

rowan

Welcome to the documentation for rowan, a package for working with quaternions!
Quaternions form a number system with various interesting properties, and they have a number of uses.
This package provides tools for standard algebraic operations on quaternions as well as a number of additional tools for e.g. measuring distances between quaternions, interpolating between them, and performing basic point-cloud mapping.
A particular focus of the rowan package is working with unit quaternions, which are a popular means of representing rotations in 3D.
In order to provide a unified framework for working with the various rotation formalisms in 3D, rowan allows easy interconversion between these formalisms.

To install rowan, first clone the repository from source [https://bitbucket.org/glotzer/rowan].
Once installed, the package can be installed using setuptools:

$ python setup.py install --user

Contents:

	rowan

	random

	Development Guide
	Philosophy

	Source Code Conventions

	Unit Tests

	General Notes

Reference:

	License

	Changelog

	Credits

Support and Contribution

This package is hosted on Bitbucket [https://bitbucket.org/glotzer/rowan].
Please report any bugs or problems that you find on the issue tracker [https://bitbucket.org/glotzer/rowan/issues].

All contributions to rowan are welcomed!
Please see the development guide for more information.

Indices and tables

	Index

	Module Index

	Search Page

rowan

Overview

	rowan.conjugate

	Conjugates an array of quaternions

	rowan.inverse

	Computes the inverse of an array of quaternions

	rowan.exp

	Computes the natural exponential function \(e^q\).

	rowan.expb

	Computes the exponential function \(b^q\).

	rowan.exp10

	Computes the exponential function \(10^q\).

	rowan.log

	Computes the quaternion natural logarithm.

	rowan.logb

	Computes the quaternion logarithm to some base b.

	rowan.log10

	Computes the quaternion logarithm base 10.

	rowan.multiply

	Multiplies two arrays of quaternions

	rowan.divide

	Divides two arrays of quaternions

	rowan.norm

	Compute the quaternion norm

	rowan.normalize

	Normalize quaternions

	rowan.rotate

	Rotate a list of vectors by a corresponding set of quaternions

	rowan.vector_vector_rotation

	Find the quaternion to rotate one vector onto another

	rowan.from_euler

	Convert Euler angles to quaternions

	rowan.to_euler

	Convert quaternions to Euler angles

	rowan.from_matrix

	Convert the rotation matrices mat to quaternions

	rowan.to_matrix

	Convert quaternions into rotation matrices.

	rowan.from_axis_angle

	Find quaternions to rotate a specified angle about a specified axis

	rowan.to_axis_angle

	Convert the quaternions in q to axis angle representations

	rowan.from_mirror_plane

	Generate quaternions from mirror plane equations.

	rowan.reflect

	Reflect a list of vectors by a corresponding set of quaternions

	rowan.equal

	Check whether two sets of quaternions are equal.

	rowan.not_equal

	Check whether two sets of quaternions are not equal.

	rowan.isfinite

	Test element-wise for finite quaternions.

	rowan.isinf

	Test element-wise for infinite quaternions.

	rowan.isnan

	Test element-wise for NaN quaternions.

Details

The core rowan package contains functions for operating on
quaternions. The core package is focused on robust implementations of key
functions like multiplication, exponentiation, norms, and others. Simple
functionality such as addition is inherited directly from numpy due to
the representation of quaternions as numpy arrays. Many core numpy functions
implemented for normal arrays are reimplemented to work on quaternions (
such as allclose() and isfinite()). Additionally, numpy
broadcasting [https://docs.scipy.org/doc/numpy-1.14.0/user/basics.broadcasting.html#]
is enabled throughout rowan unless otherwise specified. This means that
any function of 2 (or more) quaternions can take arrays of shapes that do
not match and return results according to numpy’s broadcasting rules.

	
rowan.conjugate(q)

	Conjugates an array of quaternions

	Parameters

	q ((..,4) np.array) – Array of quaternions

	Returns

	An array containing the conjugates of q

Example:

q_star = conjugate(q)

	
rowan.exp(q)

	Computes the natural exponential function \(e^q\).

