

Welcome to ROC-RK3328-CC Manual

Getting Started

	Introduction
	Welcome

	Specification

	Package & Accessories

	Getting Started
	Firmware Format

	Download & Flash

	System Boot Up

	Flashing to the SD Card
	Preparing the SD Card

	Flashing Tools

	SDCard Installer

	Etcher

	dd

	SD Firmware Tool

	Flashing to the eMMC
	Boot Mode

	Flashing Tools

	AndroidTool

	upgrade_tool

	rkdeveloptool

	udev

	Partition Offset

	Serial Debug
	Preparing a USB Serial Adapter

	Serial Debugging in Windows

	Serial Debugging in Linux

Linux Developer Guide

	Compiling Linux Firmware
	Preparation

	Download the Linux SDK

	Compiling U-Boot

	Compiling Kernel

	Building Root Filesystem

	Packing Raw Format Firmware

	Building Debian Root Filesystem
	Preparing Build System

	Compile the Root File System

	Building Ubuntu Root Filesystem
	Reference

Android Developer Guide

	Compiling Android 7.1
	Preparation

	Downloading Android SDK

	Compiling with Firefly Scripts

	Compiling Without Script

	Packing Rockchp Firmware

	Partition Images

	Unpack/Packing Rockchip Firmware
	Rockchip Firmware Format

	Installation of Tools

	Unpacking Rockchip Firmware

	Packing Rockchip Firmware

	Customization

	Adb Instructions
	Preparation

	Frequently Used Adb Commands

FAQ

	FAQ
	How to write MAC address？

	No sound in the headset

Resource

	Firmware and Tools

	Documents and Reference

	Hardware Datasheets and Interfaces

	Community

Introduction

Welcome

If you’re new to ROC-RK3328-CC [http://en.t-firefly.com/product/rocrk3328cc.html], the Getting Started section provides a guide for everything you need to flash the firmware and get the board running.

If you need help and have read through Getting Started, check out FAQ.

If you still can’t find what you need here, read Serial Debug section, get the log, contact us, and help improve this documentation.

Specification

ROC-RK3328-CC [http://en.t-firefly.com/product/rocrk3328cc.html], the first credit card sized and affordable open source main board honored by Firefly, features:

[image: _images/hw_board_interface_top.png]

	Core

	Quad-Core ARM® Cortex-A53 64-bit processor, with frequency up to 1.5GHz

	ARM Mali-450 MP2 Quad-Core GPU, supports OpenGL ES1.1/2.0, OpenVG1.1

	DDR4 RAM (1GB/2GB/4GB)

	Connectivity

	2 x USB 2.0 Host, 1 x USB 3.0 Host

	10/100/1000Mb Ethernet

	1 x IR Receiver Module, supports self-defined IR remote

	40 pin expansion interface, contains GPIO, I2S, SPI, I2C, UART, PWM SPDIF, DEBUG

	Display

	HDMI 2.0 (Type-A), supports maximum 4K@60Hz display

	TV out, CVBS display, in accordance with 480i, 576i standard

	Audio

	I2S, supports 8 channels

	SPDIF, for audio output

	Video

	4K VP9 and 4K 10bits H265 / H264 video decoding, up to 60fps

	1080P multi-format video decoding(WMV, MPEG-1/2/4, VP9, H.264, H.265)

	1080P video coding, supports H.264/H.265

	Video postprocessor: de-interlacing, denoising, edge / detail / color optimization

	Storage

	High-Speed eMMC extension interface

	MicroSD (TF) Card Slot

(Full Specification [http://en.t-firefly.com/product/rocrk3328cc.html#spec])

This incredible ultra small board runs Android 7.1 or Ubuntu 16.04 smoothly and quietly, thanks to its low power consumption.

Package & Accessories

ROC-RK3328-CC [http://en.t-firefly.com/product/rocrk3328cc.html] standard kit contains the following items:

	ROC-RK3328-CC main board

	Micro USB cable

The following accessories are highly recommended, especially when you are doing developer’s work:

	5V2A US Adapter [http://shop.t-firefly.com/goods.php?id=68], a good power source is a must have.

	USB Serial Adapter [http://shop.t-firefly.com/goods.php?id=32], for serial console debugging.

	eMMC Flash [http://shop.t-firefly.com/goods.php?id=69], provides more system performance and reliability.

Getting Started

ROC-RK3328-CC [http://en.t-firefly.com/product/rocrk3328cc.html] supports booting from the following storage devices:

	SD card

	eMMC

You need to flash the firmware file to the SD card or eMMC, in order to make the board bootable.

SDCard Installer is the officially recommended SD card flashing tool, which is derived from Etcher / Rock64 Installer. It implements one-stop downloading and flashing of firmware file, which makes life easy.

