

Romana Release v2.0 Documentation

	Welcome to Romana
	Quick Start

	Installation
	Installation using kubeadm

	Installation with kops

	Installation in other environments

	Updates coming soon

	Operations
	Upgrading Romana on Kubernetes

	Romana Command Line Tools
	Setting up CLI

	Basic Usage

	Host sub-commands

	Tenant sub-commands

	Segment sub-commands

	Policy sub-commands

	Romana Networking
	Terminology

	Networking
	Fully routed networks without overlays

	Romana address blocks

	Route management

	Topology
	Prefix groups

	Topology map

	Romana Components
	Essential Components
	romana-etcd

	romana-daemon

	romana-listener

	romana-agent

	AWS Add-on Components
	romana-aws

	romana-vpcrouter

	Network Policies
	Overview

	Tools and integration
	Policy definition format

	Network Topology
	Network Topology Configuration Format
	Network Topology JSON

	Network Definition JSON

	Topology Mapping JSON

	Host Group JSON

	Host Definition JSON
	Examples

	Advanced Topics
	Custom Topologies
	Terminology

	Examples

	Route Publisher Add-on
	Configuration

	Examples

	Installation

	Verification

	Romana VIPs
	Example configuration

	Romana DNS
	Installation

	DNS Testing

	Sample DNS Results

	Contact Us

Welcome to Romana

Romana is a network and security automation solution for cloud native
applications.

	Romana automates the creation of isolated cloud native networks and
secures applications with a distributed firewall that applies access
control policies consistently across all endpoints (pods or VMs) and
services, wherever they run.

	Through Romana’s topology aware IPAM, endpoints receive natively
routable addresses: No overlays or tunnels are required, increasing
performance and providing operational simplicity.

	Because IP addresses are assigned with network topology in mind,
routes within the network are highly aggregated, reducing the impact
on networking hardware, and allowing more secure configurations.

	Supports Kubernetes and OpenStack clusters, on premise or on AWS.

Quick Start

To get started with Romana on Kubernetes, go
here.

For OpenStack installations, please contact us by email or on Slack.

Installation

For clusters created with kops or kubeadm with default settings, predefined YAML files are provided so that you can install easily by using kubectl apply. If you are not using the default settings, some changes to the YAML files will be required - see the notes, below.

If you have made your own customized installation of Kubernetes or used a different tool to create the cluster, then you should refer to the detailed components page, and align the example configuration with the details specific to your cluster.

Installation using kubeadm

Follow the Kubernetes cluster configuration guide for Using kubeadm to Create a Cluster [https://kubernetes.io/docs/setup/independent/create-cluster-kubeadm/#instructions], and complete steps 1 and 2. Then, to install Romana, run

kubectl apply -f https://raw.githubusercontent.com/romana/romana/master/docs/kubernetes/romana-kubeadm.yml

Please see special notes below if - you are using a non-default range for Kubernetes Service IPs - want to specify your own IP range for Pod IPs - are running in virtualbox - have cluster nodes in multiple subnets

Installation with kops

As of kops v1.8, Romana is a built-in CNI networking provider that can be installed directly by folloing the kops documentation [https://github.com/kubernetes/kops/blob/master/docs/networking.md#supported-cni-networking].

If you are using an earlier version of kops, Romana can be installed by using the --networking cni option. You will need to SSH directly to your master node to install Romana after the cluster has finished launching.

Connect to the master node
ssh admin@master-ip
Check that Kubernetes is running and that the master is in NotReady state
kubectl get nodes

You should see output similar to the below example.

NAME STATUS AGE VERSION
ip-172-20-xx-xxx.us-west-2.compute.internal NotReady,master 2m v1.7.0

Then, to install Romana, run

kubectl apply -f https://raw.githubusercontent.com/romana/romana/master/docs/kubernetes/romana-kops.yml

It will take a few minutes for the master node to become ready, launch deployments, and for other minion nodes to register and activate.

You will also need to open port 4001 in the AWS Security Group for your “masters” instances. This can be edited in the AWS EC2 Management Console. Edit the rule for TCP Ports 1-4000 from “nodes”, and change the
range to 1-4001.

The install for kops provides two additional components: - romana-aws: A tool that automatically configures EC2 Source-Dest-Check attributes for nodes in your Kubernetes cluster - romana-vpcrouter: A service that populates your cluster’s VPC Routing tables with routes between AZs.

Please see special notes below if - you are using a non-default range for Kubernetes Service IPs - want to specify your own IP range for Pod IPs

Installation in other environments

Please refer to the detailed components page, and
align the example configuration with the details specific to your
cluster.

Updates coming soon

These topics still need additional explanation, instructions and guides.

	Special Notes

	Custom range for Kubernetes Service IPs

	Custom range for Pod IPs

	Running in VirtualBox

	Running in multiple subnets

Operations

Upgrading Romana on Kubernetes

Romana can be upgraded by simply updating the conatiner image used in the deployment and/or daemonsets.

kubectl -n kube-system set image deployment/romana-daemon romana-daemon=quay.io/romana/daemon:v2.0.0
kubectl -n kube-system set image deployment/romana-listener romana-listener=quay.io/romana/listener:v2.0.0

kubectl -n kube-system set image daemonset/romana-agent romana-agent=quay.io/romana/agent:v2.0.0

Upgrading the romana-agent requires the additional step of changing the “update strategy” from the default OnDelete to RollingUpdate.

This is done by running

kubectl -n kube-system edit daemonset romana-agent

Then changing OnDelete to RollingUpdate.

For upgrades from preview.3 to v2.0 GA, no etcd data migration is necessary.

Romana Command Line Tools

Since Romana is controlled via a cloud orchestration system, once it is installed and running requires little operational oversight. However, for certain adminstrative functions a CLI is provided.

Note

The Romana CLI retains certain Romana v1.x elements, including commands to directly administer default (i.e. pre-defined) tenant and segment labels. An update to the CLI will soon be available that allows for dynamic label creation.

Romana command line tools provide a romana API reference implementation.
They provide a simple command line interface to interact with Romana
services.

Setting up CLI

./romana CLI uses a configuration file ~/.romana.yaml which contains
various parameters for connecting to root service and root service port.
A sample ~/.romana.yaml file looks as follows:

$ cat ~/.romana.yaml
#
Default romana configuration file.
please move it to ~/.romana.yaml
#
RootURL: "http://192.168.99.10"
RootPort: 9600
LogFile: "/var/tmp/romana.log"
Format: "table" # options are table/json
Platform: "openstack"
Verbose: false

Basic Usage

Once a configuration is setup (by default the romana installer will
populate the ~/.romana.yaml with a valid configuration), running the
romana command will display details about commands supported by
romana.

Usage:
 romana [flags]
 romana [command]

Available Commands:
 host Add, Remove or Show hosts for romana services.
 tenant Create, Delete, Show or List Tenant Details.
 segment Add or Remove a segment.
 policy Add, Remove or List a policy.

Flags:
 -c, --config string config file (default is $HOME/.romana.yaml)
 -f, --format string enable formatting options like [json|table], etc.
 -h, --help help for romana
 -P, --platform string Use platforms like [openstack|kubernetes], etc.
 -p, --rootPort string root service port, e.g. 9600
 -r, --rootURL string root service url, e.g. http://192.168.0.1
 -v, --verbose Verbose output.
 --version Build and Versioning Information.

Host sub-commands

Adding a new host to romana cluster

Adding a new host to romana cluster should be done using static hosts [https://github.com/romana/romana/blob/romana-1.x/static_hosts.md] and this feature is only avaiable here for debugging assistance.

romana host add [hostname][hostip][romana cidr][(optional)agent port] [flags]

Removing a host from romana cluster

romana host remove [hostname|hostip] [flags]

Listing hosts in a romana cluster

romana host list [flags]

Showing details about specific hosts in a romana cluster

romana host show [hostname1][hostname2]... [flags]

Tenant sub-commands

Create a new tenant in romana cluster

Creating a new tenant is only necessary on certain platforms like
openstack (where the tenant has to exist previously on that platform),
for platforms like kubernetes, tenants are created automatically and no
command line interaction is needed in those cases.

romana tenant create [tenantname] [flags]

Delete a specific tenant in romana cluster

romana tenant delete [tenantname] [flags]

Listing tenants in a romana cluster

romana tenant list [flags]

Showing details about specific tenant in a romana cluster

romana tenant show [tenantname1][tenantname2]... [flags]

Segment sub-commands

Add a new segment to a specific tenant in romana cluster

Adding a new segment to a specific tenant is only necessary on certain
platforms like openstack, for platforms like kubernetes, segments are
created automatically and no command line interaction is needed in those
cases.

romana segment add [tenantName][segmentName] [flags]

Remove a segment for a specific tenant in romana cluster

romana segment remove [tenantName][segmentName] [flags]

Listing all segments for given tenants in a romana cluster

romana segment list [tenantName][tenantName]... [flags]

Policy sub-commands

Sample Romana Policy

A sample romana policy is shown here.

Add a new policy to romana cluster

Adding policies to romana cluster involves them being applied to various
backends like openstack VMs, Kubernetes Pods, etc for various platforms
supported by romana.

romana policy add [policyFile] [flags]

Alternatively policies can be added using standard input.

cat policy.json | romana policy add

Remove a specific policy from romana cluster

romana policy remove [policyName] [flags]
Local Flags:
 -i, --policyid uint Policy ID

Listing all policies in a romana cluster

romana policy list [flags]

Romana Networking

This document explains some of Romana’s core networking concepts. Oftentimes, a
detailed understanding of those is not required, since Romana strives to
provide sensible defaults and working out-of-the-box configurations. But
for custom deployments or advanced configuration, having an
understanding of those concepts is helpful.

Terminology

The following terminology is used throughout this document:

agent: This is a Romana component, which runs on every node in a
cluster. This agent is used to configure interfaces, routing or
network policies on that host.

CIDR: ‘Classless Inter-Domain
Routing’. We use the term CIDR to refer specifically to the ‘CIDR
notation’, which is a compact representation of an IP address and
routing prefix. Most commonly, however, we use this notation to describe
ranges of addresses. For example, the CIDR of 10.1.0.0/16 describes
all IP addresses from 10.1.0.0 to 10.1.255.255.