The exponential of a quaternion in terms of its scalar and vector parts
\(q = a + \boldsymbol{v}\) is defined by exponential power series:
formula \(e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}\) as follows:

\[\begin{split}\begin{align}
 e^q &= e^{a+v} \\
 &= e^a \left(\sum_{k=0}^{\infty} \frac{v^k}{k!} \right) \\
 &= e^a \left(\cos \lvert \lvert \boldsymbol{v} \rvert \rvert +
 \frac{\boldsymbol{v}}{\lvert \lvert \boldsymbol{v} \rvert
 \rvert} \sin \lvert \lvert \boldsymbol{v} \rvert \rvert
 \right)
\end{align}\end{split}\]

	Parameters

	q ((..,4) np.array) – Quaternions

	Returns

	Array of shape (…) containing exponentials of q

Example:

q_exp = exp(q)

	
rowan.expb(q, b)

	Computes the exponential function \(b^q\).

We define the exponential of a quaternion to an arbitrary base relative
to the exponential function \(e^q\) using the change of base
formula as follows:

\[\begin{split}\begin{align}
 b^q &= y \\
 q &= \log_b y = \frac{\ln y}{\ln b}\\
 y &= e^{q\ln b}
\end{align}\end{split}\]

	Parameters

	q ((..,4) np.array) – Quaternions

	Returns

	Array of shape (…) containing exponentials of q

Example:

q_exp = exp(q, 2)

	
rowan.exp10(q)

	Computes the exponential function \(10^q\).

Wrapper around expb().

	Parameters

	q ((..,4) np.array) – Quaternions

	Returns

	Array of shape (…) containing exponentials of q

Example:

q_exp = exp(q, 2)

	
rowan.log(q)

	Computes the quaternion natural logarithm.

The natural of a quaternion in terms of its scalar and vector parts
\(q = a + \boldsymbol{v}\) is defined by inverting the exponential
formula (see exp()), and is defined by the formula
:math:` frac{x^k}{k!}` as follows:

\[\begin{equation}
 \ln(q) = \ln\lvert\lvert q \rvert\rvert +
 \frac{\boldsymbol{v}}{\lvert\lvert \boldsymbol{v}
 \rvert\rvert} \arccos\left(\frac{a}{q}\right)
\end{equation}\]

	Parameters

	q ((..,4) np.array) – Quaternions

	Returns

	Array of shape (…) containing logarithms of q

Example:

ln_q = log(q)

	
rowan.logb(q, b)

	Computes the quaternion logarithm to some base b.

The quaternion logarithm for arbitrary bases is defined using the
standard change of basis formula relative to the natural logarithm.

\[\begin{split}\begin{align}
 \log_b q &= y \\
 q &= b^y \\
 \ln q &= y \ln b \\
 y &= \log_b q = \frac{\ln q}{\ln b}
\end{align}\end{split}\]

	Parameters

	
	q ((..,4) np.array) – Quaternions

	n ((..) np.array) – Scalars to use as log bases

	Returns

	Array of shape (…) containing logarithms of q

Example:

log_q = log(q, 2)

	
rowan.log10(q)

	Computes the quaternion logarithm base 10.

Wrapper around logb().

	Parameters

	q ((..,4) np.array) – Quaternions

	Returns

	Array of shape (…) containing logarithms of q

Example:

log_q = log(q, 2)

	
rowan.power(q, n)

	Computes the power of a quaternion \(q^n\).

Quaternions raised to a scalar power are defined according to the polar
decomposition angle \(\theta\) and vector \(\hat{u}\):
\(q^n = \lvert\lvert q \rvert\rvert^n \left(\cos(n\theta) + \hat{u}
\sin(n\theta)\right)\). However, this can be computed
more efficiently by noting that \(q^n = \exp(n \ln(q))\).

	Parameters

	
	q ((..,4) np.array) – Quaternions.

	n ((..) np.arrray) – Scalars to exponentiate quaternions with.

	Returns

	Array of shape (…) containing of q

Example:

q_n = pow(q^n)

	
rowan.multiply(qi, qj)

	Multiplies two arrays of quaternions

Note that quaternion multiplication is generally non-commutative.