Firmware Format

There are two firmware file formats:

	Raw Firmware

	RK Firmware

Raw Firmware, when flashing, is copied to the storage device bit by bit. It is the raw image of the storage device. Raw Firmware is flashed to the SD card in common cases, but it can also be flashed to the eMMC. There are lots of flashing tools available:

	To flash to the SD card:

	GUI:

	SDCard Installer (Linux/Windows/Mac)

	Etcher (Linux/Windows/Mac)

	CLI:

	dd (Linux)

	To flash to the eMMC:

	GUI:

	AndroidTool (Windows)

	CLI:

	upgrade_tool (Linux)

	rkdeveloptool (Linux)

RK Firmware, is packed in Rockchip’s proprietary format, which is flashed to the eMMC via Rockchip’s upgrade_tool (Linux) or AndroidTool (Windows). It is Rockchip’s traditional packing format, commonly used in Rockchip Android firmware. RK Firmware of Android can also be flashed into SD card using SD Firmware Tool.

Since Raw Firmware has wider audience, for simplicity, we DO NOT PROVIDE RK Firmware to download any more.

Partition Image, is the raw image of the partition. When you build the Android SDK, you’ll get a list of boot.img, kernel.img, system.img, etc, which is called Partition Image and will be flashed to the corresponding partition. For example, kernel.img is to be flashed to kernel partition in the eMMC or SD card.

Download & Flash

We recommend to use SDCard Installer to flash Raw Firmware to SD card.

If you are using tools other than SDCard Installer, please download the Raw Firmware in the Download Page [http://en.t-firefly.com/doc/download/34.html] first.

Here’s the available OS list of firmware:

	Android 7.1.2

	Ubuntu 16.04

	Debian 9

	LibreELEC 9.0

WARNING: Only Raw Firmwares are available in the download page. We DO NOT PROVIDE RK Firmware any more.

Then choose the flashing tool according to your host PC’s OS:

	To flash to the SD card:

	GUI:

	SDCard Installer (Linux/Windows/Mac)

	Etcher (Linux/Windows/Mac)

	CLI:

	dd (Linux)

	To flash to the eMMC:

	GUI:

	AndroidTool (Windows)

	CLI:

	upgrade_tool (Linux)

	rkdeveloptool (Linux)

System Boot Up

Before system boots up, make sure you have:

	A bootable SD card or eMMC

	5V2A power adapter

	Micro USB cable

Then follow the procedures below:

	Pull the power adapter out of the power socket.

	Use the micro USB cable to connect the power adapter and the board.

	Plug in the bootable SD card or eMMC (NOT BOTH).

	Plug in the optional HDMI cable, USB mouse or keyboard.

	Check everything is okay, then plug the power adapter into the power socket to power on the board.

Flashing to the SD Card

We will introduce how to flash the firmware to the SD card. If not explicitly stated, the following firmware is referred to the Raw Firmware. Read about firmware format if of any doubt.

We recommend to use SDCard Installer to flash the Raw Firmware to the SD card.

If you are using tools other than SDCard Installer, please download the Raw Firmware in the Download Page [http://en.t-firefly.com/doc/download/34.html] first.

Here’s the available OS list of firmware:

	Android 7.1.2

	Ubuntu 16.04

	Debian 9

	LibreELEC 9.0

WARNING: Only Raw Firmwares are available in the download page. We DO NOT PROVIDE RK Firmware any more.

Preparing the SD Card

Please read this good article about how to prepare a SD card [https://docs.armbian.com/User-Guide_Getting-Started/#how-to-prepare-a-sd-card] first, to make sure that you have a good, reliable and fast SD card, which is of essential importance for system stability.

Flashing Tools

Please choose the flashing tool according to your host PC OS:

	To flash to the SD card

	GUI:

	SDCard Installer (Linux/Windows/Mac)

	Etcher (Linux/Windows/Mac)

	CLI:

	dd (Linux)

SDCard Installer

The easiest way to flash the Raw Firmware is to use the official SDCard Installer, a handy firmware flashing tool derived from Etcher / Rock64 Installer. It saves time to search for available firmwares for your device. You just need to select the board, choose firmware, plugin in the SD card, and finally click the flash button, which is simple and straightforward.

Instructions:

	Download SDCard Installer from the Download Page [http://en.t-firefly.com/doc/download/34.html].

	Install and run:

	Windows: Extract the archive file and run the setup executable inside. After installation, run SDCard Installer as administrator from the start menu.

	Linux: Extract the archive file and run the .AppImage file inside.

	Mac: Double click the .dwg file, install to the system or run directly.

	Click the “Choose an OS” button, and select “ROC-RK3328-CC” in the “Please select your device” combobox.

	A list of available firmware is updated from the network and presented to you, as illustrated below:

[image: _images/started_sdcard-installer.png]

	Choose an firmware OS, and click “OK” button. To flash local firmware, drag it from your local drive and drop to SDCard Installer.

	Plug in the SD card. It should be automatically selected. If there are multiple SD cards, click the “Change” button to choose one.

	Click the “Flash!” button. SDCard Installer will start to download the firmware, flash to the SD card, and verify the content. Please wait patiently.

[image: _images/started_sdcard-installer_flashing.png]

Note:

	To run SDCard Installer with proper permission in Windows, you need to right click the shortcut and select Run as administrator.