Clos Network: A Clos network is a structured, hierarchical network topology often used for data center networks. It can be described as a tree-like ‘spine and leaf’ architecture, with racks of
servers as the bottom layer. Those servers are typically connected to a
ToR (‘top of rack’) switch or router, which represents the next layer.
An entire rack (servers plus ToR) may be considered a ‘leaf’ in this
architecture. Core routers or switches are then used to connect those
ToRs, often in a highly redundant manner, which can tolerate failure of
core devices. Those core devices then form the ‘spine’ in the
architecture. This is a simplified description and countless variations
of Clos networks exist. For example, additional layers may be inserted.
Or in various large core networks, and entire spine may be considered
the ‘leaf’, depending on the scope of the discussion and network.
Connections between spines and leafs may be managed by vendor specific
network fabric implementation, and so on.

endpoint: Romana deals
with the provisioning of networking for workloads
in clusters (VMs for OpenStack, pods for Kubernetes). Due to a
network-centric view, for Romana the most important aspect of a workload
is the ‘network endpoint’, which is the IP address and network interface
of the workload.

host: In this context, usually a server computer
that is part of a cluster, such as OpenStack or Kubernetes. In this
document we use the term ‘host’ or ‘node’ interchangeably.

IPAM: ‘IP Address Manager’. A service that manages IP addresses in a
network. If anyone in the network needs a new address, a request can be
sent to IPAM to get the ‘next’ available IP address from some pre
configured range. Romana’s IPAM is an extremely important component since carefully chosen addresses and network prefixes are used to greatly collapse routes and reduces the impact of route distribution on hosts and networking equipment.

master node:
One of the nodes of an OpenStack or Kubernetes cluster,
which fulfills ‘master’ or ‘controller’ functions. This is typically
where central components of the cluster infrastructure run.
Workloads (VMs or pods) may or may not run on master nodes, depending on configuration.

node: A host that is a
member of a cluster (either OpenStack or Kubernetes). In this document
we use the term ‘host’ and ‘node’ interchangeably.

policy: Romana provides network policies to manage network traffic and
allow or deny access. You can always use the Romana CLI and API to
define policies. For Kubernetes clusters, Romana also implements a
direct and automatic mapping of Kubernetes policies to Romana policies.

route aggregation: Since all endpoint IP
addresses are fully routable, Romana needs to configure and manage the
routes within the network. Great emphasis has been placed on collapsing
those routes (aggregation), so that only very few routes
actually need to be configured and maintained within the network infrastructure. For example, if there are two routes to
adjacent CIDRs 10.1.0.0/25 and 10.1.0.128/25,
which point to the same target then this can be collapsed into a single
route for the CIDR 10.1.0.0/24. Romana facilitates a special
IPAM that is aware of network topology in order to
assign IP addresses to endpoints in a manner that makes it easy to
automatically aggregate routes.

network topology: A network topology describes the layout of elements in a network. How are hosts, switches
and routers connected? How can two components communicate? Who can reach whom directly and who needs to forward packets on behalf of others?
Traditional network topologies are ‘bus’, ‘star’, ‘ring’ or ‘mesh’. In
modern data centers topologies can be complex and may contain some
mixture of those types, often adding certain tree-like hierarchical
aspects to the topology, for example in Clos networks.

workload: In OpenStack clusters this is typically a VM, while in
Kubernetes clusters this is normally a pod. These workloads run on the
cluster hosts. Each workload is represented by a
network endpoint, consisting of a network interface
that is configured on the host as well as an assigned IP address.

Networking

Fully routed networks without overlays

Romana does not use network overlays or tunnels. Instead,
endpoints (VMs for OpenStack, pods for
Kubernetes) get real, routable IP addresses, which are configured on
cluster hosts. To ensure connectivity between
endpoints, Romana manages routes on cluster hosts as well as network
equipment or in the cloud infrastructure, as needed.

Using real, routable IP addresses has multiple advantages:

	Performance: Traffic is forwarded and processed by hosts and network
equipment at full speed, no cycles are spent encapsulating packets.

	Scalability: Native, routed IP networking offers tremendous
scalability, as demonstrated by the Internet itself. Romana’s use of
routed IP addressing for endpoints means that no time, CPU or memory
intensive tunnels or other encapsulation needs to be managed or
maintained and that network equipment can run at optimal efficiency.

	Visibility: Packet traces show the real IP addresses, allowing for
easier trouble shooting and traffic management.

Romana address blocks

To increase scalability and reduce resource requirements, Romana
allocates endpoint addresses not individually, but
in blocks of addresses. Each block can be expressed in the form of a
CIDR. For example, a typical address block may have 4
bits (a /28 CIDR), and therefore could contain up to 16 different IP
addresses. Routing is managed based on those
blocks. Only one network route is required for all addresses within this
block. Therefore, address blocks are an important contribution to route
aggregation.

Let’s look at an example to illustrate:

Assume Romana has been configured to use addresses out of the
10.1.0.0/16 address range and to use /28 blocks. Now assume a
first workload needs to be started. The cluster scheduler decided to
place this workload on host A of the cluster.

Romana’s IPAM realizes that no block is in use yet on host A, allocates
a block and ‘assigns’ it to host A. For example, it may choose to use
block 10.1.9.16/28. As this assignment is made, the Romana agent on
the cluster hosts may create routes to this
block’s address range, which point at host A. The address 10.1.9.17
(contained in that address block) could be chosen by IPAM and is
returned as the result of the original address request. Therefore, the
first endpoint gets address 10.1.9.17.

Now a second endpoint needs to be brought up. The scheduler chose host
B. IPAM finds that no block is present on host B yet, chooses one (maybe
10.1.9.32/28) and returns an IP address from that block. For example
10.1.9.33.

The two endpoints (10.1.9.17 on host A and 10.1.9.33 on host B)
can communicate with each other, because Romana automatically setup
routing for those address blocks.

If now a third endpoint needs to be brought up, and it is again
scheduled to host A, then IPAM detects that there is an address block
already on host A, but it is not fully used, yet. Therefore, it returns
a free address from that block, for example 10.1.9.18. Importantly,
no new block allocation was necessary in that case, an no additional
routes had to be configured. This image illustrates the state at this
point:

[image: State in a the cluster after third endpoint was created]
State in a the cluster after third endpoint was created

As a result, the need to update routes on hosts or in the network
infrastructure is greatly reduced. The larger the address blocks, the
less often routes have to be configured or updated.

Choosing the right address block size is a tradeoff between the number
of routes on one hand, as well as potentially wasted IP addresses on the
other: If the block size was chosen too large then some IP addresses may
never be used. For example, imagine a block size of /24. The block may
contain up to 256 addresses. If on a particular host you never run that
many workloads then some of those addresses may be wasted, since they
are not available on other hosts.

If a block size is chosen too small then for a cluster with many
endpoints Romana has to create a lot of routes (either on the hosts or
the network equipment). Romana provides many features to reduce the
number of routes and route updates in the network and therefore - for
most cases - we recommend address block sizes of at least 4 or 5 bits.

An address block, while in use, is tied to a specific host. When
workloads are stopped and the last address within a block is released,
the block itself goes back into Romana IPAM’s free pool. When it is used
the next time, it may be allocated to a different host.

Route management

Depending on the network’s topology Romana creates
and manages routes for address blocks by a
number of different means.

In most cases, the Romana agents on the cluster
hosts create routes to address blocks on other cluster
hosts, at least for those hosts that are on the same L2 segment. This is
often the case if the ToR acts as a switch for the hosts in the rack and
is sometimes described as ‘L2-to-host’. The following image illustrates this network
configuration:

[image: Routes in an L2-to-host data center]
Routes in an L2-to-host data center

Some networks are designed for ‘L3-to-host’, meaning that hosts do
not share an L2 segment. In this case, no routes need to be configured on the hosts at all. Routes to address blocks are installed on the ToR instead. Traffic will simply use the default route to the ToR switch where it will forward to the propher endpoint. The following image shows where routes are created
in an L3-to-host configuration:

[image: Routes in an L3-to-host data center]
Routes in an L3-to-host data center

Routes can be advertized to the ToR using either BGP or OSPF route distribution protocols.

Romana is provided with topological information about the network in
which it is deployed as a configuration parameter. It then uses this
information to maintain aggregated routes <#term_aggregation>`__ which
reduces the number of routes that need to be created and updated. In many
cases all endpoints can be reachable with very small numbers of routes and few, if any, route updates required.

Topology

Prefix groups

Prefix groups are one of the key ideas behind Romana’s
IPAM. With this concept, IP addresses for
endpoints are chosen from the same
CIDR if they are created in ‘close proximity’.

For example, assume you run a cluster in a data center network,
consisting of multiple racks full of servers. Romana IPAM may consider
all the hosts within a rack to be part of the same prefix group. This
means that all address blocks - and
therefore all endpoint IP addresses - assigned to those hosts will share
the same address prefix. This then means that the ToRs (top of rack)
switches in the data center only need to know a single route to be able
to send traffic to all the endpoints within a rack: With this topology
aware IPAM, Romana is able to drastically collapse the routing table,
reducing the memory requirements, CPU load and network load of the
network infrastructure.

Prefix groups also allows more specific route filtering between routers which can prevent route injection attacks.

Let’s look at an example in more detail.

Assume your data center consists of four racks. Each rack has a ToR leaf, connected to a pair of spine core routers.

Assume further that the overall address range for Romana is
10.1.0.0/16.

These four racks are specified in a topology
map: a configuration that describes the network
topology and which is provided to Romana as input.
Romana then takes this information and automatically carves up the
overall CIDR available into four sub-ranges:
10.1.0.0/18, 10.1.64.0/18, 10.1.128.0/18 and
10.1.192.0/18. It then assigns these sub-ranges as a prefix groups to the ToR and organizes the hosts in each rack to get addresses from within the prefix group. For example, 10.1.0.0/18 may be assigned to rack 1, 10.1.64.0/18 to rack 2, and so on.

Then, if the cluster scheduler wishes to bring up a workload on any host
in rack 1, Romana IPAM will make sure that the address block used for
this endpoint will be fully contained in the 10.1.0.0/18 CIDR. For
example, the address block may have the CIDR 10.1.0.8/28.

Likewise, if an address block is needed on any host in rack 2, it will
have a CIDR that’s contained within the second prefix group’s CIDR. For
example, 10.1.64.8/28.

