ROS Notes
Release 0.9.0

2019-06-07 13:14:43

Getting started

10

11

12

13

14

15

16

17

18

19

20

ROS Tutorials and wiki
Preparing

ROS Overview
Publisher-Subscriber
Launch files

Simulators

Unified Robot Description Format URDF

Xacro

Mobile robot
Gazebo
Navigation

Robot arm model
Industrial robots
Service and Client
Parameters server
ActionServer and ActionClient
Plugin

Nodelet

Rqt plugins

Rviz plugins

11

13

15

17

29

35

41

45

49

51

53

55

57

59

61

63

65

21

22

23

24

25

26

27

28

29

30

Gazebo plugins

Arduino

TIVA C

STM32

Raspberry pi

Cameras

OpenCV

Point Cloud Library (PCL)

Visual Servoing Platform library ViSP

The CImg Library

67

69

71

73

75

77

79

81

85

87

ROS Notes, Release 0.9.0

Warning: Work in progress

2019-06-07 13:14:43

Getting started 1

ROS Notes, Release 0.9.0

2 Getting started

CHAPTER 1

ROS Tutorials and wiki

Ros-Tutorials, Roscpp, Rospy, Roscpp_overview:

git clone https://github.com/ros/ros_tutorials.git

Roslaunch and tutorials

https://github.com/ros/ros_comm.git

Rqt tools and rqt_tutorials:

https://github.com/ros-visualization/rgt.git

URDF_

git clone https://github.com/ros/urdf.git

TF

git clone https://github.com/ros/geometry_tutorials.git

Gazebo

git clone

Rviz and Rviz_Plugins:

Movelt

git clone https://github.com/ros-planning/moveit_tutorials.git

ROS-I

git clone https://github.com/ros-industrial/industrial_training.git

(continues on next page)

http://wiki.ros.org/ROS/Tutorials
http://wiki.ros.org/roscpp_tutorials
http://wiki.ros.org/rospy/Tutorials
http://wiki.ros.org/roscpp/Overview
http://wiki.ros.org/roslaunch
http://wiki.ros.org/rqt
http://wiki.ros.org/rqt/Tutorials
http://wiki.ros.org/tf/Tutorials
http://gazebosim.org/tutorials
http://wiki.ros.org/rviz
http://docs.ros.org/kinetic/api/rviz_plugin_tutorials/html/index.html
http://docs.ros.org/kinetic/api/moveit_tutorials/html/index.html
https://industrial-training-master.readthedocs.io/en/melodic/

ROS Notes, Release 0.9.0

(continued from previous page)

http://wiki.ros.org/Industrial/Tutorials
https://github.com/ros-industrial-consortium/godel
https://github.com/ros-industrial-consortium/packml
https://github.com/Jmeyerl1292/robot_cal_tools

https://github.com/ros-industrial-consortium/ipa_seminar

1.1 ROS books:

Chapter 1. ROS Tutorials and wiki

CHAPTER 2

Preparing

2.1 Installation

Refer to the official website for more information. The instructions below are valid for almost all releases. In this
tutorial kinetic and ubuntu 16.04 are used.

Open a terminal:

sudo apt-get install python-rosinstall python-rosinstall-generator python-wstool
—build-essential

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release —-sc) main" > /

—etc/apt/sources.list.d/ros-latest.list"’

// key for kinectic

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 —--recv-key,,
—421C365BDIFF1F717815A3895523BAEEBOLIFALLG

sudo apt-get update

sudo apt-get install ros-kinetic-desktop-full

sudo rosdep init

rosdep update

After installation you need to tell ubunut where ROS is installed

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc
source ~/.bashrc

Or you open the hidden file . bashrc with a text editor and add

source /opt/ros/kinetic/setup.bash

To check the installation in a terminal type:

roscore

ROS Notes, Release 0.9.0

2.2 Catkin workspace

Like Arduino, Eclispe and other IDE, to develop in ROS you need to create a workspace. A workspace mainly contain
the source code folder and the compiled code and eventually other folders and files.

In order to create a workspace in ROS, catkin tools are used. These tools automate some job in Cmake. There are
3 ways to use catkin. The first one is the most used. The second one catkin_tools is under development. The
third one catkin_simple can be used in order to simplify the CMakeLists.txt file.