	Sometimes, when the progress reaches to 99% or 100%, an error of unmounting the SD card may occur, which can be ignored and does no harm to the data flashed to the SD card.

[image: _images/started_sdcard-installer_umount_fail.png]

	The downloaded firmware will be saved to the local directory, which will be reused the next time you flash the same firmware again. The download directory can be set by clicking the setting icon in the bottom left of the main window and changing the “Download Location:” field.

Etcher

Compared with SDCard Installer, Etcher lacks of firmware list and download. But its code is newer. If you have any flashing problem with the SDCard Installer, you can try Etcher, reusing the firmware file in the download directory of SDCard Installer.

Etcher can be downloaded from the Etcher official site [https://etcher.io]. Installation and usage are similiar with SDCard Installer.

dd

dd is a commonly used command line tool in Linux.

First, plug in the SD card, and unmount it if it is automatically mounted by the file manager.

Then find the device file of the SD card by checking kernel log:

dmesg | tail

If the device file is /dev/mmcblk0, use the following command to flash:

sudo dd if=/path/to/your/raw/firmware of=/dev/mmcblk0 conv=notrunc

Flashing takes lots time and the command above does not show the progress. We can use another tool pv to do this job.

First install pv:

sudo apt-get install pv

Then add pv to the pipe to report progress:

pv -tpreb /path/to/your/raw/firmware | sudo dd of=/dev/mmcblk0 conv=notrunc

SD Firmware Tool

NOTE: This section is about how to flash RK Firmware of Android to the SD card.

First, you will need to download SD Firmware Tool from the SD Firmwware Tool Download Page [https://pan.baidu.com/s/1migPY1U#list/path=%2FPublic%2FDevBoard%2FROC-RK3328-CC%2FTools%2FSD_Firmware_Tool&parentPath=%2FPublic%2FDevBoard%2FROC-RK3328-CC] and extract it.

After extraction, in the directory of SD Firmware Tool, edit config.ini by changing the 4th line from Selected=1 to Selected=2, in order to select English as the default user interface language.

Run SD_Firmware_Tool.exe:

[image: _images/started_sdfirmwaretool.png]

	Plug in the SD card.

	Select the SD card from the combo box.

	Check on the “SD Boot” option.

	Click “Firmware” button, and select the firmware in the file dialog.

	Click “Create” button.

	A warning dialog will show up. By making sure you have the right SD card device selected, select “Yes” to continue.

	Wait for the operation to complete, until the info dialog shows up.

[image: _images/started_sdfirmwaretool_done.png]

	Plug out the SD card.

Flashing to the eMMC

Boot Mode

eMMC flash is commonly soldered directly to the board. Some eMMC flash are pluggable, but it is hard to find a reader to use on PC. Therefore, eMMC is generally flashed onboard, that is, running to tiny system on the obard, which reads firmware data from PC and flashes to eMMC.

Depending on the existing data on the eMMC flash, there are two special boot modes: Rockusb Mode and Maskrom Mode.

You usually just need to enter Rockusb Mode for upgrading an existing Android OS or Firefly Ubuntu OS, which is packed with RK Firmware format.

Maskrom Mode is the last resort when Rockusb Mode is not available due to bootloader damage, or you need to flash Raw Firmware to eMMC.

Rockusb Mode

If the board powers on and finds a valid IDB (IDentity Block) in the eMMC, it will continue to load the bootloader from the eMMC and pass execution control to it. If the bootloader checks that the Recovery button is pressed and USB connection is made, then it enters the so-called Rockusb Mode, waiting for further instructions from the host.

Requirement:

	5V2A power adapter.

	Micro USB cable to connect power adapter and board.

	Male to male USB cable to connect host PC and board.

	eMMC.

Steps:

	Pull all the USB cables (including micro USB cable and male to male USB cable) out of the board, to keep the board powering off.

	Install the eMMC and pull out the SD card.

	Use the male to male USB cable to connect the host PC with the USB 2.0 OTG port (the lower one in the double-decker ports) of the board.

[image: _images/hw_board_usbconn.png]

	Keep the RECOVERY button on the board pressed.

	Plug in the micro USB cable to the board to power up.

	Wait about 3 seconds before releasing the RECOVERY button.

Maskrom Mode

If anyone of the following conditions is met when the board powers on:

	eMMC is empty.

	The bootloader on eMMC is damaged.

	eMMC read data failed by connecting eMMC data/clock pin to ground.

then no valid IDB (IDentity Block) will be found in the eMMC. The CPU will execute a small ROM code, waiting for the host to upload via USB a small DDR blob to initialize the DDR memory, and later a full bootloader to handle further firmware upgrading. This mode is called Maskrom Mode.

It involves hardware operation to force into MaskRom Mode, which has certain risk and should be carried out VERY CAREFULLY.

Requirement:

	5V2A power adapter.

	Micro USB cable to connect power adapter and board.

	Male to male USB cable to connect host PC and board.

	Metal tweezers to connect eMMC clock pin to ground.

	eMMC.

Steps:

	Pull all the USB cables (including micro USB cable and male to male USB cable) out of the board, to keep the board power off.