As a result, to send outgoing packets to endpoints in other racks, the
spine routers only need to have four routes: One route for each
prefix-group’s CIDR to the ToR for that prefix-group / rack. These
routes do not even require updating.

Note that every environment is different. Romana provides for a
great deal of flexibility to organize hosts into prefix groups and how
to configure the announcement of routes. Prefix groups are not only
important in data centers, but also in clusters that are running on
cloud infrastructure. Where and how routes are announced and created may
differ depending on the environment. Romana supports a number of
options.

Topology map

A topology map is one of the configuration parameters for Romana and
is the basis on which Romana IPAM calculates
CIDRs for prefix groups. The
topology map is a representation of certain aspects of the actual
network topology.

Here are a few simplified examples:

Example 1: Flat network, single prefix group

In this example, any host that is added to the cluster will be
automatically assigned to the single prefix group we have defined here.

{
 ...
 "map" : [
 {
 "name" : "all-hosts",
 "groups" : []
 }
]
 ...
}

The CIDR of the prefix groups will be the entire CIDR given to Romana to
work with.

Example 2: Data center with four racks

Here, we define a topology with four prefix group, one for each rack in
our data center.

Note the ‘assignment’ specifier. This matches any tags assigned to
cluster hosts. Therefore, as cluster nodes are added,
the operator should ensure that tags with those values are specified for
each host. Both OpenStack as well as Kubernetes offer the option to tag
hosts as they are added to the cluster. In some cloud environments,
hosts are automatically added with a region or zone identifier, which
can then be used in the same manner.

{
 ...
 "map" : [
 {
 "name" : "rack-1",
 "assignment" : { "my-location-tag" : "rack-1" },
 "groups" : []
 },
 {
 "name" : "rack-2",
 "assignment" : { "my-location-tag" : "rack-2" },
 "groups" : []
 },
 {
 "name" : "rack-3",
 "assignment" : { "my-location-tag" : "rack-3" },
 "groups" : []
 },
 {
 "name" : "rack-4",
 "assignment" : { "my-location-tag" : "rack-4" },
 "groups" : []
 },
]
 ...
}

In this example, Romana’s entire address range is automatically split
into four CIDRs and each of those CIDRs is assigned to one prefix group.
This means that all endpoints in a given rack will
share the same address prefix, which allows for the complete aggregation
of all routes for the endpoints in that rack.

More comples examples for a number of real world topology maps are available in Custom Topologies section of ‘Advanced Topics’

Romana Components

An installation of Romana on Kubernetes has a number of essential
components, and some add-on components for specific cloud providers.
These are currently available for AWS, and components for other cloud
providers will be developed in the future.

Details of each component and example YAML configurations are provided below.

Essential Components

romana-etcd

A Romana installation requires access to etcd for storing
information about hosts, routing, IP addresses and other essential
configuration and state. This can be the same etcd storage used by
Kubernetes itself, dedicated etcd storage for Romana, or a standalone
pod.

Expose Kubernetes etcd

If you are using the Kubernetes etcd storage for Romana, then it is
exposed as a service. See the example
etcd-service [https://github.com/romana/romana/tree/master/docs/kubernetes/specs/etcd-service.yaml] YAML file. To match this with
a custom environment, you need to ensure

	The clusterIP isspecified and a valid value for your cluster’s --service-cluster-ip-range. The value for this range can be found in the configuration for your kube-apiserver.

	The targetPort must match the port used by clients to connect to etcd. You will find this value in the environment variable ETCD_LISTEN_CLIENT_URLS or the command-line option --listen-client-urls for etcd.

	The selector lists labels that must match your etcd pods. Please ensure your etcd pods have a distinct label and that the selector matches that label.

Dedicated etcd storage

You can deploy your own etcd instance or cluster within Kubernetes and
make Romana use that instead of the Kubernetes etcd. It’s highly
recommended to expose that dedicated etcd storage as a service. See the
section above for details.

Standalone pod

In simplified environments with a single master node, for demonstration
or experimentation, you can create a standalone etcd instance for Romana
to use. See the example etcd-standalone [https://github.com/romana/romana/tree/master/docs/kubernetes/specs/etcd-standalone.yaml]
YAML file. This is not recommended for production purposes because it is
not fault-tolerant - losing the master node means losing critical data
and state for both Kubernetes and Romana.

The example contains two parts that need to be aligned:

	the romana-etcd Service

	the romana-etcd Deployment

The following details must be modified to match your cluster’s settings:

	Service IP

The Service IP for romana-etcd needs to be a valid value for your cluster’s --service-cluster-ip-range CIDR, which is configured in your kube-apiserver.

The value needs to be specified in the romana-etcd service for clusterIP, and also in the romana-etcd deployment template for the --advertise-client-urls option.

	Port

The port for romana-etcd needs to be specified in the romana-etcd service for port, in the romana-etcd deployment template for the --listen-client-urls option, and in the livenessProbe for the port.

	Target Port

The Target Port for romana-etcd needs to be specified in the romana-etcd service for targetPort, and in the romana-etcd deployment template for the --advertise-client-urls option.

	Labels

The same labels should be used in the romana-etcd service for selector and in the romana-etcd deployment template for labels in the metadata.

	Placement

The pod should be forced to run on a specific master node. If your master has a unique node-role label, then that can be used in the romana-etcd deployment template for the nodeSelector. Otherwise, the nodeSelector should be updated to match the key and value for the master node’s kubernetes.io/hostname

If your master node is tainted to prevent pods being scheduled there, the romana-etcd deployment template should include the matching toleration to permit this pod.

romana-daemon

The romana-daemon service is a central service used by other Romana
components and provides an API for queries and changes. See the example
romana-daemon [https://github.com/romana/romana/tree/master/docs/kubernetes/specs/romana-daemon.yaml] YAML file.

The example contains two parts that need to be aligned:

	the romana-daemon Service

	the romana-daemon Deployment

The following details must be modified to match your cluster’s settings:

	Service IP

The Service IP for romana-daemon needs to be a valid value for your cluster’s --service-cluster-ip-range CIDR, which is configured in your kube-apiserver.

The value needs to be specified in the romana-daemon service for clusterIP.

	Placement

The pod should be forced to run on a master node. If your master has a unique node-role label, then that can be used in the romana-daemon deployment template for the nodeSelector. Otherwise, the nodeSelector should be updated to match the key and value for the master node’s kubernetes.io/hostname

If your master node is tainted to prevent pods being scheduled there, the romana-daemon deployment template should include the matching toleration to permit this pod.

	Cloud Provider Integration

If your Kubernetes cluster is running in AWS and configured with --cloud=aws, then you should provide that option to the romana-daemon.

This is done by uncommenting the args section and --cloud option in the romana-daemon deployment template.

yaml args: - --cloud=aws

	Initial Network Configuration

To complete the configuration of Romana, a network
topology needs to be configured. There are some
built-in network topologies that will be used if possible, but in custom
environments, this will need to be provided by the user.

A built-in topology will be used if the --cloud=aws option was
specified, or if the default Kubernetes Service IP is detected for
kops or kubeadm (100.64.0.1 for kops, 10.96.0.1 for kubeadm).

A user-defined network topology can be provided by - loading the network
topology file into a configmap using kubectl

`bash
kubectl -n kube-system create configmap romana-network-conf --from-file=custom-network.json
`

	mounting the configmap into the romana-daemon pod

yaml volumeMounts: - name: romana-config-volume mountPath: /etc/romana/network volumes: - name: romana-config-volume configMap: name: romana-network-conf

	specifying the path to that network topology file in the
romana-daemon pod arguments

yaml args: - --initial-network=/etc/romana/network/custom-network.json

The path is a combination of the mountPath (eg: /etc/romana/network) and the filename inside the configmap (eg: custom-network.json).

See the example
romana-daemon-custom-network [https://github.com/romana/romana/tree/master/docs/kubernetes/specs/romana-daemon-custom-network.yaml] YAML file.

	Network CIDR Overrides

When using a built-in topology, the configuration specifies the CIDR that will be used for allocating IP addresses to pods.

This value can be changed by specifying the --network-cidr-overrides option in the romana-daemon deployment template

yaml args: - --network-cidr-overrides=romana-network=100.96.0.0/11

The value for the CIDR should not overlap with any existing physical network ranges, or the Kubernetes service-cluster-ip-range.

romana-listener

The romana-listener service is a background service that listens for events from the Kubernetes API Server and updates configuration in Romana. See the example romana-listener [https://github.com/romana/romana/tree/master/docs/kubernetes/specs/romana-listener.yaml] YAML file.

The example contains four parts:
- the romana-listener ClusterRole
- the romana-listener ServiceAccount
- the romana-listener ClusterRoleBinding
- the romana-listener Deployment

The following details must be modified to match your cluster’s settings:

	Placement

The pod should be forced to run on a master node. If your master has a unique node-role label, then that can be used in the romana-listener deployment template for the nodeSelector. Otherwise, the nodeSelector should be updated to match the key and value for the master node’s kubernetes.io/hostname

If your master node is tainted to prevent pods being scheduled there, the romana-listener deployment template should include the matching toleration to permit this pod.

romana-agent

The romana-agent component is a local agent than runs on all
Kubernetes nodes. It installs the CNI tools and configuration necessary
to integrate Kubernetes CNI mechanics with Romana, and manages
node-specific configuration for routing and policy. See the example
romana-agent [https://github.com/romana/romana/tree/master/docs/kubernetes/specs/romana-agent.yaml] YAML file.

The example contains four parts:

	the romana-agent ClusterRole

	the romana-agent ServiceAccount

	the romana-agent ClusterRoleBinding

	the romana-agent DaemonSet

The following details must be modified to match your cluster’s settings:

	Service Cluster IP Range

The Service Cluster IP Range for your Kubernetes cluster needs to be passed to the romana-agent, matching the value that is configured in your kube-apiserver. A default value will be used if the default Kubernetes Service IP is detected for kops or kubeadm (100.64.0.1 for kops, 10.96.0.1 for kubeadm).

This value can be changed by specifying the --service-cluster-ip-range option in the romana-daemon deployment template

yaml args: - --service-cluster-ip-range=100.64.0.0/13

	Placement

The pod should be forced to run on all Kubernetes nodes. If your master node(s) are tainted to prevent pods being scheduled there, the romana-agent daemonset template should include the matching toleration to permit this pod.

