
rohrpost Documentation

AX semantics

Aug 31, 2018

Contents:

1 Protocol 3

2 Installation 5

3 Routing 7

4 Adding Handlers 9

5 Using the mixins 11

6 Utility functions 13

i

ii

rohrpost Documentation

Welcome to the rohrpost documentation!

rohrpost is a small library that aims to make protocol development for Django’s sub-project channels (which provides
WebSockets capabilities) easy and fun. We also have a client library called rohrpost.js.

It features a light weight, JSON based protocol, including an exemplary handler implementing a ping/pong method.
It also comes with a variety of helper functions, and Django model mixins that allow to automatically send updates
when any user updates, deletes, or creates an object.

Contents: 1

http://djangoproject.com/
https://github.com/django/channels
https://github.com/axsemantics/rohrpost-js

rohrpost Documentation

2 Contents:

CHAPTER 1

Protocol

The rohrpost protocol sits on top of channels inside the text component of a channels message. rohrpost expects this
text component to be valid JSON with

• An id field that rohrpost sends back in the response.

• A type field that contains a string defining the message type (and hence, which handler will process the
message).

• An optional data field containing whatever data rohrpost should pass to the handler. Please note that rohrpost
will pass all request data to the handler, and the naming of the data field is convention, not a rule.

A typical message would look like this:

{
"id": 1234,
"type": "ping",
"data": [1, 2, 3, 4]

}

Both server and client messages look like this. When the server receives a message, it will hand off the message to the
appropriate handler named in the type field. If there is no such handler or the handler fails, the server responds with
a message containing at least an error field, and optionally other data in the data field.

{
"id": 1234,
"error": "No registered handler called 'ping'."

}

3

https://github.com/django/channels

rohrpost Documentation

4 Chapter 1. Protocol

CHAPTER 2

Installation

From the command line:

pip install rohrpost

Or add this line to your requirements.txt:

rohrpost==1.x

5

rohrpost Documentation

6 Chapter 2. Installation

CHAPTER 3

Routing

Once you have installed rohrpost, you’ll need to add the main rohrpost handler to your routing.py. You can find details
on this in Channels’ routing documentation.

from channels import route
from rohrpost.main import handle_rohrpost_message

channel_routing = [
route('websocket.receive', handle_rohrpost_message, path=r'/rohrpost/$'),

]

7

https://channels.readthedocs.io/en/1.x/routing.html

rohrpost Documentation

8 Chapter 3. Routing

CHAPTER 4

Adding Handlers

rohrpost provides a decorator rohrpost_handler, that accepts both a string and a list to register a method as the
handler for incoming messages. This is how the ping method works, that rohrpost provides out of the box:

from rohrpost.message import send_message
from rohrpost.registry import rohrpost_handler

@rohrpost_handler('ping')
def handle_ping(message, request):
response_kwargs = {

'message': message,
'message_id': request['id'],
'handler': 'pong'

}
if 'data' in request:

response_kwargs['data'] = request['data']
send_message(**response_kwargs)

9

rohrpost Documentation

10 Chapter 4. Adding Handlers

CHAPTER 5

Using the mixins

We have four relevant Django model mixins in rohrpost.mixins: NotifyOnCreate, NotifyOnUpdate,
NotifyOnDelete and NotifyOnChange which inherits from the previous three classes.

When using these mixins, you’ll need to set some fields or fill in some methods:

• get_group_name(self, message_type) or group_name, with the method having preference over
the attribute. This method or attribute should return a string that denotes the group receiving the message. All
users in that group will receive a message. This gives you the possibility to build per-object, per-class or global
groups. If neither the message nor the attribute are present, the group name is the lower cased class name
combined with the object’s ID: f’{object.__class__.__name__.lower()}-{object.pk}’

• get_push_notification_data(self, updated_fields, message_type) returning a dic-
tionary (or any data structure) containing the data you wish to send to the client. rohrpost will update the
serialized object updated with an updated_fields attribute with a list if you do not set updated_fields
in get_push_notification_data() and if you set it when calling the save() method that lead to the
notification. The fallback value if you do not fill in this method is {"id": obj.id}.

The message will look like this:

{
"id": <some id>,
"type": "subscription-update",
"data": {

"type": <create|update|delete>,
"group": <group-name>,
"object": <serialized object>,

}
}

You will have to put users who should receive these notifications in the group specified by get_group_name or
group_name. Since authentication and registration works differently in every use case, rohrpost does not include a
standard handler for this.

11

rohrpost Documentation

12 Chapter 5. Using the mixins

CHAPTER 6

Utility functions

rohrpost provides three main helper functions for message sending in rohrpost.message:

• rohrpost.message.send_message

– message: The original message you are replying to (required).

– handler: The string identifying your handler (required).

– message_id: The message ID (any simple datatype allowed). If you do not provide any, an integer will
be randomly chosen.

– close: Set to True if you want to close the connection.

– error: Include an error message or error content

– data: A dict that will appear in the message as data (converted to a JSON object).

– **additional_data: Any other keyword argument will appear in the message’s data field as a
JSON object. This is deprecated.

• rohrpost.message.send_error sends an error message explicitly, takes the same arguments as
send_message.

13

	Protocol
	Installation
	Routing
	Adding Handlers
	Using the mixins
	Utility functions