	Install the eMMC and pull out the SD card.

	Use a male to male USB cable to connect your host PC and USB OTG port of the board:

[image: _images/hw_board_usbconn.png]

	Find the reserved eMMC CLK and GND pads on the board, as shown below:

[image: _images/rk3328_maskrom_pads.jpg]

	Connect the eMMC CLK and GND pads with metal tweezers and keep holding steadily.

	Plug in the micro USB cable to the board to power on.

	Wait about 1 seconds before releasing the metal tweezers.

Flashing Tools

Please use the eMMC flashing tools according to your OS:

	To flash to the eMMC:

	GUI

	AndroidTool (Windows)

	CLI

	upgrade_tool (Linux)

	rkdeveloptool (Linux)

AndroidTool

AndroidTool is used to flash Raw Firmware, RK Firmware and Partition Image to eMMC.

To use AndroidTool, you need to install Rockusb Driver first.

Installing Rockusb Driver

Download DriverAssistant [https://pan.baidu.com/s/1migPY1U#list/path=%2FPublic%2FDevBoard%2FROC-RK3328-CC%2FTools%2FRKTools%2Fwindows&parentPath=%2FPublic%2FDevBoard%2FROC-RK3328-CC], extract the archive and run DriverInstall.exe inside.

[image: _images/started_driverassistant.png]

Click the “驱动安装” button to install the driver. If you want to uninstall the driver, click the “驱动卸载” button.

If your device is in Rockusb Mode or Maskrom Mode, you’ll find a Rockusb Device in the device manager:

[image: _images/started_driverassistant_dev.png]

Installing AndroidTool

AndroidTool Download Page [http://www.t-firefly.com/share/index/listpath/id/acd8e1e37176fba5bf61fb7bf4503998.html]

Download AndroidTool, extract it. Locate the file named config.ini, and edit it by changing the 4th line from Selected=1 to Selected=2, in order to select English as the default user interface language.

Launch AndroidTool.exe:

[image: _images/androidtool.png]

If your device is in Rockusb Mode, the status line will be “Found One LOADER Device”.

If your device is in Maskrom Mode, the status line will be “Found One MASKROM Device”.

Flashing Raw Firmware

Raw Firmware needs to be flashed to offset 0 of eMMC storage. However, in Rockusb Mode, all LBA writes are offset by 0x2000 sectors. Therefore, the device has to be forced into Maskrom Mode.

To flash Raw Firmware to the eMMC using AndroidTool, follow the steps below:

	Force the device into Maskrom Mode.

	Run AndroidTool.

	Switch to the “Download Image” tab page.

	Keep the first line of the table unchanged, using the default loader file.

	Click the right blank cell on the second line, which will pop up a file dialog to open the Raw Firmware file.

	Click the “Run” button to flash.

[image: _images/androidtool_flash_image.png]

Flashing RK Firmware

To flash RK Firmware to the eMMC using AndroidTool, follow the steps below:

	Force the device into Rockusb Mode or Maskrom Mode.

	Run AndroidTool.

	Switch to the “Upgrade Firmware” tab page.

	Click the “Firmware” button, which will pop up a file dialog to open the RK Firmware file.

	The firmware version, loader version and chip info will be read and displayed.

	Click the “Upgrade” button to flash.

Flashing Partition Image

To flash Partition Image to the eMMC using AndroidTool, follow the steps below:

	Force the device into Rockusb Mode or Maskrom Mode.

	Run AndroidTool.

	Switch to the “Download Image” tab page.

	Keep the first line of the table unchanged.

	Delete all others unused rows by selecting “Delete Item” from the right-click popup menu.

[image: _images/androidtool_del.png]

	Add partition image to flash by selection “Add Item” from the right-click popup menu.

	Check on the checkbox on the first cell.

	Fill in the address with the sector offset (plus 0x2000 if in Maskrom Mode) of partition in parameter.txt file.

	Click the right blank cell to browse to the Partition Image file.

[image: _images/androidtool_add.png]

	Click the “Run” button to flash.

Note:

	You can add multiple partitions to flash by repeating step 6.

	You can skip the partition flashing by checking off the checkbox in front of the address cell.

	In Maskrom Mode, you must add 0x2000 to the sector offset of the partition in parameter.txt. See Partition Offset for more detail.

upgrade_tool

upgrade_tool is a close-sourced command line tool provided by Rockchip, which supports flashing Raw Firmware, RK Firmware and Partition Image to the eMMC.

Installing upgrade_tool

upgrade_tool Download Link [https://gitlab.com/TeeFirefly/RK3328-Nougat/blob/roc-rk3328-cc/RKTools/linux/Linux_Upgrade_Tool/Linux_Upgrade_Tool_v1.24.zip]

Download upgrade_tool, and install it to your Linux host:

unzip Linux_Upgrade_Tool_v1.24.zip
cd Linux_UpgradeTool_v1.24
sudo mv upgrade_tool /usr/local/bin
sudo chown root:root /usr/local/bin/upgrade_tool
sudo chmod 0755 /usr/local/bin/upgrade_tool

Then add udev rules by instructions here, in order to have permission for the normal user to flash Rockchip devices. If you skip this, you must prefix the following commands with sudo to have the right permission.