	Parameters

	
	qi ((..,4) np.array) – First set of quaternions

	qj ((..,4) np.array) – Second set of quaternions

	Returns

	An array containing the products of row i of qi
with column j of qj

Example:

qi = np.array([[1, 0, 0, 0]])
qj = np.array([[1, 0, 0, 0]])
prod = multiply(qi, qj)

	
rowan.norm(q)

	Compute the quaternion norm

	Parameters

	q ((..,4) np.array) – Quaternions to find norms for

	Returns

	An array containing the norms for qi in q

Example:

q = np.random.rand(10, 4)
norms = norm(q)

	
rowan.normalize(q)

	Normalize quaternions

	Parameters

	q ((..,4) np.array) – Array of quaternions to normalize

	Returns

	An array containing the unit quaternions q/norm(q)

Example:

q = np.random.rand(10, 4)
u = normalize(q)

	
rowan.from_mirror_plane(x, y, z)

	Generate quaternions from mirror plane equations.

Reflection quaternions can be constructed of the from
\((0, x, y, z)\), i.e. with zero real component. The vector
\((x, y, z)\) is the normal to the mirror plane.

	Parameters

	
	x ((..) np.array) – First planar component

	y ((..) np.array) – Second planar component

	z ((..) np.array) – Third planar component

	Returns

	An array of quaternions corresponding to the provided reflections.

Example:

plane = (1, 2, 3)
quat_ref = from_mirror_plane(*plane)

	
rowan.reflect(q, v)

	Reflect a list of vectors by a corresponding set of quaternions

For help constructing a mirror plane, see from_mirror_plane().

	Parameters

	
	q ((..,4) np.array) – Quaternions to use for reflection

	v ((..,3) np.array) – Vectors to reflect.

	Returns

	An array of the vectors in v reflected by q

Example:

q = np.random.rand(1, 4)
v = np.random.rand(1, 3)
v_rot = rotate(q, v)

	
rowan.rotate(q, v)

	Rotate a list of vectors by a corresponding set of quaternions

	Parameters

	
	q ((..,4) np.array) – Quaternions to rotate by.

	v ((..,3) np.array) – Vectors to rotate.

	Returns

	An array of the vectors in v rotated by q

Example:

q = np.random.rand(1, 4)
v = np.random.rand(1, 3)
v_rot = rotate(q, v)

	
rowan.vector_vector_rotation(v1, v2)

	Find the quaternion to rotate one vector onto another

	Parameters

	
	v1 ((..,3) np.array) – Vector to rotate

	v2 ((..,3) np.array) – Desired vector

	Returns

	Array (…, 4) of quaternions that rotate v1 onto v2.

	
rowan.from_euler(alpha, beta, gamma, convention='zyx', axis_type='intrinsic')

	Convert Euler angles to quaternions

For generality, the rotations are computed by composing a sequence of
quaternions corresponding to axis-angle rotations. While more efficient
implementations are possible, this method was chosen to prioritize
flexibility since it works for essentially arbitrary Euler angles as
long as intrinsic and extrinsic rotations are not intermixed.

	Parameters

	
	alpha ((..) np.array) – Array of \(\alpha\) values in radians.

	beta ((..) np.array) – Array of \(\beta\) values in radians.

	gamma ((..) np.array) – Array of \(\gamma\) values in radians.

	convention (str) – One of the 12 valid conventions xzx, xyx,
yxy, yzy, zyz, zxz, xzy, xyz, yxz, yzx, zyx, zxy

	axes (str) – Whether to use extrinsic or intrinsic rotations

	Returns

	An array containing the converted quaternions

Example:

rands = np.random.rand(100, 3)
alpha, beta, gamma = rands.T
ql.from_euler(alpha, beta, gamma)

	
rowan.to_euler(q, convention='zyx', axis_type='intrinsic')

	Convert quaternions to Euler angles

Euler angles are returned in the sequence provided, so in, e.g.,
the default case (‘zyx’), the angles returned are for a rotation
\(Z(\alpha) Y(\beta) X(\gamma)\).

Note

In all cases, the \(\alpha\) and \(\gamma\) angles are
between \(\pm \pi\). For proper Euler angles, \(\beta\)
is between \(0\) and \(pi\) degrees. For Tait-Bryan
angles, \(\beta\) lies between \(\pm\pi/2\).