Before using the catkin commands, you need to create a workspace directory and a src subdirectory. You can call the
workspace as you want. The directories can be created using the terminal or using the desktop utilities. Usually
we will use the terminal.

If you want to use an IDE, RoboWare Studio and Qt plugin ros_gtc_plugin are good choices.

2.2.1 catkin

We will create a workspace called catkin_ws and a subdirectory src in the home directory of linux. The following
code will create a folder called src. The —p option will create the folder catkin_ws if it doesn’t exist

mkdir -p ~/catkin_ws/src

Navigate to the src folder and initialize the workspace. The command catkin_init_workspace should be
executed within the folder src

cd ~/catkin_ws/src
catkin_init_workspace

Go back to the workspace directory and type " catkin_make" in order to build the source code

cd ~/catkin_ws/
catkin_make

In order to build the worksapce after any modification of the source code, the catkin_make command should be
run from the workspace directory.

2.2.2 catkin tools

This is a python package that can be used to create and build a ROS workspace. It is not installed by default. Run the
following commnad to install it

sudo apt-get install python-catkin-tools

The documentation of this package can be found:
https://github.com/catkin/catkin_tools
http://catkin-tools.readthedocs.org/

Once the workspace and src folders are created, to initialize the workspace run the command catkin init from
the workspace directory not from the src:

cd ~/catkin_ws/
catkin init

To build the workspace run

6 Chapter 2. Preparing

https://github.com/catkin/catkin_tools
http://catkin-tools.readthedocs.org/

ROS Notes, Release 0.9.0

catkin build

The command catkin build will initialize the workspace if it was not initialized by the catkin init
command. The catkin build command can be run from any sub-directory of the workspace, contrary to
catkin_init_workspace.

2.2.3 catkin simple

2.2.4 Workspace sub-directory

Once is build the workspace will contain the src, build and devel folders. These folders are create by all the
previous methods.

2.2.5 Environment variable

When you create the worksapce the first time, after the compilation run the command:

// this will be valid only for the opened terminal
source devel/setup.bash

To make it permanent do the following:

echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc
source ~/.bashrc

Make sure ROS_PACKAGE _PATH environment variable includes the worksapce in use:

echo $ROS_PACKAGE_PATH

2.2.6 lllustration

Remember you can put the workspace in any directory and give any name.

2.3 Creating a ROS Package

Simply a package is a collection of programs.

2.3.1 Catkin

When creating a package, a name should be given and all dependencies:

catkin_create_pkg <package_name> [dependl] [depend2] [depend3]

For example we create beginner_tutorials package that depend on std_msgs, rospy, roscpp

2.3. Creating a ROS Package 7

ROS Notes, Release 0.9.0

cd ~/catkin_ws/src

// create a package
catkin_create_pkg beginner_tutorials std_msgs rospy roscpp

// build all packages in the workspace
cd ~/catkin_ws
catkin_make

2.3.2 catkin_tools

2.3.3 catkin_simple

Chapter 2. Preparing

CHAPTER 3

ROS Overview

3.1 Overview

Nodes are programs, a package is a collection of programs. ROS is based on nodes, that are processes that communi-
cate with each others, send messages via topics. A topic is the bus where a message is sent.

The master, that can be run by " roscore’, provides naming and registration services to the rest of nodes in the
ROS system. When a node publish an information, using a message structure, it publish it on a topic. A node must
subscribe to a topic in order to read that information. The master track publishers and subscribers.

Messages are data types or data structures, one can use ROS messages, std_msgs, or create new one. User defined
messages are stored in files with .msg extensions in the msg folder in the src folder of the workspace.

Topics are only one way buses, it mean if a node publish a topic, it doesn’t wait an answer. If a node need to receive a
reply from another node, services should be used.

cervice invocation

IPELLLY e,
+.|l"' L™

Node

N ¢

Topic —
P Subscription

Publication

As you can see nodel publish a message on a topic. Node2 receive the message on that topic. It is similar to the
concepts of newsletters. If you are subscribed to it, you receive emails otherwise no. And evry topic should have a
name.