Flashing Raw Firmware

Raw Firmware needs to be flashed to offset 0 of eMMC storage. However, in Rockusb Mode, all LBA writes are offset by 0x2000 sectors. Therefore, the device has to be forced into Maskrom Mode.

To flash Raw Firmware to the eMMC using upgrade_tool, follow the steps below:

	Force the device into Maskrom Mode.

	Run:

upgrade_tool db out/u-boot/rk3328_loader_ddr786_v1.06.243.bin
upgrade_tool wl 0x0 out/system.img
upgrade_tool rd # reset device to boot

Note:

	rk3328_loader_ddr786_v1.06.243.bin is the copied loader file after compiling U-Boot. It can also be downloaded from here [https://github.com/rockchip-linux/rkbin/tree/master/rk33] (choose rk3328_loader_xxx.bin file).

	system.img is Raw Firmware after packing, which can also be Raw Firmware downloaded from official site (decompress first).

Flashing RK Firmware

To flash RK Firmware to the eMMC using upgrade_tool, follow the steps below:

	Force the device into Rockusb Mode or Maskrom Mode.

	Run:

upgrade_tool uf update.img

Flashing Partition Image

You can write individual Partition Image to the eMMC. Depending on the original content of the eMMC, the instructions can be somewhat different.

Raw Firmware

If the original firmware format is raw, chances are that it is using the GPT partition scheme, and the predefined offset and size of each partition can be found in build/partitions.sh in the SDK. See Partition Offset for more detail.

To flash Partition Image to the eMMC using upgrade_tool, follow the steps below:

	Force the device into Maskrom Mode.

	Use upgrade_tool to flash the Partition Image:

upgrade_tool db out/u-boot/rk3328_loader_ddr786_v1.06.243.bin
upgrade_tool wl 0x40 out/u-boot/idbloader.img
upgrade_tool wl 0x4000 out/u-boot/uboot.img
upgrade_tool wl 0x6000 out/u-boot/trust.img
upgrade_tool wl 0x8000 out/boot.img
upgrade_tool wl 0x40000 out/linaro-rootfs.img
upgrade_tool rd # reset device to boot

RK Firmware

If the original firmware format is Rockchip, it is using the parameter file for partition scheme, and you can use the partition name to flash Partition Image directly.

To flash the Partition Image to the eMMC using upgrade_tool, follow the steps below:

	Force the device into Rockusb Mode.

	Use upgrade_tool to flash the Partition Image:

upgrade_tool di -b /path/to/boot.img
upgrade_tool di -k /path/to/kernel.img
upgrade_tool di -s /path/to/system.img
upgrade_tool di -r /path/to/recovery.img
upgrade_tool di -m /path/to/misc.img
upgrade_tool di resource /path/to/resource.img
upgrade_tool di -p parameter # flash parameter
upgrade_tool ul bootloader.bin # flash bootloader

Note:

	-b is a predefined shortcut for boot partition. If no shortcuts are available, use partition name instead (resource in above example).

	You can customize kernel parameters and partition layout according to Parameter file format [http://www.t-firefly.com/download/Firefly-RK3399/docs/Rockchip%20Parameter%20File%20Format%20Ver1.3.pdf]. Once the partition layout is changed, you must flash the parameter file first, before reflashing other changed partitions.

FAQ

If errors occur due to flash storage problem, you can try to low format or erase the flash by:

upgrade_tool lf # low format flash
upgrade_tool ef # erase flash

rkdeveloptool

rkdeveloptool is an open-source command line flashing tool developed by Rockchip, which is an alternative to the close-source upgrade_tool.

rkdeveloptool DOES NOT support proprietary RK Firmware.

Installing rkdeveloptool

First, download, compile and install rkdeveloptool:

#install libusb and libudev
sudo apt-get install pkg-config libusb-1.0 libudev-dev libusb-1.0-0-dev dh-autoreconf
clone source and make
git clone https://github.com/rockchip-linux/rkdeveloptool
cd rkdeveloptool
autoreconf -i
./configure
make
sudo make install

Then add udev rules by instructions here, in order to have permission for the normal user to flash Rockchip devices. If you skip this, you must prefix the following commands with sudo to have the right permission.

Flashing Raw Firmware

Raw Firmware needs to be flashed to offset 0 of eMMC storage. However, in Rockusb Mode, all LBA writes are offset by 0x2000 sectors. Therefore, the device has to be forced into Maskrom Mode.

To flash Raw Firmware to the eMMC using rkdeveloptool, follow the steps below:

	Force the device into Maskrom Mode.

	Run:

rkdeveloptool db out/u-boot/rk3328_loader_ddr786_v1.06.243.bin
rkdeveloptool wl 0x0 out/system.img
rkdeveloptool rd # reset device to boot

Note:

	rk3328_loader_ddr786_v1.06.243.bin is the copied loader file after compiling U-Boot. It can also be downloaded from here [https://github.com/rockchip-linux/rkbin/tree/master/rk33] (choose rk3328_loader_xxx.bin file).

	system.img is Raw Firmware after packing, which can also be the Raw Firmware downloaded from official site (decompress it first).