AWS Add-on Components

For operation in AWS two additional components are installed.

romana-aws

The romana-aws service listens for node information from the
Kubernetes API Server and disables the Source-Dest-Check attribute of
the EC2 instances to allow pods to communicate between nodes. See the
example romana-aws [https://github.com/romana/romana/tree/master/docs/kubernetes/specs/romana-aws.yaml] YAML file.

The following details must be modified to match your cluster’s settings:

	Placement

The pod should be forced to run on a master node. If your master has a unique node-role label, then that can be used in the romana-aws deployment template for the nodeSelector. Otherwise, the nodeSelector should be updated to match the key and value for the master node’s kubernetes.io/hostname

If your master node is tainted to prevent pods being scheduled there, the romana-aws deployment template should include the matching toleration to permit this pod.

	IAM Permissions

The IAM role for your master node(s) needs to include the permission to modify EC2 Instance Attributes.

romana-vpcrouter

The romana-vpcrouter service is responsible for creating and
maintaining routes between Availability Zones and Subnets for a
Kubernetes cluster in AWS. It combines node state information from
Kubernetes, AWS and internal monitoring, and route assignments from
Romana, and uses this to add and modify routes in the VPC Routing
Tables.

The following details must be modified to match your cluster’s settings:

	romana-etcd Service IP and Port

The Service IP and Target Port for romana-etcd need to be specified in the romana-vpcrouter deployment template as values for the --etcd_addr and --etcd_port options.

	Placement The pod should be forced to run on a master node. If your master has a unique node-role label, then that can be used in the romana-vpcrouter deployment template for the nodeSelector. Otherwise, the nodeSelector should be updated to match the key and value for the master node’s kubernetes.io/hostname

If your master node is tainted to prevent pods being scheduled there, the romana-vpcrouter deployment template should include the matching toleration to permit this pod.

	IAM Permissions

The IAM role for your master node(s) needs to include the permission to describe EC2 Resources, list and modify VPCs, and list and modify RouteTables.

	Security Groups

The vpcrouter component performs active liveness checks on cluster nodes. By default, it uses ICMPecho (“ping”) requests for this purpose. Therefore, please ensure that your security group ruless allow for cluster nodes to exchange those messages.

Network Policies

Romana allows the fine grained control and management of network traffic
via network policies. The Romana network policies format was inspired by
the Kubernetes network policy specification. However, Romana policies
can be applied in Kubernetes as well as OpenStack environments.
Furthermore, Romana extends the policies with additional features, such
as the ability to control network traffic not only for containers or
VMs, but also for bare metal servers.

Overview

Network policies are defined as small JSON snippets, specifying match
characteristics for network traffic. Essentially, network policies
firewall rules definitions. Details and examples will be given below.

These policy definitions are sent to the Romana Policy service using
this service’s RESTful API. The service validates those policies and
forwards them to the Romana agent on each host of the cluster. There,
the policies are translated to iptables rules, which are then applied to
the kernel.

Tools and integration

After installing an OpenStack or Kubernetes cluster with Romana, the
romana command line tool can be used to specify and list policies.
However, Romana provides a specific integration for Kubernetes. This
allows the operator to use standard Kubernetes policies and policy APIs,
should they wish to do so. Romana picks up those Kubernetes policies,
seamlessly translates them to Romana policies and then applies them as
necessary.

For OpenStack, or if policies need to be applied to bare metal servers,
the Romana Policy API or command line tools are used directly.

Policy definition format

Each Romana network policy document contains a single top-level element
(securitypolicies), which itself is a list of individual policies. A
policy contains the following top-level elements:

	name: The name of the policy. You can refer to policies by name
or an automatically generated unique ID. Oftentimes names are much
easier to remember. Therefore, it is useful to make this a short,
descriptive and - if possible - unique ID.

	description: A line of text, which can serve as human readable
documentation for this policy.

	direction: Determines whether the policy applies packets that are
incoming (ingress) to the endpoint or outgoing (egress) from the
endpoint. Currently, the only permissible value for this field is
ingress. This means that the policy rules describe traffic
travelling TO the specified (see applied_to) target.

	applied_to: A list of specifiers, defining to whom the rules are
applied. Typically a tenant/segment combo or a CIDR.

	peers: A list of specifiers, defining the ‘other side’ of the
traffic. In case of ingress traffic, this would be the originator of
the packets. The peer may be defined as “any”, which serves as a
wildcard.

	rules: A list of traffic type specifications, usually consisting
of protocol and ports.

{
 "securitypolicies": [{
 "name": <policy-name>,
 "description": <policy-description>,
 "direction": "ingress",
 "applied_to": [<applied-spec-1>, <applied-spec-2>, ...],
 "peers": [<peer-spec-1>, <peer-spec-2>, ...],
 "rules": [<traffic-spec-1>, <traffic-spec-2>, ...]
 }]
}

Example:

{
 "securitypolicies": [{
 "name": "policy1",
 "description": "Opening SSH, HTTP and HTTPS ports as well as ICMP",
 "direction": "ingress",
 "applied_to": [{
 "tenant": "admin",
 "segment": "default"
 }],
 "peers": [{
 "peer": "any"
 }],
 "rules": [
 {
 "protocol": "tcp",
 "ports": [22, 80, 443]
 },
 {
 "protocol": "icmp"
 }
]
 }]
}

Network Topology

To make Romana aware of important details of your network, it is
configured using a network topology configuration. This is a JSON
formatted file that describes the network(s) that will be used for
Kubernetes pods, and links them to the physical network that is hosting
them.

If you are deploying your Kubernetes cluster with a recognized tool such
as kops or kubeadm, your installation should use an existing predefined
topology. For other environments including customized installations and
baremetal deployments, the information about your networks will need to
be provided.

Network Topology Configuration Format

Network Topology JSON

{
 "networks": [Network Definition, ...]
 "topologies": [Topology Mapping, ...]
}

	networks (required)

A list of Network Definition objects.
These describe the names of the networks and the CIDR that pod addresses
will be allocated from.

	topologies (required)

A list of Topology Mapping objects. These
link the network definitions and the topology of hosts within the
cluster.

Network Definition JSON

{
 "name": String,
 "cidr": IPv4 CIDR,
 "block_mask": Number
}

	name (required)

The name for this network. Each name must be unique. This name is used
to link network definitions and topology mappings.

	cidr (required)

The IPv4 CIDR for pods created within this network. Each CIDR must be
unique, not overlapping with other values, and also not overlapping your
cluster’s service-cluster-ip-range.

	block_mask (required)

The mask applied to address
blocks. This must be longer than
the mask used for the CIDR, with a maximum value of 32. It implicitly
defines the number of addresses per block, eg: a value of /29 means the
address block contains 8 addresses.

Topology Mapping JSON

{
 "networks": [String, ...],
 "map": [Host Group, ...]
}

	networks (required)

A list of network names. All values must match the name of an object
from the top-level networks list.

	map (required)

A list of Host Group objects. This is a topology
map for the list of networks.

Host Group JSON

{
 "name": String,
 "hosts": [Host Definition, ...],
 "groups": [Host Group, ...],
 "assignment": { String: String, ... }
}

	name (optional)

A descriptive name for this mapping item.

	hosts (conditional)

A list of Host Definition objects. Only one
of “hosts” and “groups” can be specified.

	groups (conditional)

A list of Host Group objects. Only one of “hosts” and “groups” should be
specified. This allows for nesting the definition of groups to match
your topology at each level, eg: spine and leaf. Nested groups are
treated as prefix groups for IP addressing
and routing..

An empty list may be specified. This indicates the lowest level of
grouping, but without defining hosts.

	assignment (conditional)

A list of key-value pairs that correspond to Kubernetes node labels.
These are used to assign Kubernetes nodes to a specific Host Group. In
networks with multiple subnets, it is recommended that your Kubernetes
nodes use the appropriate failure-domain lables [https://kubernetes.io/docs/reference/labels-annotations-taints/], and matching those labels and values with the assignment in
your topology config.

Host Definition JSON

{
 "name": String,
 "ip", String
}

	name (required)

The name of the host. Each name must be unique. This name must match the
node name registered in Kubernetes.

	ip (required)

The IP address of the host. Each IP must be unique. This address must
match the node address registered in Kubernetes.

Examples

	Network topology used for kubeadm
installations [https://github.com/romana/romana/blob/master/containerize/targets/daemon/kubeadm-network.json]

This example defines a single network named romana-network, and maps
to a topology containing 8 host-groups. The empty groups are used as
placeholders, and Kubernetes nodes will be assigned to the host-groups
with round-robin placement.

	Network topology used for kops in us-west-1
region [https://github.com/romana/romana/blob/master/containerize/targets/daemon/aws-us-west-1.json]

This example defined a single network named romana-network, and
contains a host-group for each Availability Zone (AZ) within the
us-west-1 region. Inside each AZ host-group, there are 8 sub-groups with
assignment labels specific to that AZ. Kubernetes nodes will be
assigned to one of those sub-groups based on round-robin placement after
matching the assignment labels.

Advanced Topics

Custom Topologies

Romana uses an advanced, topology aware IPAM module in order to assign
IP addresses to endpoints (pods or VMs). The topology awareness of
Romana’s IPAM allows for the endpoint IPs to align with the topology of
your network. This in turn makes it possible for Romana to effectively
aggregate routes. This has many operational and security advantages:

	Ability to use native L3 routing, allowing network equipment to work
at its best

	Greatly reduced number of routes in your networking hardware

	Stable routing configurations, less route updates required

	No “leaking” of endpoint routes into the networking fabric

Key to Romana’s topology aware IPAM is the topology configuration. In
this configuration you model the underlying network topology for your
cluster.

Terminology

Some useful terminology:

	Network: Romana’s IPAM chooses endpoint IP addresses from one or
more address ranges (CIDRs). Each of those is called a “network” in
the Romana topology configuration.

	Address block: Romana manages IP addresses in small blocks.
Usually these blocks may contain 8, 16 or 32 addresses. If an IP
address is needed on a host, Romana assigns one of those blocks
there, then uses up the block addresses for any further endpoints on
the host before assigning a new block. Block sizes are specified as
network mask lengths, such as “29” (which would mean a /29 CIDR
for the block). You see this parameter in the topology configuration.
It effects some networking internals, such as the number of routes
created on hosts or ToRs. For the most part you don’t need to worry
about it and can just leave it at “29”.