ROS Notes, Release 0.9.0

3.2 Turtle sim

In order to illustrate these concepts we will use the preinstalled package turtlesim. Open 4 terminal or use a
terminal multiplexer and run:

// Terminal 1
roscore

// terminal 2
rosrun turtlesim turtlesim_node

// teminal 3
rosrun turtlesim turtle_teleop_key

// terminal 4
rgt_graph

In the graph we can see that the node (process) teleop_turtle is publishing on a topic called cmd_vel. The
node turtlesimis receiving from the topic cmd_vel.

In another terminal run:

rostopic list

rostopic info /turtlel/cmd_vel

rostopic list show all list of topics that are active. rostopic info show the type of message that is pub-
lished on the topic. We can see that on cmd_vel is being published a message of type geometry_msgs/Twist.

Run the follwing command:

rosmsg show geometry_msgs/Twist

you will get the data structure of the Twist message. A Twist is message that contain 2 variables 1inear and
angular of type geometry_msgs/Vector3. A geometry_msgs/Vector3 type contain 3 variables x, vy, z
of type float64.

Simply a geometry_msgs/Twist is a data structure that can be used to write linear and angular speed. So on
topic cmd_vel the teleop_turtle node is sending the desired speed to turt lesim node.

The speed can be sent to the turtle from any other node that publish on the /turtlel/cmd_vel topic. For example
if you open rgt

rqgt

Then from plugin, Robot tools, Robot steering, we can control the speed of the turtle.

10 Chapter 3. ROS Overview

CHAPTER 4

Publisher-Subscriber

In ROS processes that are called nodes communicate with each others using topics. The are other ways to communicate
that we will see in other chapters. Nodes sends messages over topics. The node that send a messages is called publisher.
The one that is receiving is called subscriber.

In the workspace create a package called

catkin_create_pkg first_steps roscpp rospy std_msgs
cd first_steps
mkdir scripts

4.1 Simple Publisher-Subscriber ROS program

In this section we will make a package that contain 2 nodes. A publisher node (talker.cpp) and a subscriber node
(listener.cpp). These two source files should be created in the src folder of the package.

Append to the CMakeLists.txt of the package the following:

add_executable (talker src/talker.cpp)
target_link_libraries(talker ${catkin_LIBRARIES})

add_executable (listener src/listener.cpp)
target_link_libraries(listener ${catkin_LIBRARIES})

This will create two executables, talker and listener, which by default will go into package directory of your devel
space, located by default at ~/catkin_ws/devel/lib/<package name>.

11

ROS Notes, Release 0.9.0

4.1.1 Publisher node
4.1.2 Subscriber Node

4.1.3 Building nodes
Packages should be stored in workspace, if no work space is present, one should be created. The following steps
should be done:

* Create and build a workspace

* Source the package environment variable

* Create a package

» Copy or create node source file into the src folder of the package

» Eventually create new messages and services

¢ Add nodes, messages and services to the CMakeLists.txt of the package

* Build the workspace

Listing.ref{1stquickROS } show steps necessary to create in the home directory a workspace named catkin_ws, create
a package called first_tutorial, and create two nodes in that package then build the workspace.

label=1lstquickROS listing/tutorial/quickROS

This will create two executables, talker and listener, which by default will go into package directory of your devel
space, located by default at ~/catkin_ws/devel/lib/<package name>.

4.1.4 Run nodes

roscore
rosrun beginner_tutorials talker (C++)
rosrun beginner_tutorials talker.py (Python)
rosrun beginner_tutorials listener (C++)

rosrun beginner_tutorials listener.py (Python)

4.1.5 Useful ROS commands

rosnode rostopic rosmsg

12 Chapter 4. Publisher-Subscriber

CHAPTER B

Launch files

5.1 Basic launch file

Ros launch talker_ listener.launch file that execute 2 nodes:

Listing 1: talker_listener.launch

<launch>
<node name="listener" pkg="roscpp_tutorials" type="listener_node" output="screen"/>
<node name="talker" pkg="roscpp_tutorials" type="talker_node" output="screen"/>
</launch>

The previous launch file execute one instance of the 1 i stener_node with a the name 1istener, and one instance
of the executable talker_node with the name talker, that are part of the package roscpp_tutorials. So
the type id the name of the compiled node. The name is the name of the instance of the node (process). The tag
output have value screen, it tell ROS to show the outputs of the nodes in the terminal. If roscore is not running,
roslaunch execute it.

