
classmethod tempdir(suffix=u'', prefix=None, dir=None)

	Returns a new temporary directory.

Arguments are as for tempfile(), except that the
text argument is not accepted.

The directory is readable, writable, and searchable only by the
creating user.

The caller is responsible for deleting the directory when done with it.

	
classmethod tempfile(suffix=u'', prefix=None, dir=None, text=False)

	Returns a new temporary file.

The return value is a pair (fd, path) where fd is the file descriptor
returned by os.open() [https://docs.python.org/2/library/os.html#os.open], and path is a Path to it.

	Parameters

	
	suffix – If specified, the file name will end with that suffix,
otherwise there will be no suffix.

	prefix – Is specified, the file name will begin with that prefix,
otherwise a default prefix is used.

	dir – If specified, the file will be created in that directory,
otherwise a default directory is used.

	text – If true, the file is opened in text mode. Else (the
default) the file is opened in binary mode. On some operating
systems, this makes no difference.

The file is readable and writable only by the creating user ID.
If the operating system uses permission bits to indicate whether a
file is executable, the file is executable by no one. The file
descriptor is not inherited by children of this process.

The caller is responsible for deleting the file when done with it.

Index

 A
 | C
 | E
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	absolute() (rpaths.Path method)

 	AbstractPath (class in rpaths)

 	
 	ancestor() (rpaths.AbstractPath method)

 	atime() (rpaths.Path method)

C

 	
 	chdir() (rpaths.Path method)

 	chmod() (rpaths.Path method)

 	chown() (rpaths.Path method)

 	components (rpaths.AbstractPath attribute)

 	copy() (rpaths.Path method)

 	
 	copyfile() (rpaths.Path method)

 	copymode() (rpaths.Path method)

 	copystat() (rpaths.Path method)

 	copytree() (rpaths.Path method)

 	ctime() (rpaths.Path method)

 	cwd() (rpaths.Path class method)

E

 	
 	exists() (rpaths.Path method)

 	expand_user() (rpaths.AbstractPath method)

 	
 	expand_vars() (rpaths.AbstractPath method)

 	ext (rpaths.AbstractPath attribute)

H

 	
 	hardlink() (rpaths.Path method)

I

 	
 	in_dir() (rpaths.Path method)

 	is_absolute (rpaths.AbstractPath attribute)

 	is_dir() (rpaths.Path method)

 	
 	is_file() (rpaths.Path method)

 	is_link() (rpaths.Path method)

 	is_mount() (rpaths.Path method)

L

 	
 	lexists() (rpaths.Path method)

 	
 	lies_under() (rpaths.AbstractPath method)

 	listdir() (rpaths.Path method)

M

 	
 	mkdir() (rpaths.Path method)

 	
 	move() (rpaths.Path method)

 	mtime() (rpaths.Path method)

N

 	
 	name (rpaths.AbstractPath attribute)

 	
 	norm_case() (rpaths.AbstractPath method)

O

 	
 	open() (rpaths.Path method)

P

 	
 	parent (rpaths.AbstractPath attribute)

 	
 	Path (class in rpaths)

 	PosixPath (class in rpaths)

R

 	
 	read_link() (rpaths.Path method)

 	recursedir() (rpaths.Path method)

 	rel_path_to() (rpaths.AbstractPath method)

 	(rpaths.Path method)

 	relative() (rpaths.Path method)

 	remove() (rpaths.Path method)

 	
 	rename() (rpaths.Path method)

 	resolve() (rpaths.Path method)

 	rewrite() (rpaths.Path method)

 	rmdir() (rpaths.Path method)

 	rmtree() (rpaths.Path method)

 	root (rpaths.AbstractPath attribute)

S

 	
 	same_file() (rpaths.Path method)

 	size() (rpaths.Path method)

 	
 	split_root() (rpaths.AbstractPath method)

 	stem (rpaths.AbstractPath attribute)

 	symlink() (rpaths.Path method)

T

 	
 	tempdir() (rpaths.Path class method)

 	
 	tempfile() (rpaths.Path class method)

U

 	
 	unicodename (rpaths.AbstractPath attribute)

W

 	
 	WindowsPath (class in rpaths)

 nav.xhtml

 Table of Contents

 		
 rpaths: a compatible, object-oriented path manipulation library

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