	Tenant: This may be an OpenStack tenant, or a Kubernetes
namespace.

	Group: This is a key concept of Romana’s IPAM. All hosts within a
group will use endpoint addresses that share the same network prefix.
That’s why Romana’s “groups” are also called “prefix groups”. This is
an important consideration for topology aware addressing and route
aggregation.

	Prefix group: See “group”.

Examples

To make it easy for you to get started we have put together this page
with examples for common configurations. The configurations are
specified in JSON. To explain individual lines, we have added occasional
comments (starting with ‘#’). Since JSON does not natively support
comments, you would need to strip out those before using any of these
sample config files.

Single, flat network

Use this configuration if you have hosts on a single network segment:
All hosts can reach each other directly, no router is needed to forward
packets. Another example may be hosts in a single AWS subnet.

Note that in the configuration we usually don’t list the actual hosts.
As nodes/hosts are added to a cluster, Romana selects the ‘group’ to
which the host will be assigned automatically.

{
 "networks": [# 'networks' or CIDRs from which Romana chooses endpoint addresses
 {
 "name" : "my-network", # each network needs a unique name...
 "cidr" : "10.111.0.0/16", # ... and a CIDR.
 "block_mask": 29 # size of address blocks for this network, safe to leave at "/29"
 }
],
 "topologies": [# list of topologies Romana knows about, just need one here
 {
 "networks": [# specify the networks to which this topology applies
 "my-network"
],
 "map": [# model the network's prefix groups
 { # if only one group is specified, it will use entire network CIDR
 "groups": [] # just one group, all hosts will be added here
 }
]
 }
]
}

Single, flat network with host-specific prefixes

Same as above, but this time we want each host to have its own ‘prefix
group’: All endpoints on a host should share the same prefix. This is
useful if you wish to manually set routes in other parts of the network,
so that traffic to pods can be delivered to the correct host.

Note that Romana automatically calculates prefixes for each prefix
group: The available overall address space is carved up based on the
number of groups. The example below shows this in the comments.

When a host is added to a cluster, Romana assigns hosts to (prefix)
groups in a round-robin sort of fashion. Therefore, if the number of
defined groups is at least as high as the number of hosts in your
cluster, each host will live in its own prefix group.

{
 "networks": [
 {
 "name" : "my-network",
 "cidr" : "10.111.0.0/16",
 "block_mask": 29
 }
],
 "topologies": [
 {
 "networks": ["my-network"],
 "map": [# add at least as many groups as you will have hosts
 { "groups": [] }, # endpoints get addresses from 10.111.0.0/18
 { "groups": [] }, # endpoints get addresses from 10.111.64.0/18
 { "groups": [] }, # endpoints get addresses from 10.111.128.0/18
 { "groups": [] } # endpoints get addresses from 10.111.192.0/18
]
 }
]
}

Using multiple networks

Sometimes you may have multiple, smaller address ranges available for
your pod or VM addresses. Romana can seamlessly use all of them. We show
this using the single, flat network topology from the first example.

{
 "networks": [
 {
 "name" : "net-1",
 "cidr" : "10.111.0.0/16",
 "block_mask": 29
 },
 {
 "name" : "net-2", # unique names for each network
 "cidr" : "192.168.3.0/24", # can be non-contiguous CIDR ranges
 "block_mask": 31 # each network can have different block size
 }
],
 "topologies": [
 {
 "networks": ["net-1", "net-2"], # list all networks that apply to the topology
 "map": [
 { "groups": [] } # endpoints get addresses from both networks
]
 }
]
}

Using multiple topologies

It is possible to define multiple topologies, which are handled by
Romana at the same time. The following example shows this. We have a
total of three networks. One topology (all hosts in the same prefix
group) is used for two of the networks. A third network is used by a
topology, which gives each host its own prefix group (assuming the
cluster does not have more than four nodes).

{
 "networks": [
 {
 "name" : "net-1",
 "cidr" : "10.111.0.0/16",
 "block_mask": 29
 },
 {
 "name" : "net-2",
 "cidr" : "10.222.0.0/16",
 "block_mask": 28
 },
 {
 "name" : "net-3",
 "cidr" : "172.16.0.0/16",
 "block_mask": 30
 }
],
 "topologies": [
 {
 "networks": ["net-1", "net-2"],
 "map": [
 { "groups": [] } # endpoints get addresses from 10.111.0.0/16 and 10.222.0.0/16
]
 },
 {
 "networks": ["net-3"],
 "map": [
 { "groups": [] }, # endpoints get addresses from 172.16.0.0/18
 { "groups": [] }, # endpoints get addresses from 172.16.64.0/18
 { "groups": [] }, # endpoints get addresses from 172.16.128.0/18
 { "groups": [] } # endpoints get addresses from 172.16.192.0/18
]
 }
]
}

Restricting tenants to networks

Romana can ensure that tenants are given addresses from specific address
ranges. This allows separation of traffic in the network, using
traditional CIDR based filtering and security policies.

This is accomplished via a new element: A tenants spec can be
provided with each network definition.

Note that Romana does NOT influence the placement of new pods/VMs. This
is done by the environment (Kubernetes or OpenStack) independently of
Romana. Therefore, unless you have specified particular tenant-specific
placement options in the environment, it is usually a good idea to
re-use the same topology - or at least use a topology for all cluster
hosts - for each tenant.

{
 "networks": [
 {
 "name" : "production",
 "cidr" : "10.111.0.0/16",
 "block_mask": 29,
 "tenants" : ["web", "app", "db"]
 },
 {
 "name" : "test",
 "cidr" : "10.222.0.0/16",
 "block_mask": 32,
 "tenants" : ["qa", "integration"]
 }
],
 "topologies": [
 {
 "networks": ["production", "test"],
 "map": [
 { "groups": [] }
]
 }
]
}

Deployment in a multi-rack data center

The topology file is used to model your network. Let’s say you wish to
deploy a cluster across four racks in your data center. Let’s assume
each rack has a ToR and that ToRs can communicate with each other. Under
each ToR (in each rack) there are multiple hosts.

As nodes/hosts are added to your cluster, you should provide labels in
the meta data of each host, which can assist Romana in placing the host
in the correct, rack-specific prefix group. Both Kubernetes and
OpenStack allow you to define labels for nodes. You can choose whatever
label names and values you wish, just make sure they express the rack of
the host and are identical in the environment (Kubernetes or OpenStack)
as well as in the Romana topology configuration.

In this example, we use rack as the label. We introduce a new
element to the Romana topology configuration: The assignment spec,
which can be part of each group definition.

Note that such a multi-rack deployment would usually also involve the
installation of the Romana route publisher, so that ToRs can be
configured with the block routes to the hosts in the rack.

{
 "networks": [
 {
 "name" : "my-network",
 "cidr" : "10.111.0.0/16",
 "block_mask": 29
 }
],
 "topologies": [
 {
 "networks": ["my-network"],
 "map": [
 {
 "assignment": { "rack": "rack-1" }, # all nodes with label 'rack == rack-1'...
 "groups" : [] # ... are assigned by Romana to this group
 },
 {
 "assignment": { "rack": "rack-2" },
 "groups" : []
 },
 {
 "assignment": { "rack": "rack-3" },
 "groups" : []
 },
 {
 "assignment": { "rack": "rack-4" },
 "groups" : []
 },
]
 }
]
}

Deployment in a multi-zone, multi-rack data center

Larger clusters may be spread over multiple data centers, or multiple
spines in the data center. Romana can manage multi-hierarchy prefix
groups, so that the routes across the DCs or spines can be aggregated
into a single route.

The following example shows a cluster deployed across two “zones” (DCs
or spines), with four racks in one zone and two racks in the other. We
use multiple labels (“zone” in addition to “rack”) in order to assign
nodes to prefix groups.

{
 "networks": [
 {
 "name" : "my-network",
 "cidr" : "10.111.0.0/16",
 "block_mask": 29
 }
],
 "topologies": [
 {
 "networks": ["my-network"],
 "map": [
 {
 "assignment": { "zone" : "zone-A" },
 "groups" : [# addresses from 10.111.0.0/17
 {
 "assignment": { "rack": "rack-3" },
 "groups" : [] # addresses from 10.111.0.0/19
 },
 {
 "assignment": { "rack": "rack-4" },
 "groups" : [] # addresses from 10.111.32.0/19
 },
 {
 "assignment": { "rack": "rack-7" },
 "groups" : [] # addresses from 10.111.64.0/19
 },
 {
 "assignment": { "rack": "rack-9" },
 "groups" : [] # addresses from 10.111.96.0/19
 }
]
 },
 {
 "assignment": { "zone" : "zone-B" },
 "groups" : [# addresses from 10.111.128.0/17
 {
 "assignment": { "rack": "rack-17" },
 "groups" : [] # addresses from 10.111.128.0/18
 },
 {
 "assignment": { "rack": "rack-22" },
 "groups" : [] # addresses from 10.111.192.0/18
 }
]
 }
]
 }
]
}

Route Publisher Add-on

For Kubernetes clusters installed in datacenters, it is useful to enable
the Romana Route Publisher add-on. It is used to automatically announce
routes for Romana addresses to your BGP- or OSPF-enabled router,
removing the need to configure these manually.

Because the routes are for prefixes instead of precise /32 endpoint
addresses, the rate and volume of routes to publish is reduced.

Configuration

The Romana Route Publisher uses BIRD [http://bird.network.cz/] to
announce routes from the node to other network elements. Configuration
is separated into two parts:

	a static bird.conf to describe the basic configuration of BIRD,
ending with an include

	a dynamic publisher.conf that is used to generate a config
containing routes for Romana addresses

When the pod first launches, BIRD is launched using the static
configuration. Then, when new blocks of Romana addreses are allocated to
a node, the dynamic configuration is generated with routes for those
blocks, and BIRD is given a signal to reload its configuration.

If your configuration requires custom configuration per-node or
per-subnet, there is a naming convention for the files that can be used
to support this.