Flashing Partition Image

The following instructions ONLY APPLIY to boards which are flashed with Raw Firmware and use GPT partition scheme. The predefined offset and size of each partition can be found in build/partitions.sh in the SDK. See Partition Offset for more detail.

To flash Partition Image to the eMMC using rkdeveloptool, follow the steps below:

	Force the device into Maskrom Mode.

	Run:

rkdeveloptool db out/u-boot/rk3328_loader_ddr786_v1.06.243.bin
rkdeveloptool wl 0x40 out/u-boot/idbloader.img
rkdeveloptool wl 0x4000 out/u-boot/uboot.img
rkdeveloptool wl 0x6000 out/u-boot/trust.img
rkdeveloptool wl 0x8000 out/boot.img
rkdeveloptool wl 0x40000 out/linaro-rootfs.img
rkdeveloptool rd # reset device to boot

udev

Create /etc/udev/rules.d/99-rk-rockusb.rules with following content1 [https://github.com/rockchip-linux/rkdeveloptool/blob/master/99-rk-rockusb.rules]. Replace the group users with your actual Linux group if neccessary:

SUBSYSTEM!="usb", GOTO="end_rules"

RK3036
ATTRS{idVendor}=="2207", ATTRS{idProduct}=="301a", MODE="0666", GROUP="users"
RK3229
ATTRS{idVendor}=="2207", ATTRS{idProduct}=="320b", MODE="0666", GROUP="users"
RK3288
ATTRS{idVendor}=="2207", ATTRS{idProduct}=="320a", MODE="0666", GROUP="users"
RK3328
ATTRS{idVendor}=="2207", ATTRS{idProduct}=="320c", MODE="0666", GROUP="users"
RK3368
ATTRS{idVendor}=="2207", ATTRS{idProduct}=="330a", MODE="0666", GROUP="users"
RK3399
ATTRS{idVendor}=="2207", ATTRS{idProduct}=="330c", MODE="0666", GROUP="users"

LABEL="end_rules"

Reload the udev rules to take effect without reboot:

sudo udevadm control --reload-rules
sudo udevadm trigger

Partition Offset

GPT Partition

The offset of partition image can be obained by following command(assuming you are in the directory of Firefly Linux SDK):

(. build/partitions.sh ; set | grep _START | \
while read line; do start=${line%=*}; \
printf "%-10s 0x%08x\n" ${start%_START*} ${!start}; done)

which gives result of:

ATF 0x00006000
BOOT 0x00008000
LOADER1 0x00000040
LOADER2 0x00004000
RESERVED1 0x00001f80
RESERVED2 0x00002000
ROOTFS 0x00040000
SYSTEM 0x00000000

parameter

If RK Firmware is used, parameter.txt is used to define partition layout.

Here’s a handy script to list the partition offsets in parameter.txt:

#!/bin/sh

PARAMETER_FILE="$1"
[-f "$PARAMETER_FILE"] || { echo "Usage: $0 <parameter_file>"; exit 1; }

show_table() {
 echo "$1"
 echo "--------"
 printf "%-20s %-10s %s\n" "NAME" "OFFSET" "LENGTH"
 for PARTITION in `cat ${PARAMETER_FILE} | grep '^CMDLINE' | sed 's/ //g' | sed 's/.*:\(0x.*[^)])\).*/\1/' | sed 's/,/ /g'`; do
 NAME=`echo ${PARTITION} | sed 's/\(.*\)(\(.*\))/\2/'`
 START=`echo ${PARTITION} | sed 's/.*@\(.*\)(.*)/\1/'`
 LENGTH=`echo ${PARTITION} | sed 's/\(.*\)@.*/\1/'`
 START=$((START + $2))
 printf "%-20s 0x%08x %s\n" $NAME $START $LENGTH
 done
}

show_table "Rockusb Mode" 0
echo
show_table "Maskrom Mode" 0x2000

Save it as a script in /usr/local/bin/show_rk_parameter.sh and give the script executing permission.

Here’s an example of showing partition offsets defined in RK3328 Android SDK:

$ show_rk_parameter.sh device/rockchip/rk3328/parameter.txt
Rockusb Mode

NAME OFFSET LENGTH
uboot 0x00002000 0x00002000
trust 0x00004000 0x00004000
misc 0x00008000 0x00002000
baseparamer 0x0000a000 0x00000800
resource 0x0000a800 0x00007800
kernel 0x00012000 0x00010000
boot 0x00022000 0x00010000
recovery 0x00032000 0x00010000
backup 0x00042000 0x00020000
cache 0x00062000 0x00040000
metadata 0x000a2000 0x00008000
kpanic 0x000aa000 0x00002000
system 0x000ac000 0x00300000
userdata 0x003ac000 -

Maskrom Mode

NAME OFFSET LENGTH
uboot 0x00004000 0x00002000
trust 0x00006000 0x00004000
misc 0x0000a000 0x00002000
baseparamer 0x0000c000 0x00000800
resource 0x0000c800 0x00007800
kernel 0x00014000 0x00010000
boot 0x00024000 0x00010000
recovery 0x00034000 0x00010000
backup 0x00044000 0x00020000
cache 0x00064000 0x00040000
metadata 0x000a4000 0x00008000
kpanic 0x000ac000 0x00002000
system 0x000ae000 0x00300000
userdata 0x003ae000 -

Serial Debug

If you’re doing serious U-Boot or kernel development, a USB serial adapter (short for the USB serial TTL bridge adapter) is very useful to check the system startup log, especially in case of no graphics desktop shows up.