Open a terminal and run the roslaunch command:

roslaunch roscpp_tutorials talker_listener.launch

Of course the package roscpp_tutorials should be in your active workspace or installed on your computer. Or
you substitute the package name and node names with your own.

Clone the repository in your workspace

’git clone https://github.com/ros/ros_tutorials.git

Or install it

sudo apt-get install ros-kinetic-roscpp-tutorials

13

http://wiki.ros.org/roslaunch

ROS Notes, Release 0.9.0

5.2 Parameters

You can also set parameters on the Parameter Server. These parameters will be stored on the Parameter Server before
any nodes are launched.

<launch>
<param name="somestringl" value="bar" />
<!-- force to string instead of integer -->

<param name="somestring2" value="10" type="str" />

<param name="someintegerl" value="1" type="int" />
<param name="someinteger2" value="2" />

<param name="somefloatl" value="3.14159" type="double" />
<param name="somefloat2" value="3.0" />

<!-- you can set parameters in child namespaces ——>
<param name="wg/childparam" value="a child namespace parameter" />

<!-- upload the contents of a file to the server —--—>
<param name="configfile" textfile="$(find roslaunch) /example.xml" />
<!-- upload the contents of a file as base64 binary to the server ——>

<param name="binaryfile" binfile="$ (find roslaunch)/example.xml" />
</launch>

5.3 Substitution args

Listing 2: launch_file.launch

<arg name="gui" default="true" />
<param name="foo" value="$ (arg my_foo)" />

<node name="add_two_ints_server" pkg="beginner_tutorials" type="add_two_ints_server"
/>

<node name="add_two_ints_client" pkg="beginner_tutorials" type="add_two_ints_client"
—args="$ (arg a) S$S(arg b)" />

Execution example:

roslaunch beginner_tutorials launch_file.launch a:=1 b:=5

5.4 Namespaces

5.5 Including files

14 Chapter 5. Launch files

CHAPTER O

Simulators

6.1 Rviz

To run rviz

rosrun rviz rviz

6.2 Gazebo

Gazebo is a Robot simulator with physics engine. Fro more information about it check the website.

Gazebo can be interfaced with ROS. The follwing package should be installed:

sudo apt-get install ros-kinetic-gazebo-ros-pkgs ros-kinetic-gazebo-msgs ros-kinetic-
—gazebo-plugins ros-kinetic-gazebo-ros-control

To run Gazebo:

roscore
rosrun gazebo_ros gazebo

6.2.1 Gazebo launch

Try gazebo_ros package:

roslaunch gazebo_ros empty_world.launch

roslaunch gazebo_ros empty_world.launch paused:=true use_sim_time:=false gui:=true
—throttled:=false recording:=false debug:=true verbose:=true

roslaunch gazebo_ros willowgarage_world.launch

roslaunch gazebo_ros mud_world.launch

(continues on next page)

15

http://gazebosim.org/tutorials
http://gazebosim.org/tutorials

ROS Notes, Release 0.9.0

(continued from previous page)

roslaunch gazebo_ros shapes_world.launch
roslaunch gazebo_ros rubble_world.launch

16

Chapter 6. Simulators

CHAPTER /

Unified Robot Description Format URDF

Note: Refer to URDF-Tutorials and clone the URDF-Tutorials-repo if you follow the official tutorial

git clone https://github.com/ros/urdf_tutorial.git

In this chapter we will create a model of Epson SCARA Robot.

In the workspace in the src directory create a folder called Robots, where we will put all robot description packages.

// navigate to src
mkdir Robots

catkin_create_pkg epson_g3_description geometry_msgs urdf rviz xacro
cd epson_g3_description

mkdir urdf scripts rviz

Back to the workspace and compile the packages.

7.1 Launch file

The following launch file is taken from URDF-Tutorials. It have different parameters that allow it to execute different
robot models.