Both config files will look for a “best match” extension to the name
first. When loading x.conf on a node with IP 192.168.20.30/24,
it will first look for:

	x.conf.192.168.20.30 (IP suffix for node-specific config)

	x.conf.192.168.20.0 (Network address suffix, for subnet-specific
config)

	x.conf

Examples

bird.conf (for both BGP and OSPF)

router id from 192.168.0.0/16;

protocol kernel {
 scan time 60;
 import none;
 export all;
}

protocol device {
 scan time 60;
}

include "conf.d/*.conf";

	Make sure the CIDR specified for router id matches your cluster
nodes.

	The protocol kernel and protocol device can be modified, or
just deleted if not necessary.

	Add any additional, global BIRD configuration to this file (eg:
debugging, timeouts, etc)

	The include line is the hook to load the generated dynamic
config. It should be in your bird.conf exactly as specified.

publisher.conf for OSPF

protocol static romana_routes {
 {{range .Networks}}
 route {{.}} reject;
 {{end}}
}

protocol ospf OSPF {
 export where proto = "romana_routes";
 area 0.0.0.0 {
 interface "eth0" {
 type broadcast;
 };
 };
}

	The first section, protocol static static_bgp is used by the
romana-route-publisher to generate a dynamic config.

	The second section, protocol ospf OSPF should contain the
export entry, and area blocks to match your environment.

	The interface names will need to be modified to match the node’s
actual interfaces

	Add any additional, protocol-specific BIRD configuration to this file

publisher.conf for BGP

protocol static romana_routes {
 {{range .Networks}}
 route {{.}} reject;
 {{end}}
}

protocol bgp BGP {
 export where proto = "romana_routes";
 direct;
 local as {{.LocalAS}};
 neighbor 192.168.20.1 as {{.LocalAS}};
}

	The first section, protocol static static_bgp is used by the
romana-route-publisher to generate a dynamic config.

	The second section, protocol bgp BGP should be changed to match
your specific BGP configuration.

	Add any additional, protocol-specific BIRD configuration to this file

	The neighbor address will likely be different for each subnet. To
handle this, you can use multiple publisher.conf files with the
appropriate network address suffixes, eg:

	bird.conf.192.168.20.0

	bird.conf.192.168.35.0

Installation

First, the configuration files need to be loaded into a configmap.

	Put all the files into a single directory

	cd to that directory

	Run
kubectl -n kube-system create configmap route-publisher-config --from-file=.
(the . indicates the current directory)

Next, download the YAML file from
here [https://raw.githubusercontent.com/romana/romana/master/docs/kubernetes/specs/romana-route-publisher.yaml]
to your master node.

Then, load the Romana Route Publisher add-on by running this command on
your master node.

kubectl apply -f romana-route-publisher.yaml

Verification

Check that route publisher pods are running correctly

$ kubectl -n kube-system get pods --selector=romana-app=route-publisher
NAME READY STATUS RESTARTS AGE
romana-route-publisher-22rjh 2/2 Running 0 1d
romana-route-publisher-x5f9g 2/2 Running 0 1d

Check the logs of the bird container inside the pods

$ kubectl -n kube-system logs romana-route-publisher-22rjh bird
Launching BIRD
bird: Chosen router ID 192.168.XX.YY according to interface XXXX
bird: Started

Other messages you may see in this container:

bird: Reconfiguration requested by SIGHUP
bird: Reconfiguring
bird: Adding protocol romana_routes
bird: Adding protocol OSPF
bird: Reconfigured

Check the logs of the publisher container inside the pods

$ kubectl -n kube-system logs romana-route-publisher-22rjh publisher
Checking if etcd is running...ok.
member 8e9e05c52164694d is healthy: got healthy result from http://10.96.0.88:12379
cluster is healthy
Checking if romana daemon is running...ok.
Checking if romana networks are configured...ok. one network configured.
Checking for route publisher template....ok
Checking for pidfile from bird...ok
Launching Romana Route Publisher

Other messages you may see in this container:

20XX/YY/ZZ HH:MM:SS Starting bgp update at 65534 -> : with 2 networks
20XX/YY/ZZ HH:MM:SS Finished bgp update

These are normal, even if OSPF is being used.

Romana VIPs

Kubernetes users running on premises that want an easy way to expose
their services outside a cluster on their datacenter network can use
external-IPs [https://kubernetes.io/docs/concepts/services-networking/service/#external-ips].

Although external-IPs are simple, they represent a single point of
failure for the service and require manual allocation and configuration
on the nodes. When there are many to configure, this can be tedious and
prone to error. Romana VIPs are a solution to these problems.

Romana VIPs are defined by an annotation in a service
spec [https://raw.githubusercontent.com/wiki/romana/romana/files/nginx.yml].
Romana then automatically brings up that IP on a node. Romana chooses a
node with a pod running locally to avoid network latency within the
cluster. When a node with a Romana VIP fails, Romana will bring up the
VIP on a new node, providing failover for external services.

Romana VIPs are useful for exposing services on datacenter LANs that
only need simple kubeproxy load balancing across pods. Romana VIPs can
also be used to expose individual pods when a stable IP is required,
such as Cassandra and other Big Data applications. Romana VIPs work in
conjunction with Romana DNS,
which can be deployed as a service discovery mechanism for individual
pods exposed outside of a cluster.

Romana VIP failover requires that all nodes be on the same network
segment. Addresses for Romana VIPs must be manually provisioned on the
network.

Example configuration

The example below shows a RomanaIP (192.168.99.101) configured on a node
for the nginx service by adding the romanaip annotation to the spec.

...
kind: Service
metadata:
 name: nginx
 annotations:
 romanaip: '{"auto": false, "ip": "192.168.99.101"}'
...

The complete service spec is available
here [https://raw.githubusercontent.com/wiki/romana/romana/files/nginx.yml]

Romana DNS

Romana DNS adds DNS support for Romana VIPs. It is drop in replacement
for kube-dns.

Installation

On Master node of kubernetes cluster

	Make a note on number of replicas for kube-dns using following
command:

echo `kubectl get deploy -n kube-system kube-dns -o jsonpath="{.spec.replicas}"`

	Now set replicas for kube-dns to zero using following command:

kubectl scale deploy -n kube-system kube-dns --replicas=0

	Wait till kube-dns replicas are zero (around a minute or so)

On All nodes i.e master and compute nodes of the kubernetes cluster

	Remove earlier docker images and replace it romana one using commands
below:

docker rmi gcr.io/google_containers/k8s-dns-kube-dns-amd64:1.14.5
docker pull pani/romanadns
docker tag pani/romanadns:latest gcr.io/google_containers/k8s-dns-kube-dns-amd64:1.14.5

	Now return back to master node for further commands

On Master node of kubernetes cluster

	Now assuming you had 2 replicas before, from first step above, we
restore the replica count for kube-dns as follows:

kubectl scale deploy -n kube-system kube-dns --replicas=2

	Wait for a minute or so for the pod to come up and we have romanaDNS
up and running.

DNS Testing

	Run dig to see if dns is working properly using command:

dig @10.96.0.10 +short romana.kube-system.svc.cluster.local

	Download this sample nginx [https://raw.githubusercontent.com/wiki/romana/romana/files/nginx.yml] yaml file and then
use following command to create an nginx service with RomanaIP in it:

kubectl create -f nginx.yml

	This should create and load nginx service with RomanaIP, which should
reflect in the dig result below:

dig @10.96.0.10 +short nginx.default.svc.cluster.local

Sample DNS Results

$ dig @10.96.0.10 +short romana.kube-system.svc.cluster.local
10.96.0.99
192.168.99.10
$ dig @10.96.0.10 +short nginx.default.svc.cluster.local
10.116.0.0
10.99.181.64
192.168.99.101

Contact Us

	By email: info@romana.io

	On the Romana Slack [https://romana.slack.com/]. Please request
an invite by email.

	On GitHub, just open an
issue [https://github.com/romana/romana/issues/new]

Index

 Versioned docs are generated using Sphinx versioning add on:

https://robpol86.github.io/sphinxcontrib-versioning/tutorial.html

To make versioned doc site run:

sphinx-versioning build –show-banner –banner-main-ref 2.0 . ./_build/html

Changing ‘2.0’ to the release that should be the main doc release.

Custom Topologies

Romana uses an advanced, topology aware IPAM module in order to assign
IP addresses to endpoints (pods or VMs). The topology awareness of
Romana’s IPAM allows for the endpoint IPs to align with the topology of
your network. This in turn makes it possible for Romana to effectively
aggregate routes. This has many operational and security advantages:

	Ability to use native L3 routing, allowing network equipment to work
at its best

	Greatly reduced number of routes in your networking hardware

	Stable routing configurations, less route updates required

	No “leaking” of endpoint routes into the networking fabric

Key to Romana’s topology aware IPAM is the topology configuration. In
this configuration you model the underlying network topology for your
cluster.

Terminology

Some useful terminology:

	Network: Romana’s IPAM chooses endpoint IP addresses from one or
more address ranges (CIDRs). Each of those is called a “network” in
the Romana topology configuration.

	Address block: Romana manages IP addresses in small blocks.
Usually these blocks may contain 8, 16 or 32 addresses. If an IP
address is needed on a host, Romana assigns one of those blocks
there, then uses up the block addresses for any further endpoints on
the host before assigning a new block. Block sizes are specified as
network mask lengths, such as “29” (which would mean a /29 CIDR
for the block). You see this parameter in the topology configuration.
It effects some networking internals, such as the number of routes
created on hosts or ToRs. For the most part you don’t need to worry
about it and can just leave it at “29”.

	Tenant: This may be an OpenStack tenant, or a Kubernetes
namespace.

	Group: This is a key concept of Romana’s IPAM. All hosts within a
group will use endpoint addresses that share the same network prefix.
That’s why Romana’s “groups” are also called “prefix groups”. This is
an important consideration for topology aware addressing and route
aggregation.

	Prefix group: See “group”.

Examples

To make it easy for you to get started we have put together this page
with examples for common configurations. The configurations are
specified in JSON. To explain individual lines, we have added occasional
comments (starting with ‘#’). Since JSON does not natively support
comments, you would need to strip out those before using any of these
sample config files.

Single, flat network

Use this configuration if you have hosts on a single network segment:
All hosts can reach each other directly, no router is needed to forward
packets. Another example may be hosts in a single AWS subnet.

Note that in the configuration we usually don’t list the actual hosts.
As nodes/hosts are added to a cluster, Romana selects the ‘group’ to
which the host will be assigned automatically.