For simplicity, quaternions are converted to matrices, which are
then converted to their Euler angle representations. All equations
for rotations are derived by considering compositions of the three
elemental rotations about the three Cartesian axes:

\begin{eqnarray*}
R_x(\theta) =& \left(\begin{array}{ccc}
 1 & 0 & 0 \\
 0 & \cos \theta & -\sin \theta \\
 0 & \sin \theta & \cos \theta \\
 \end{array}\right)\\
R_y(\theta) =& \left(\begin{array}{ccc}
 \cos \theta & 0 & \sin \theta \\
 0 & 1 & 0\\
 -\sin \theta & 1 & \cos \theta \\
 \end{array}\right)\\
R_z(\theta) =& \left(\begin{array}{ccc}
 \cos \theta & -\sin \theta & 0 \\
 \sin \theta & \cos \theta & 0 \\
 0 & 0 & 1 \\
 \end{array}\right)\\
\end{eqnarray*}
Extrinsic rotations are represented by matrix multiplications in
the proper order, so \(z-y-x\) is represented by the
multiplication \(XYZ\) so that the system is rotated first
about \(Z\), then about \(y\), then finally \(X\).
For intrinsic rotations, the order of rotations is reversed,
meaning that it matches the order in which the matrices actually
appear i.e. the \(z-y'-x''\) convention (yaw, pitch, roll)
corresponds to the multiplication of matrices \(ZYX\).
For proof of the relationship between intrinsic and extrinsic
rotations, see the Wikipedia page on Davenport chained rotations [https://en.wikipedia.org/wiki/Davenport_chained_rotations].

For more information, see the Wikipedia page for
Euler angles [https://en.wikipedia.org/wiki/Euler_angles]
(specifically the section on converting between representations).

	Parameters

	
	q ((..,4) np.array) – Quaternions to transform

	convention (str) – One of the 6 valid conventions zxz,
xyx, yzy, zyz, xzx, yxy

	axes (str) – Whether to use extrinsic or intrinsic

	Returns

	An array with Euler angles \((\alpha, \beta, \gamma)\)
as the last dimension (in radians)

Example:

rands = np.random.rand(100, 3)
alpha, beta, gamma = rands.T
ql.from_euler(alpha, beta, gamma)
alpha_return, beta_return, gamma_return = ql.to_euler(full)

	
rowan.from_matrix(mat, require_orthogonal=True)

	Convert the rotation matrices mat to quaternions

Thhis method uses the algorithm described by Bar-Itzhack in [Itzhack00].
The idea is to construct a matrix K whose largest eigenvalue corresponds
to the desired quaternion. One of the strengths of the algorithm is that
for nonorthogonal matrices it gives the closest quaternion representation
rather than failing outright.

	Itzhack00

	Itzhack Y. Bar-Itzhack. “New Method for Extracting the
Quaternion from a Rotation Matrix”, Journal of Guidance, Control, and
Dynamics, Vol. 23, No. 6 (2000), pp. 1085-1087
https://doi.org/10.2514/2.4654

	Parameters

	mat ((..,3,3) np.array) – An array of rotation matrices

	Returns

	An array containing the quaternion representations
of the elements of mat (i.e. the same elements of SO(3))

	
rowan.to_matrix(q, require_unit=True)

	Convert quaternions into rotation matrices.

Uses the conversion described on Wikipedia [https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Quaternion-derived_rotation_matrix].

	Parameters

	q ((..,4) np.array) – An array of quaternions

	Returns

	The array containing the matrix representations
of the elements of q (i.e. the same elements of SO(3))

	
rowan.from_axis_angle(axes, angles)

	Find quaternions to rotate a specified angle about a specified axis

	Parameters

	
	axes ((..,3) np.array) – An array of vectors (the axes)

	angles (float or (..,1) np.array) – An array of angles in radians.
Will be broadcast to match shape of v as needed

	Returns

	An array of the desired rotation quaternions

Example:

import numpy as np
axis = np.array([[1, 0, 0]])
ang = np.pi/3
quat = about_axis(axis, ang)

	
rowan.to_axis_angle(q)

	Convert the quaternions in q to axis angle representations

	Parameters

	q ((..,4) np.array) – An array of quaternions

	Returns

	A tuple of np.arrays (axes, angles) where axes has
shape (…,3) and angles has shape (…,1). The
angles are in radians

	
rowan.isnan(q)

	Test element-wise for NaN quaternions.