Listing 1: display.launch from urdf_tutorial

<launch>
<arg name="model" default="$(find urdf_tutorial) /urdf/0l-myfirst.urdf"/>
<arg name="gui" default="true" />
<arg name="rvizconfig" default="$ (find urdf_ tutorial)/rviz/urdf.rviz" />

(continues on next page)

17

http://wiki.ros.org/urdf/Tutorials
https://github.com/ros/urdf_tutorial
http://wiki.ros.org/urdf/Tutorials

ROS Notes, Release 0.9.0

(continued from previous page)

<param name="robot_description" command="$ (find xacro)/xacro —--inorder $ (arg model)
" />
<param name="use_gui" value="$ (arg gui)"/>

<node name="joint_state_publisher" pkg="Jjoint_state_publisher" type="Jjoint_state_
—publisher" />

<node name="robot_state_publisher" pkg="robot_state_publisher" type="state_publisher
o>

<node name="rviz" pkg="rviz" type="rviz" args="-d $(arg rvizconfig)
o>
</launch>

n

required="true

It execute 3 nodes: rtviz, joint_state_publisher, state_publisher. In the launch file are present 2 param-
eters robot_description and use_gui that are need by the two nodes‘‘joint_state_publisher‘ and
state_publisher. There are also 3 arguments with default values, one of them is full name of the urdf file.

The node joint_state_publisher read the urdf file from the parameter robot_description finds all of
the non-fixed joints and publishes a sensor_msgs/Joint State message with all those joints defined on the topic
/Jjoint_states. We set by default the parameter use_gui to true, so when the node is executed it will show a
window/widget with sliders that let us control the robot joints.

The node state_publisher uses the URDF specified by the parameter robot_description and the joint
positions from the topic /joint_states to calculate the forward kinematics of the robot and publish the results
viatf.

Launch the display.launch file

roslaunch urdf_tutorial display.launch model:=urdf/0l-myfirst.urdf

Or independently from the working direcory

roslaunch urdf_tutorial display.launch model:='$ (find urdf_tutorial)/urdf/0l-myfirst.
—urdf'

In this case the file name is the same of the default value. So in this case it can be omitted

roslaunch urdf_tutorial display.launch

Ryviz files can be deleted from the launch file if you don’t have them. They can be created from rviz later. If there is
no rviz file, Rviz will not show the frames neither the robot neither select the right Fixed Frame.

We will modify launch file from the tutorial in the followingway:

Listing 2: display.launch

<launch>

<arg name="model" default="$ (find epson_g3_description) /urdf/scara.urdf"/>
<arg name="gui" default="true" />

<param name="robot_description" textfile="$(find epson_g3_description) /urdf/scara.
—urdf" />
<param name="use_gui" value="$ (arg gui)"/>

<node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_state_
—publisher" />

(continues on next page)

18 Chapter 7. Unified Robot Description Format URDF

http://wiki.ros.org/rviz
http://wiki.ros.org/joint_state_publisher
http://wiki.ros.org/robot_state_publisher/Tutorials

ROS Notes, Release 0.9.0

(continued from previous page)

<node name="robot_state_publisher" pkg="robot_state_publisher" type="state_publisher
oy 1] />
<node name="rviz" pkg="rviz" type="rviz" />

</launch>

Download display.launch

Basically I change the package name, the urdf default name and delete the reference for rviz configuration file. We
will back later to rviz configuration files.

I create also a scripts folder where I will create some bash file to help me executing nodes. Simply in the bash script
launch.sh there is:

roslaunch epson_g3_description display.launch model:='S$ (find epson_g3_description)/
—urdf/scara.urdf'

7.2 URDF basics

URDF is an xml file that describe the geometry of a robot. URDF is a tree structure with one root link. The measuring
units are meters and radians.

7.2.1 Robot

A robot is composed mainly from links, and joints.

<robot name="robot_ name">
<link> </link>
<link> </link>

<joint> </joint>
<joint> </joint>
</robot>

7.2.2 Link

The link element describes a rigid body with an inertia, visual features, and collision properties.