{
 "networks": [# 'networks' or CIDRs from which Romana chooses endpoint addresses
 {
 "name" : "my-network", # each network needs a unique name...
 "cidr" : "10.111.0.0/16", # ... and a CIDR.
 "block_mask": 29 # size of address blocks for this network, safe to leave at "/29"
 }
],
 "topologies": [# list of topologies Romana knows about, just need one here
 {
 "networks": [# specify the networks to which this topology applies
 "my-network"
],
 "map": [# model the network's prefix groups
 { # if only one group is specified, it will use entire network CIDR
 "groups": [] # just one group, all hosts will be added here
 }
]
 }
]
}

Single, flat network with host-specific prefixes

Same as above, but this time we want each host to have its own ‘prefix
group’: All endpoints on a host should share the same prefix. This is
useful if you wish to manually set routes in other parts of the network,
so that traffic to pods can be delivered to the correct host.

Note that Romana automatically calculates prefixes for each prefix
group: The available overall address space is carved up based on the
number of groups. The example below shows this in the comments.

When a host is added to a cluster, Romana assigns hosts to (prefix)
groups in a round-robin sort of fashion. Therefore, if the number of
defined groups is at least as high as the number of hosts in your
cluster, each host will live in its own prefix group.

{
 "networks": [
 {
 "name" : "my-network",
 "cidr" : "10.111.0.0/16",
 "block_mask": 29
 }
],
 "topologies": [
 {
 "networks": ["my-network"],
 "map": [# add at least as many groups as you will have hosts
 { "groups": [] }, # endpoints get addresses from 10.111.0.0/18
 { "groups": [] }, # endpoints get addresses from 10.111.64.0/18
 { "groups": [] }, # endpoints get addresses from 10.111.128.0/18
 { "groups": [] } # endpoints get addresses from 10.111.192.0/18
]
 }
]
}

Using multiple networks

Sometimes you may have multiple, smaller address ranges available for
your pod or VM addresses. Romana can seamlessly use all of them. We show
this using the single, flat network topology from the first example.

{
 "networks": [
 {
 "name" : "net-1",
 "cidr" : "10.111.0.0/16",
 "block_mask": 29
 },
 {
 "name" : "net-2", # unique names for each network
 "cidr" : "192.168.3.0/24", # can be non-contiguous CIDR ranges
 "block_mask": 31 # each network can have different block size
 }
],
 "topologies": [
 {
 "networks": ["net-1", "net-2"], # list all networks that apply to the topology
 "map": [
 { "groups": [] } # endpoints get addresses from both networks
]
 }
]
}

Using multiple topologies

It is possible to define multiple topologies, which are handled by
Romana at the same time. The following example shows this. We have a
total of three networks. One topology (all hosts in the same prefix
group) is used for two of the networks. A third network is used by a
topology, which gives each host its own prefix group (assuming the
cluster does not have more than four nodes).

{
 "networks": [
 {
 "name" : "net-1",
 "cidr" : "10.111.0.0/16",
 "block_mask": 29
 },
 {
 "name" : "net-2",
 "cidr" : "10.222.0.0/16",
 "block_mask": 28
 },
 {
 "name" : "net-3",
 "cidr" : "172.16.0.0/16",
 "block_mask": 30
 }
],
 "topologies": [
 {
 "networks": ["net-1", "net-2"],
 "map": [
 { "groups": [] } # endpoints get addresses from 10.111.0.0/16 and 10.222.0.0/16
]
 },
 {
 "networks": ["net-3"],
 "map": [
 { "groups": [] }, # endpoints get addresses from 172.16.0.0/18
 { "groups": [] }, # endpoints get addresses from 172.16.64.0/18
 { "groups": [] }, # endpoints get addresses from 172.16.128.0/18
 { "groups": [] } # endpoints get addresses from 172.16.192.0/18
]
 }
]
}

Restricting tenants to networks

Romana can ensure that tenants are given addresses from specific address
ranges. This allows separation of traffic in the network, using
traditional CIDR based filtering and security policies.

This is accomplished via a new element: A tenants spec can be
provided with each network definition.

Note that Romana does NOT influence the placement of new pods/VMs. This
is done by the environment (Kubernetes or OpenStack) independently of
Romana. Therefore, unless you have specified particular tenant-specific
placement options in the environment, it is usually a good idea to
re-use the same topology - or at least use a topology for all cluster
hosts - for each tenant.

{
 "networks": [
 {
 "name" : "production",
 "cidr" : "10.111.0.0/16",
 "block_mask": 29,
 "tenants" : ["web", "app", "db"]
 },
 {
 "name" : "test",
 "cidr" : "10.222.0.0/16",
 "block_mask": 32,
 "tenants" : ["qa", "integration"]
 }
],
 "topologies": [
 {
 "networks": ["production", "test"],
 "map": [
 { "groups": [] }
]
 }
]
}

Deployment in a multi-rack data center

The topology file is used to model your network. Let’s say you wish to
deploy a cluster across four racks in your data center. Let’s assume
each rack has a ToR and that ToRs can communicate with each other. Under
each ToR (in each rack) there are multiple hosts.

As nodes/hosts are added to your cluster, you should provide labels in
the meta data of each host, which can assist Romana in placing the host
in the correct, rack-specific prefix group. Both Kubernetes and
OpenStack allow you to define labels for nodes. You can choose whatever
label names and values you wish, just make sure they express the rack of
the host and are identical in the environment (Kubernetes or OpenStack)
as well as in the Romana topology configuration.

In this example, we use rack as the label. We introduce a new
element to the Romana topology configuration: The assignment spec,
which can be part of each group definition.

Note that such a multi-rack deployment would usually also involve the
installation of the Romana route publisher, so that ToRs can be
configured with the block routes to the hosts in the rack.

{
 "networks": [
 {
 "name" : "my-network",
 "cidr" : "10.111.0.0/16",
 "block_mask": 29
 }
],
 "topologies": [
 {
 "networks": ["my-network"],
 "map": [
 {
 "assignment": { "rack": "rack-1" }, # all nodes with label 'rack == rack-1'...
 "groups" : [] # ... are assigned by Romana to this group
 },
 {
 "assignment": { "rack": "rack-2" },
 "groups" : []
 },
 {
 "assignment": { "rack": "rack-3" },
 "groups" : []
 },
 {
 "assignment": { "rack": "rack-4" },
 "groups" : []
 },
]
 }
]
}

Deployment in a multi-zone, multi-rack data center

Larger clusters may be spread over multiple data centers, or multiple
spines in the data center. Romana can manage multi-hierarchy prefix
groups, so that the routes across the DCs or spines can be aggregated
into a single route.

The following example shows a cluster deployed across two “zones” (DCs
or spines), with four racks in one zone and two racks in the other. We
use multiple labels (“zone” in addition to “rack”) in order to assign
nodes to prefix groups.

{
 "networks": [
 {
 "name" : "my-network",
 "cidr" : "10.111.0.0/16",
 "block_mask": 29
 }
],
 "topologies": [
 {
 "networks": ["my-network"],
 "map": [
 {
 "assignment": { "zone" : "zone-A" },
 "groups" : [# addresses from 10.111.0.0/17
 {
 "assignment": { "rack": "rack-3" },
 "groups" : [] # addresses from 10.111.0.0/19
 },
 {
 "assignment": { "rack": "rack-4" },
 "groups" : [] # addresses from 10.111.32.0/19
 },
 {
 "assignment": { "rack": "rack-7" },
 "groups" : [] # addresses from 10.111.64.0/19
 },
 {
 "assignment": { "rack": "rack-9" },
 "groups" : [] # addresses from 10.111.96.0/19
 }
]
 },
 {
 "assignment": { "zone" : "zone-B" },
 "groups" : [# addresses from 10.111.128.0/17
 {
 "assignment": { "rack": "rack-17" },
 "groups" : [] # addresses from 10.111.128.0/18
 },
 {
 "assignment": { "rack": "rack-22" },
 "groups" : [] # addresses from 10.111.192.0/18
 }
]
 }
]
 }
]
}

Romana DNS

Romana DNS adds DNS support for Romana VIPs. It is drop in replacement
for kube-dns.

Installation

On Master node of kubernetes cluster

	Make a note on number of replicas for kube-dns using following
command:

echo `kubectl get deploy -n kube-system kube-dns -o jsonpath="{.spec.replicas}"`

	Now set replicas for kube-dns to zero using following command:

kubectl scale deploy -n kube-system kube-dns --replicas=0

	Wait till kube-dns replicas are zero (around a minute or so)

On All nodes i.e master and compute nodes of the kubernetes cluster

	Remove earlier docker images and replace it romana one using commands
below:

docker rmi gcr.io/google_containers/k8s-dns-kube-dns-amd64:1.14.5
docker pull pani/romanadns
docker tag pani/romanadns:latest gcr.io/google_containers/k8s-dns-kube-dns-amd64:1.14.5

	Now return back to master node for further commands

On Master node of kubernetes cluster

	Now assuming you had 2 replicas before, from first step above, we
restore the replica count for kube-dns as follows:

kubectl scale deploy -n kube-system kube-dns --replicas=2

	Wait for a minute or so for the pod to come up and we have romanaDNS
up and running.

DNS Testing

	Run dig to see if dns is working properly using command:

dig @10.96.0.10 +short romana.kube-system.svc.cluster.local

	Download this sample nginx [https://raw.githubusercontent.com/wiki/romana/romana/files/nginx.yml] yaml file and then
use following command to create an nginx service with RomanaIP in it:

kubectl create -f nginx.yml

	This should create and load nginx service with RomanaIP, which should
reflect in the dig result below:

dig @10.96.0.10 +short nginx.default.svc.cluster.local

Sample DNS Results

$ dig @10.96.0.10 +short romana.kube-system.svc.cluster.local
10.96.0.99
192.168.99.10
$ dig @10.96.0.10 +short nginx.default.svc.cluster.local
10.116.0.0
10.99.181.64
192.168.99.101

Route Publisher Add-on

For Kubernetes clusters installed in datacenters, it is useful to enable
the Romana Route Publisher add-on. It is used to automatically announce
routes for Romana addresses to your BGP- or OSPF-enabled router,
removing the need to configure these manually.

Because the routes are for prefixes instead of precise /32 endpoint
addresses, the rate and volume of routes to publish is reduced.