Preparing a USB Serial Adapter

Choosing a USB Serial Adapter

ROC-RK3328-CC [http://en.t-firefly.com/product/rocrk3328cc.html] defaults to use 1,500,000 baud rate for its UART debug port, with TTL voltage.

Some adapters cannot support such high baud rate. So before purchase, make sure it meets the requirements and has the proper driver for your OS.

You can refer to the USB Serial Adapter [http://shop.t-firefly.com/goods.php?id=32] with CP2104 chip in the Firefly Online Shop [http://shop.t-firefly.com/].

Connecting to the Debug Port

Three wires are required to connect the TX/RX/GND pins together:

[image: _images/debug_con.png]

With some adapters, you may try to connect TX pin of the adapter to RX pin of the board, and RX pin of adapter to TX pin of the board, if you do not get the serial console working.

Serial Parameters

ROC-RK3328-CC [http://en.t-firefly.com/product/rocrk3328cc.html] uses the following serial parameters:

	Baud rate: 1,500,000

	Data bit: 8

	Stop bit: 1

	Parity check: none

	Flow control: none

Next, depending on the OS you are using, we’ll guide you through the detailed steps.

Serial Debugging in Windows

Install Driver

Use the recommended driver from your USB serial adapter vendor. If not available, you can check the chipset and try the following drivers:

	CH340 [http://www.wch.cn/downloads.php?name=pro&proid=5]

	PL2303 [http://www.prolific.com.tw/US/ShowProduct.aspx?pcid=41]

	CP210X [http://www.silabs.com/products/mcu/pages/usbtouartbridgevcpdrivers.aspx]

Tips: If PL2303 does not work under Win8, you can try to downgrade the driver to version 3.3.5.122 or before.

After installing the driver, connect the adapter to the USB port. The OS will prompt that a new hardware is detected. When it finishes, you can find the new COM port in the device manager.

[image: _images/debug_devicemanager_com.png]

Putty

There are many serial console utilities in Windows, such as putty and SecureCRT. Putty, a popular opensource software, is taken as an example here.

Putty Download Page [http://www.chiark.greenend.org.uk/%7Esgtatham/putty/download.html]

Download putty.zip, extract it and run PUTTY.exe.

	Select “Connection type” to “Serial”.

	Modify “Serial line” to the COM port found in the device manager.

	Set “Speed” to 1500000.

	Click “Open” button.

[image: _images/debug_putty_serial.png]

Serial Debugging in Linux

If the chipset of the USB serial adapter is supported by Linux kernel, the driver will be loaded automatically.

Connect the serial adapter, and check the corresponding serial device file by checking:

$ ls -l /dev/ttyUSB*
crw-rw---- 1 root uucp 188, 0 Apr 10 16:44 /dev/ttyUSB0

Add your Linux user to the uucp group, in order to have permission to access this device (or you may use sudo everytime):

sudo gpasswd -a $(whoami) uucp

The group change will take effect after logout/login Linux, or use the newgrp command to enter a shell with the new group:

newgrp uucp

Then proceed the following steps depending on your favor of picocom or minicom.

picocom

picocom is light weight, easy to use.

Install it with:

sudo apt-get install picocom

Start picocom:

$ picocom -b 1500000 /dev/ttyUSB0
picocom v3.1

port is : /dev/ttyUSB0
flowcontrol : none
baudrate is : 1500000
parity is : none
databits are : 8
stopbits are : 1
escape is : C-a
local echo is : no
noinit is : no
noreset is : no
hangup is : no
nolock is : no
send_cmd is : sz -vv
receive_cmd is : rz -vv -E
imap is :
omap is :
emap is : crcrlf,delbs,
logfile is : none
initstring : none
exit_after is : not set
exit is : no

Type [C-q] [C-h] to see available commands
Terminal ready

The messages above show that Ctrl-a is the escape key. Pressing Ctrl-a Ctrl-q will quit picocom and return to the shell.

minicom

Install minicom with:

sudo apt-get install minicom

Start minicom:

$ minicom
Welcome to minicom 2.7

OPTIONS: I18n
Compiled on Jan 1 2014, 17:13:19.
Port /dev/ttyUSB0, 15:57:00

Press CTRL-A Z for help on special keys

Based on the above tips, press Ctrl-a then z (not Ctrl-z) to bring up the Help menu.