Co\\‘\é\o(\

The main components of 1ink tag are as follow:

<link name="1link name">

<visual>
<origin xyz="0 0 0" rpy="0 0 0" />
<geometry>

(continues on next page)

7.2. URDF basics 19

ROS Notes, Release 0.9.0

(continued from previous page)

<cylinder length="0.6" radius="0.2"/>
</geometry>
</visual>

<collision>
<origin xyz="0 0 0" rpy="0 0 0" />
<geometry>
<cylinder length="0.6" radius="0.2"/>
</geometry>
</collision>

<inertial>
<origin xyz="0 0 0" rpy="0 0 0"/>
<mass value="1"/>
<inertia
ixx="1.0" ixy="0.0" ixz="0.0"
iyy="1.0" iyz="0.0"
izz="1.0"/>
</inertial>
</link>

The visual tag specifies the shape of the object (box, cylinder, sphere, mesh, etc.) for visualization purposes.
Its origin is the reference frame of the visual element with respect to the reference frame of the link (The reference
frame of the link is its joint).

The collision can be the same as visual, or its geometry a little bit bigger. Its origin is the reference frame of
the collision element, relative to the reference frame of the link.

The inertial tag is need if the model is loaded in a simulator with physics engine. Its origin is the pose of the
inertial reference frame, relative to the link reference frame. The origin of the inertial reference frame needs to be at
the center of gravity. The axes of the inertial reference frame do not need to be aligned with the principal axes of the
inertia.

7.2.3 Joint

The joint describe the relative motion between two links. It can be revolute, continuous, prismatic, fixed,
floating,planar.

Basic properties of a joint tag:

<joint name="joint_name" type="continuous">
<parent link="1linkl"/>
<child link="1ink2"/>

<origin xyz="0 0 0" rpy="0 0 0"/>
<axis xyz="1 0 0"/>

</joint>

The origin is the transform from the parent link to the child link. The joint is located at the origin of the child link.
So the origin is the relative position of the child frame respect to the parent frame.

The joint axis specified in the joint frame. This is the axis of rotation for revolute joints, the axis of translation for
prismatic joints, and the surface normal for planar joints. The axis is specified in the joint frame of reference. Fixed
and floating joints do not use the axis field.

20 Chapter 7. Unified Robot Description Format URDF

ROS Notes, Release 0.9.0

Joint axis
in joint frame

S
}:(?7
o

A
65‘
™

7.2. URDF basics 21

ROS Notes, Release 0.9.0

The joint have other properties as dynamics, limit, etc. Limits are in radians for revolute joints and meters
for prismatic joints and are omitted if the joint is continuous or fixed.

The following image show the relationship between two joints.

v - TF &
» " Status: Ok
Show Names &
Show Axes &
Show Arrows &
Marker Scale 0.5
Update Interval 0 i T
Frame Timeout 15 g / l_\l\?\g
¥ Frames A
All Enabled &
¥ base link &
Parent
» Position 0;0;0 bas+: T

» Orientation 0;0;0; 1
» Relative P... 0;0:;0
» Relative O... 0;0:0;1
¥ right_leg &
Parent base link
» Position 0;-0.22; 0.25
» QOrientation 0;0;0; 1
» Relative P... 0;-0.22;0.25
» Relative O... 0;0:0;1
¥ Tree
¥ base_link
right leg

The previous image is produced by the following URDF model. Note that there is no visual aspect of the links. Only
joints are defined.

<?xml version="1.0"?>
<robot name="origins">

<link name="base_link">
</link>

<link name="right_ leg">
</link>

<joint name="base_to_right_leg" type="fixed">
<parent link="base link"/>
<child link="right_leg"/>
<origin xyz="0 -0.22 0.25"/>

</joint>

</robot>

7.2.4 Tansmission

Transmissions link actuators to joints and represents their mechanical coupling. The transmission element is an exten-
sion to the URDF robot description model that is used to describe the relationship between an actuator and a joint. This

22 Chapter 7. Unified Robot Description Format URDF

ROS Notes, Release 0.9.0

allows one to model concepts such as gear ratios and parallel linkages. A transmission transforms efforts/flow vari-
ables such that their product - power - remains constant. Multiple actuators may be linked to multiple joints through
complex transmission.