Configuration

The Romana Route Publisher uses BIRD [http://bird.network.cz/] to
announce routes from the node to other network elements. Configuration
is separated into two parts:

	a static bird.conf to describe the basic configuration of BIRD,
ending with an include

	a dynamic publisher.conf that is used to generate a config
containing routes for Romana addresses

When the pod first launches, BIRD is launched using the static
configuration. Then, when new blocks of Romana addreses are allocated to
a node, the dynamic configuration is generated with routes for those
blocks, and BIRD is given a signal to reload its configuration.

If your configuration requires custom configuration per-node or
per-subnet, there is a naming convention for the files that can be used
to support this.

Both config files will look for a “best match” extension to the name
first. When loading x.conf on a node with IP 192.168.20.30/24,
it will first look for:

	x.conf.192.168.20.30 (IP suffix for node-specific config)

	x.conf.192.168.20.0 (Network address suffix, for subnet-specific
config)

	x.conf

Examples

bird.conf (for both BGP and OSPF)

router id from 192.168.0.0/16;

protocol kernel {
 scan time 60;
 import none;
 export all;
}

protocol device {
 scan time 60;
}

include "conf.d/*.conf";

	Make sure the CIDR specified for router id matches your cluster
nodes.

	The protocol kernel and protocol device can be modified, or
just deleted if not necessary.

	Add any additional, global BIRD configuration to this file (eg:
debugging, timeouts, etc)

	The include line is the hook to load the generated dynamic
config. It should be in your bird.conf exactly as specified.

publisher.conf for OSPF

protocol static romana_routes {
 {{range .Networks}}
 route {{.}} reject;
 {{end}}
}

protocol ospf OSPF {
 export where proto = "romana_routes";
 area 0.0.0.0 {
 interface "eth0" {
 type broadcast;
 };
 };
}

	The first section, protocol static static_bgp is used by the
romana-route-publisher to generate a dynamic config.

	The second section, protocol ospf OSPF should contain the
export entry, and area blocks to match your environment.

	The interface names will need to be modified to match the node’s
actual interfaces

	Add any additional, protocol-specific BIRD configuration to this file

publisher.conf for BGP

protocol static romana_routes {
 {{range .Networks}}
 route {{.}} reject;
 {{end}}
}

protocol bgp BGP {
 export where proto = "romana_routes";
 direct;
 local as {{.LocalAS}};
 neighbor 192.168.20.1 as {{.LocalAS}};
}

	The first section, protocol static static_bgp is used by the
romana-route-publisher to generate a dynamic config.

	The second section, protocol bgp BGP should be changed to match
your specific BGP configuration.

	Add any additional, protocol-specific BIRD configuration to this file

	The neighbor address will likely be different for each subnet. To
handle this, you can use multiple publisher.conf files with the
appropriate network address suffixes, eg:

	bird.conf.192.168.20.0

	bird.conf.192.168.35.0

Installation

First, the configuration files need to be loaded into a configmap.

	Put all the files into a single directory

	cd to that directory

	Run
kubectl -n kube-system create configmap route-publisher-config --from-file=.
(the . indicates the current directory)

Next, download the YAML file from
here [https://raw.githubusercontent.com/romana/romana/master/docs/kubernetes/specs/romana-route-publisher.yaml]
to your master node.

Then, load the Romana Route Publisher add-on by running this command on
your master node.

kubectl apply -f romana-route-publisher.yaml

Verification

Check that route publisher pods are running correctly

$ kubectl -n kube-system get pods --selector=romana-app=route-publisher
NAME READY STATUS RESTARTS AGE
romana-route-publisher-22rjh 2/2 Running 0 1d
romana-route-publisher-x5f9g 2/2 Running 0 1d

Check the logs of the bird container inside the pods

$ kubectl -n kube-system logs romana-route-publisher-22rjh bird
Launching BIRD
bird: Chosen router ID 192.168.XX.YY according to interface XXXX
bird: Started

Other messages you may see in this container:

bird: Reconfiguration requested by SIGHUP
bird: Reconfiguring
bird: Adding protocol romana_routes
bird: Adding protocol OSPF
bird: Reconfigured

Check the logs of the publisher container inside the pods

$ kubectl -n kube-system logs romana-route-publisher-22rjh publisher
Checking if etcd is running...ok.
member 8e9e05c52164694d is healthy: got healthy result from http://10.96.0.88:12379
cluster is healthy
Checking if romana daemon is running...ok.
Checking if romana networks are configured...ok. one network configured.
Checking for route publisher template....ok
Checking for pidfile from bird...ok
Launching Romana Route Publisher

Other messages you may see in this container:

20XX/YY/ZZ HH:MM:SS Starting bgp update at 65534 -> : with 2 networks
20XX/YY/ZZ HH:MM:SS Finished bgp update

These are normal, even if OSPF is being used.

Romana VIPs

Kubernetes users running on premises that want an easy way to expose
their services outside a cluster on their datacenter network can use
external-IPs [https://kubernetes.io/docs/concepts/services-networking/service/#external-ips].

Although external-IPs are simple, they represent a single point of
failure for the service and require manual allocation and configuration
on the nodes. When there are many to configure, this can be tedious and
prone to error. Romana VIPs are a solution to these problems.

Romana VIPs are defined by an annotation in a service
spec [https://raw.githubusercontent.com/wiki/romana/romana/files/nginx.yml].
Romana then automatically brings up that IP on a node. Romana chooses a
node with a pod running locally to avoid network latency within the
cluster. When a node with a Romana VIP fails, Romana will bring up the
VIP on a new node, providing failover for external services.

Romana VIPs are useful for exposing services on datacenter LANs that
only need simple kubeproxy load balancing across pods. Romana VIPs can
also be used to expose individual pods when a stable IP is required,
such as Cassandra and other Big Data applications. Romana VIPs work in
conjunction with Romana DNS,
which can be deployed as a service discovery mechanism for individual
pods exposed outside of a cluster.

Romana VIP failover requires that all nodes be on the same network
segment. Addresses for Romana VIPs must be manually provisioned on the
network.

Example configuration

The example below shows a RomanaIP (192.168.99.101) configured on a node
for the nginx service by adding the romanaip annotation to the spec.

...
kind: Service
metadata:
 name: nginx
 annotations:
 romanaip: '{"auto": false, "ip": "192.168.99.101"}'
...

The complete service spec is available
here [https://raw.githubusercontent.com/wiki/romana/romana/files/nginx.yml]

 _static/plus.png

_static/up-pressed.png

_static/up.png

_images/fig1.png
Host A Host B

block 10.1.9.16/28 block 10.1.9.32/28

Routes: Routes:

10.1.9.32/28 - Host B 10.1.9.16/28 — Host A

Figure 1: Blocks, endpoints and routes in the cluster after creation of the third endpoint

_images/fig2.png
Rack 1: L2 domain

10.1.0.0/10
10.1.64.0/10 — ToR-2

— Tor-1

Only routes for prefix
groups need to be
announced to core

routers

Rack 2: L2 domain

block 10.1.1.16/28
block 10.1.4.64/28

block 10.1.64.32/28

ToR-1 ToR-2
routes 10.1.1.16/28 — Host A routes 10.1.64.32/28 . Host C
10.1.4.64/28 — Host A 10.1.64.16/28 — Host D
10.1.0.16/28 — Host B
default — core
default — core
ToRs have routes to all
address blocks within
HostA Host C the L2 domain

block 10.1.0.16/28

blocks in L2 domain, plus
default route to ToR

routes 10.1.0.16/28 . Host B routes 10.1.64.16/28 — Host D
default — ToR-1 default — Tor-2
Host B Hosts have routes to all Host D

block 10.1.64.16/28

routes 10.1.1.16/28 . Host A
10.1.4.64/28 . Host A

default ~ ToR-1

routes

10.1.64.32/28 . Host C
default — Tor-2

Figure 2: Romana blocks and routes in an 'L2-to-the-host' data center

_images/fig3.png
ToR-1 ToR-2
routes 10.1.1.16/28 — Host A routes 10.1.64.32/28 . Host C
10.1.4.64/28 — Host A 10.1.64.16/28 — Host D
10.1.0.16/28 — Host B
default — core
default — core
1
Lcstl Lcsts Every host is in its
block10.1.1.16/28 block 10.1.64.32/28 ‘own network
segment
block 10.1.4.64/28
routes default — ToR-1 routes default — ToR-2
1
Host B Host D
Hosts only need
block 10.1.0.16/28 default route to ToR block 10.1.64.16/28
routes default — ToR-1 routes default — ToR-2

Figure 3: Romana blocks and routes in an 'L3-to-the-host' data center

_static/Logo.png
ROMANA

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Romana Release v2.0 Documentation

 		
 Welcome to Romana

 		
 Quick Start

 		
 Installation

 		
 Installation using kubeadm

 		
 Installation with kops

 		
 Installation in other environments

 		
 Updates coming soon

 		
 Operations

 		
 Upgrading Romana on Kubernetes

 		
 Romana Command Line Tools

 		
 Setting up CLI

 		
 Basic Usage

 		
 Host sub-commands

 		
 Tenant sub-commands

 		
 Segment sub-commands

 		
 Policy sub-commands

 		
 Romana Networking

 		
 Terminology

 		
 Networking

 		
 Fully routed networks without overlays

 		
 Romana address blocks

 		
 Route management

 		
 Topology

 		
 Prefix groups

 		
 Topology map

 		
 Romana Components

 		
 Essential Components

 		
 romana-etcd

 		
 romana-daemon

 		
 romana-listener

 		
 romana-agent

 		
 AWS Add-on Components

 		
 romana-aws

 		
 romana-vpcrouter

 		
 Network Policies

 		
 Overview

 		
 Tools and integration

 		
 Policy definition format

 		
 Network Topology

 		
 Network Topology Configuration Format

 		
 Network Topology JSON

 		
 Network Definition JSON

 		
 Topology Mapping JSON

 		
 Host Group JSON

 		
 Host Definition JSON

 		
 Examples

 		
 Advanced Topics

 		
 Custom Topologies

 		
 Terminology

 		
 Examples

 		
 Route Publisher Add-on

 		
 Configuration

 		
 Examples

 		
 Installation

 		
 Verification

 		
 Romana VIPs

 		
 Example configuration

 		
 Romana DNS

 		
 Installation

 		
 DNS Testing

 		
 Sample DNS Results

 		
 Contact Us

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