A quaternion is defined as NaN if any elements are NaN.

	Parameters

	q ((..,4) np.array) – Quaternions to check

	Returns

	A boolean array of shape (…) indicating NaN.

	
rowan.isinf(q)

	Test element-wise for infinite quaternions.

A quaternion is defined as infinite if any elements are infinite.

	Parameters

	q ((..,4) np.array) – Quaternions to check

	Returns

	A boolean array of shape (…) indicating infinite quaternions.

	
rowan.isfinite(q)

	Test element-wise for finite quaternions.

A quaternion is defined as finite if all elements are finite.

	Parameters

	q ((..,4) np.array) – Quaternions to check

	Returns

	A boolean array of shape (…) indicating finite quaternions.

	
rowan.equal(p, q)

	Check whether two sets of quaternions are equal.

This function is a simple wrapper that checks array
equality and then aggregates along the quaternion axis.

	Parameters

	
	p ((..,4) np.array) – First set of quaternions

	q ((..,4) np.array) – First set of quaternions

	Returns

	A boolean array of shape (…) indicating equality.

	
rowan.not_equal(p, q)

	Check whether two sets of quaternions are not equal.

This function is a simple wrapper that checks array
equality and then aggregates along the quaternion axis.

	Parameters

	
	p ((..,4) np.array) – First set of quaternions

	q ((..,4) np.array) – First set of quaternions

	Returns

	A boolean array of shape (…) indicating inequality.

	
rowan.allclose(p, q, **kwargs)

	Check whether two sets of quaternions are all close.

This is a direct wrapper of the corresponding numpy function.

	Parameters

	
	p ((..,4) np.array) – First set of quaternions

	q ((..,4) np.array) – First set of quaternions

	**kwargs – Keyword arguments to pass to np.allclose

	Returns

	Whether or not all quaternions are close

	
rowan.isclose(p, q, **kwargs)

	Element-wise check of whether two sets of quaternions close.

This function is a simple wrapper that checks using the
corresponding numpy function and then aggregates along
the quaternion axis.

	Parameters

	
	p ((..,4) np.array) – First set of quaternions

	q ((..,4) np.array) – First set of quaternions

	**kwargs – Keyword arguments to pass to np.isclose

	Returns

	A boolean array of shape (…)

	
rowan.inverse(q)

	Computes the inverse of an array of quaternions

	Parameters

	q ((..,4) np.array) – Array of quaternions

	Returns

	An array containing the inverses of q

Example:

q_inv = inverse(q)

	
rowan.divide(qi, qj)

	Divides two arrays of quaternions

Division is non-commutative; this function returns
\(q_i q_j^{-1}\).

	Parameters

	
	qi ((..,4) np.array) – Dividend quaternion

	qj ((..,4) np.array) – Divisors quaternions

	Returns

	An array containing the quotients of row i of qi
with column j of qj

Example:

qi = np.array([[1, 0, 0, 0]])
qj = np.array([[1, 0, 0, 0]])
prod = divide(qi, qj)

random

Overview

	rowan.random.rand

	Generate random rotations uniformly

	rowan.random.random_sample

	Generate random rotations unifo

Details

Various functions for generating random sets of rotation quaternions. Note
that if you simply want random quaternions not restricted to \(SO(3)\) you
can just generate these directly using numpy.random.rand(… 4). This
subpackage is entirely focused on generating rotation quaternions.

	
rowan.random.rand(*args)

	Generate random rotations uniformly

This is a convenience function a la np.random.rand. If you want a function
that takes a tuple as input, use random_sample() instead.

	Parameters

	shape (tuple) – The shape of the array to generate.

	Returns

	Random quaternions of the shape provided with an additional axis of
length 4.

	
rowan.random.random_sample(size=None)

	Generate random rotations unifo

In general, sampling from the space of all quaternions will not generate
uniform rotations. What we want is a distribution that accounts for the
density of rotations, i.e., a distribution that is uniform with respect
to the appropriate measure. The algorithm used here is detailed in
[Shoe92].

	Shoe92

	Shoemake, K.: Uniform random rotations. In: D. Kirk, editor,
Graphics Gems III, pages 124-132. Academic, New York, 1992.