<transmission name="tranl">
<type>transmission_interface/SimpleTransmission</type>

<joint name="jointl">
<hardwareInterface>EffortJointInterface</hardwareInterface>
</joint>

<actuator name="motorl">
<hardwareInterface>EffortJointInterface</hardwareInterface>
<mechanicalReduction>1</mechanicalReduction>

</actuator>

</transmission>

7.2.5 Gazebo

Gazebo can be add to different elements. Refer to the URDF-Tutorials and Gazebo tutorials. In order to simulate the
model correctly in Gazebo at least he inertia and transmission tags for all links should be defined.

7.2.6 Other properties

Refer to URDF-XML and URDF-Tutorials for more information.

7.3 Complete Robot model example

7.3.1 Joint and frame definition

We will define the 3D model of Epson Scara robot G3-251s. This robot have 4 links and 3 joints. On link is fixed,
base_1link. Two links rotate, we will call them link1 and link2. And the last link, link3, has translation motion.
The mechanical drawing is shown below:

We will define first the links without visual aspect. Then we define the joints. The relative positions of the joints are
taken from the previous images. As we can see, we have 2 revolute joints and one prismatic.

First we define the links, without the visual aspect:

<link name="base_link">
</link>

<link name="1ink_1">
</link>

<link name="1ink_2">
</link>

<link name="1ink_3">
</link>

7.3. Complete Robot model example 23

http://wiki.ros.org/urdf/Tutorials
http://www.gazebosim.org/
http://www.gazebosim.org/
http://wiki.ros.org/urdf/XML
http://wiki.ros.org/urdf/Tutorials

ROS Notes, Release 0.9.0

A)
42,5 130 a 169
M 3 depth 8 32:5
/7 Q| 2-M 5 depth 10

7_' L — N i == = ‘.ﬂh. : i
o .1 N 00| ol o
= | &] @1@) ks

@)

24 Chapter 7. Unified Robot Description Format URDF

ROS Notes, Release 0.9.0

* indicates the stroke margin by mechanical stop.

- 030
|
ﬁ = =
|
_ | |
2 ' |
0
L?.‘J I |
4 Ll ﬂl 3
o
~ Al ©
o
I | - '
3 o | a
Llg = m =T
_u & of |55 127 | |
© 86 90 or more
& Space
for Cables

7.3.

Complete Robot model example

25

ROS Notes, Release 0.9.0

L-J—.-.' 52.5 126 +0.05
V 6 "0 Throygh hole
{0
2
1mm flat cut ==)
Conical hole @3, 90° -, L__
“"_-E [y ple] o 4 :]
= €k
] e L5
‘- - Max. @11 through hole il
@16 h7 shaft diameter -
@30 mechanical diameter 96 Hr (62
Through haole
Detail of “A”
(Calibration point position of Joints #3 and #4) Reference through hole

(View from the bottom of the base)

G3_251S | G3_301S | G3_351S
a 120 170 220
b| Max.545 | Max.575 | Max. 595

26 Chapter 7. Unified Robot Description Format URDF

ROS Notes, Release 0.9.0

We define the joint_1 between the base and linkl. We can define it where we want along the rotate axis. But we
will define it in the contact between link1 and the base. In zero position, all links open, the robot lie on the x axis
of the base link. Jointl has on offset in z of 129mm, so 0.129 m . The joint is define on the child link. Link1 rotate
arround the z axis of jointl.

<joint name="linkl_ to_base" type="revolute">

<parent link="base_ link"/>

<child link="1ink_1"/>

<origin xyz="0 0 0.129"/>

<axis xyz="0 0 1" />

<limit effort="300" velocity="0.1" lower="-3.14" upper="3.14"/>
</joint>

In the same way we define joint2. As you can see the dimension a in the image differ from model to model. We will
see later how we cam parameterize the robot model. For now we take the value for the model G3-251S, that is 120
mm.

<joint name="link2_to_linkl" type="revolute">

<parent link="link_1"/>

<child link="1ink 2"/>

<origin xyz="0.120 0 0"/>

<axis xyz="0 0 1" />

<limit effort="300" velocity="0.1" lower="-3.14" upper="3.14"/>
</joint>

The last joint, is prismatic. Link_3 slide along axis z. The stroke is 150mm.