	Parameters

	size (tuple) – The shape of the array to generate

	Returns

	Random quaternions of the shape provided with an additional axis of
length 4

Development Guide

Philosophy

The goal of rowan is to provide a flexible, easy-to-use, and scalable approach to dealing with rotation representations.
To ensure maximum flexibility, rowan operates entirely on numpy arrays, which serve as the de facto standard for efficient multi-dimensional arrays in Python.
To be available for a wide variety of applications, rowan aims to work for arbitrarily shaped numpy arrays, mimicking numpy broadcasting [https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html] to the extent possible.
Functions for which this broadcasting is not available should be documented as such.

Since rowan is designed to work everywhere, all hard dependencies aside from numpy are avoided, although soft dependencies for specific functions are allowed.
To avoid any dependencies on compilers or other software, all rowan code is written in pure Python.
This means that while rowan is intended to provide good performance, it may not be the correct choice in cases where performance is critical.
The package was written principally for use-cases where quaternion operations are not the primary bottleneck, so it prioritizes portability, maintainability, and flexibility over optimization.

PEP 20

In general, all code in rowan should follow the principles in PEP 20 [https://www.python.org/dev/peps/pep-0020/].
In particular, prefer simple, explicit code where possible, avoiding unnecessary convolution or complicated code that could be written more simply.
Avoid writing code that is not easy to parse up front.

Inline comments are highly encouraged; however, code should be written in a way that it could be understood without comments.
Comments such as “Set x to 10” are not helpful and simply clutter code.
The most useful comments in a package such as rowan are the ones that explain the underlying algorithm rather than the implementations, which should be simple.
For example, the comment “compute the spectral decomposition of A” is uninformative, since the code itself should make this obvious, e.g, np.linalg.eigh.
On the other hand, the comment “the eigenvector corresponding to the largest eigenvalue of the A matrix is the quaternion” is instructive.

Source Code Conventions

All code in rowan should follow PEP 8 [https://www.python.org/dev/peps/pep-0008/] guidelines, which are the de facto standard for Python code.
In addition, follow the Google Python Style Guide [https://google.github.io/styleguide/pyguide.html], which is largely a superset of PEP 8.
Note that Google has amended their standards to match PEP 8’s 4 spaces guideline, so write code accordingly.
In particular, write docstrings in the Google style.

Python example:

This is the correct style
def multiply(x, y):
 """Multiply two numbers

 Args:
 x (float): The first number
 y (float): The second number

 Returns:
 The product
 """

This is the incorrect style
def multiply(x, y):
 """Multiply two numbers

 :param x: The first number
 :type x: float
 :param y: The second number
 :type y: float
 :returns: The product
 :rtype: float
 """

Documentation must be included for all files, and is then generated from the docstrings using sphinx [http://www.sphinx-doc.org/en/stable/index.html].

Unit Tests

All code should include a set of unit tests which test for correct behavior.
All tests should be placed in the tests folder at the root of the project.
These tests should be as simple as possible, testing a single function each, and they should be kept as short as possible.
Tests should also be entirely deterministic: if you are using a random set of objects for testing, they should either be generated once and then stored in the tests/files folder, or the random number generator in use should be seeded explicitly (e.g, numpy.random.seed or random.seed).
Tests should be written in the style of the standard Python unittest [https://docs.python.org/3/library/unittest.html] framework.
At all times, tests should be executable by simply running python -m unittest discover tests from the root of the project.

General Notes

	For consistency, NumPy should always be imported as np in code: import numpy as np.

	Avoid external dependencies where possible, and avoid introducing any hard dependencies. Dependencies other than NumPy should always be soft, enabling the rest of the package to function as is.

License

rowan Open Source Software License Copyright 2010-2018 The Regents of
the University of Michigan All rights reserved.

rowan may contain modifications ("Contributions") provided, and to which
copyright is held, by various Contributors who have granted The Regents of the
University of Michigan the right to modify and/or distribute such Contributions.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
 may be used to endorse or promote products derived from this software without
 specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Changelog

The format is based on Keep a Changelog [http://keepachangelog.com/en/1.0.0/].
This project adheres to Semantic Versioning <http://semver.org/spec/v2.0.0.html>`_.