<joint name="1ink3_to_link2" type="prismatic">

<parent link="1link_2"/>

<child 1ink="1link_3"/>

<origin xyz="0.130 0 0"/>

<axis xyz="0 0 1" />

<limit effort="300" velocity="0.1" lower="0" upper="0.150"/>
</joint>

‘We can use the command check_urdf to check if the urdf file have errors:

’check_urdf scara.urdf

Run the launch file or run the script.

’roslaunch epson_g3_description display.launch

Download scara.urdf

7.3.2 Check URDF model

Navigato to urdf direcory then:

check_urdf scara.urdf

If there are no errors, you will see the parents childs tree that define the robot.

The command

7.3. Complete Robot model example 27

ROS Notes, Release 0.9.0

urdf_to_graphiz scara.urdf

will create 2 files: scara.gv and scara.pdf.

7.3.3 Visual aspect and mesh

Espson provide CAD files in step and solidworks format. Stp can be opend on linux using FreeCad. We need to select
every link, convert it individually in stp. Pay attention to change the measuring unit. If you convert it in mm, you
will see a model 1000 tmes bigger than the real robt in rviz. URDF use meter as unit. So in FreeCad change the unit
in meter then export to stp. After that open the stp file and convert it to dae. In order to convert to dae the library
pycollada should be installed.

Another way to convert to dae, is to convert the links in vrml using FreeCad, then open the wrml in MeshLab then
convert to dae.

28 Chapter 7. Unified Robot Description Format URDF

CHAPTER 8

Xacro

Xacro is an Xml macro that introduce the use of macros in an urdf file. It allow the use of variables, math and macros.

And let us divide the robot model in different files.

8.1 Xacro syntax

8.1.1 Property

Instead of defining constant values, we can use variables, called property in xacro.

<xacro:property name="width" wvalue="0.2" />
<xacro:property name="bodylen" value="0.6" />

<link name="base_link">
<visual>
<geometry>
<cylinder radius="$ " length="$ "/>
</geometry>
</visual>
</link>

In the previous snippet we create two properties with default values:

<xacro:property name="width" value="0.2" />
<xacro:property name="bodylen" value="0.6" />

In the geometry tag, instead of using constant values, we assign the properties just defined to the radius and the

length. Note the use of ${ }.

29

ROS Notes, Release 0.9.0

8.1.2 Math

<cylinder radius="${wheeldiam/2}" length="0.1"/>
<origin xyz="S${reflect« (width+.02)} 0 0.25" />

8.1.3 Macro

Marco are piece of code that can be used as functions.

<xacro:macro name="default origin">
<origin xyz="0 0 0" rpy="0 0 0"/>
</xacro:macro>

When need the macro can be called by name:

<xacro:default_origin />

When called, the macro content will placed where is called.

Macros can accept also input parameters:

<xacro:macro name="default_inertial" params="mass">
<inertial>
<mass value="$ ">
<inertia ixx="1.0" ixy="0.0" ixz="0.0"
iyy="1.0" iyz="0.0"
izz="1.0" />
</inertial>
</xacro:macro>

Can be called in this way:

<xacro:default_inertial mass="10"/>

Macros input parameters can be also blocks or macros. When we need to pass a block as a parameter to another macro,
we precede the parameter name with *.

<xacro:macro name="blue_shape" params="name xshape">
<link name="$ ">
<visual>
<geometry>
<xacro:insert_block name="shape" />
</geometry>
<material name="blue"/>
</visual>
<collision>
<geometry>
<xacro:insert_block name="shape" />
</geometry>
</collision>
</link>
</xacro:macro>

In this snippet, we have 2 parameters. The first parameter name is a string, the second one shape is a block.

A block is defined as follow:

30 Chapter 8. Xacro

ROS Notes, Release 0.9.0

<xacro:blue_shape name="base_link">
<cylinder radius=".42" length=".01" />
</xacro:blue_shape>

<xacro:blue_shape mass="10" shape="blue_shape"/>

8.1.4 Example

Here is defined a macro called leg. As the model have two legs, in order to avoid duplicated code, we define a macro
with two paramters, prefix that is