Unreleased

Added

	Various distance metrics on quaternion space.

	Quaternion interpolation.

Fixed

	Update empty __all__ variable in geometry to export functions.

v0.4.4 - 2018-04-10

Added

	Rewrote internals for upload to PyPI.

v0.4.3 - 2018-04-10

Fixed

	Typos in documentation.

v0.4.2 - 2018-04-09

Added

	Support for Read The Docs and Codecov.

	Simplify CircleCI testing suite.

	Minor changes to README.

	Properly update this document.

v0.4.1 - 2018-04-08

Fixed

	Exponential for bases other than e are calculated correctly.

v0.4.0 - 2018-04-08

Added

	Add functions relating to exponentiation: exp, expb, exp10, log, logb, log10, power.

	Add core comparison functions for equality, closeness, finiteness.

v0.3.0 - 2018-03-31

Added

	Broadcasting works for all methods.

	Quaternion reflections.

	Random quaternion generation.

Changed

	Converting from Euler now takes alpha, beta, and gamma as separate args.

	Ensure more complete coverage.

v0.2.0 - 2018-03-08

Added

	Added documentation.

	Add tox support.

	Add support for range of python and numpy versions.

	Add coverage support.

Changed

	Clean up CI.

	Ensure pep8 compliance.

v0.1.0 - 2018-02-26

Added

	Initial implementation of all functions.

Credits

The following people contributed to the rowan package.

Vyas Ramasubramani, University of Michigan - Lead developer.

	Initial design

	Core quaternion operations

	Sphinx docs support

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 rowan	
 Core contents of rowan

 	
 	
 rowan.random	
 Generate random quaternions

Index

 A
 | C
 | D
 | E
 | F
 | I
 | L
 | M
 | N
 | P
 | R
 | T
 | V

A

 	
 	allclose() (in module rowan)

C

 	
 	conjugate() (in module rowan)

D

 	
 	divide() (in module rowan)

E

 	
 	equal() (in module rowan)

 	exp() (in module rowan)

 	
 	exp10() (in module rowan)

 	expb() (in module rowan)

F

 	
 	from_axis_angle() (in module rowan)

 	from_euler() (in module rowan)

 	
 	from_matrix() (in module rowan)

 	from_mirror_plane() (in module rowan)

I

 	
 	inverse() (in module rowan)

 	isclose() (in module rowan)

 	
 	isfinite() (in module rowan)

 	isinf() (in module rowan)

 	isnan() (in module rowan)

L

 	
 	log() (in module rowan)

 	
 	log10() (in module rowan)

 	logb() (in module rowan)

M

 	
 	multiply() (in module rowan)

N

 	
 	norm() (in module rowan)

 	
 	normalize() (in module rowan)

 	not_equal() (in module rowan)

P

 	
 	power() (in module rowan)

R

 	
 	rand() (in module rowan.random)

 	random_sample() (in module rowan.random)

 	reflect() (in module rowan)

 	
 	rotate() (in module rowan)

 	rowan (module)

 	rowan.random (module)

T

 	
 	to_axis_angle() (in module rowan)

 	
 	to_euler() (in module rowan)

 	to_matrix() (in module rowan)

V

 	
 	vector_vector_rotation() (in module rowan)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 rowan

 		
 rowan

 		
 random

 		
 Development Guide

 		
 Philosophy

 		
 PEP 20

 		
 Source Code Conventions

 		
 Unit Tests

 		
 General Notes

 		
 License

 		
 Changelog

 		
 Unreleased

 		
 Added

 		
 Fixed

 		
 v0.4.4 - 2018-04-10

 		
 Added

 		
 v0.4.3 - 2018-04-10

 		
 Fixed

 		
 v0.4.2 - 2018-04-09

 		
 Added

 		
 v0.4.1 - 2018-04-08

 		
 Fixed

 		
 v0.4.0 - 2018-04-08

 		
 Added

 		
 v0.3.0 - 2018-03-31

 		
 Added

 		
 Changed

 		
 v0.2.0 - 2018-03-08

 		
 Added

 		
 Changed

 		
 v0.1.0 - 2018-02-26

 		
 Added

 		
 Credits

_static/up-pressed.png

_static/up.png