+---+
| Minicom Command Summary |
| |
| Commands can be called by CTRL-A <key> |
| |
| Main Functions Other Functions |
| |
Dialing directory..D run script (Go)....G	Clear Screen.......C
Send files.........S Receive files......R	cOnfigure Minicom..O
comm Parameters....P Add linefeed.......A	Suspend minicom....J
Capture on/off.....L Hangup.............H	eXit and reset.....X
send break.........F initialize Modem...M	Quit with no reset.Q
Terminal settings..T run Kermit.........K	Cursor key mode....I
lineWrap on/off....W local Echo on/off..E	Help screen........Z
Paste file.........Y Timestamp toggle...N	scroll Back........B
Add Carriage Ret...U	
Select function or press Enter for none.	
+---+

Press O as prompted to enter setup screen:

 +-----[configuration]------+
 | Filenames and paths |
 | File transfer protocols |
 | Serial port setup |
 | Modem and dialing |
 | Screen and keyboard |
 | Save setup as dfl |
 | Save setup as.. |
 | Exit |
 +--------------------------+

Choose “Serial port setup”, then press the upper-case letter in front of the option to set to values as illustrated below:

 +---+
 | A - Serial Device : /dev/ttyUSB0 |
 | B - Lockfile Location : /var/lock |
 | C - Callin Program : |
 | D - Callout Program : |
 | E - Bps/Par/Bits : 1500000 8N1 |
 | F - Hardware Flow Control : No |
 | G - Software Flow Control : No |
 | |
 | Change which setting? |
 +---+

Note:

	Hardware Flow Control and Software Flow Control should be set to No.

	After finishing the setting, go back to the previous menu by pressing ESC, and select Save setup as dfl to save as the default configuration.

Compiling Linux Firmware

In this chapter, we’ll walk through the steps of compiling Linux firmware for ROC-RK3328-CC [http://en.t-firefly.com/product/rocrk3328cc.html].

Preparation

The Linux firmware is built under the following environment:

	Ubuntu 16.04 amd64

Install following packages:

sudo apt-get install bc bison build-essential curl \
 device-tree-compiler dosfstools flex gcc-aarch64-linux-gnu \
 gcc-arm-linux-gnueabihf gdisk git gnupg gperf libc6-dev \
 libncurses5-dev libpython-dev libssl-dev libssl1.0.0 \
 lzop mtools parted repo swig tar zip

Download the Linux SDK

Create the project directory:

create project dir
mkdir ~/proj/roc-rk3328-cc
cd ~/proj/roc-rk3328-cc

Download the Linux SDK:

U-Boot
git clone -b roc-rk3328-cc https://github.com/FireflyTeam/u-boot
Kernel
git clone -b roc-rk3328-cc https://github.com/FireflyTeam/kernel --depth=1
Build
git clone -b debian https://github.com/FireflyTeam/build
Rkbin
git clone -b master https://github.com/FireflyTeam/rkbin

You can also browse the source code online using the github links above.

The board building config is within:

build/board_configs.sh

Compiling U-Boot

Compile U-Boot:

./build/mk-uboot.sh roc-rk3328-cc

Ouput:

out/u-boot/
├── idbloader.img
├── rk3328_loader_ddr786_v1.06.243.bin
├── trust.img
└── uboot.img

	rk3328_loader_ddr786_v1.06.243.bin: A DDR init bin.

	idbloader.img: Image combined with DDR init bin and miniloader bin.

	trust.img: ARM trusted firmware.

	uboot.img: U-Boot image.

Related files:

	configs/roc-rk3328-cc_defconfig: default U-Boot config

Compiling Kernel

Compile kernel:

./build/mk-kernel.sh roc-rk3328-cc

Ouput:

out/
├── boot.img
└── kernel
 ├── Image
 └── rk3328-roc-cc.dtb

	boot.img: A image file containing Image and rk3328-roc-cc.dtb, in fat32 filesystem format.

	Image: Kernel image.

	rk3328-roc-cc.dtb: Device tree blob.

Related files:

	arch/arm64/configs/fireflyrk3328_linux_defconfig: default kernel config

	arch/arm64/boot/dts/rockchip/rk3328-roc-cc.dts: board dts

	arch/arm64/boot/dts/rockchip/rk3328.dtsi: soc dts

To customize the kernel config and update the default config:

this is important!
export ARCH=arm64

cd kernel

first use default config
make fireflyrk3328_linux_defconfig

customize your kernel
make menuconfig

save as default config
make savedefconfig
cp defconfig arch/arm64/configs/fireflyrk3328_linux_defconfig

NOTE: The build script does not copy kernel modules to the root filesystem. You have to do it yourself.

Building Root Filesystem

You can download the prebuilt root filesystem or build one yourself by following Building Linux Root Filesystem.

Packing Raw Format Firmware

Place your Linux root filesystem image file as out/rootfs.img.

The out directory should contain the following files:

$ tree out
out
├── boot.img
├── kernel
│ ├── Image
│ └── rk3328-roc-cc.dtb
├── rootfs.img
└── u-boot
 ├── idbloader.img
 ├── rk3328_loader_ddr786_v1.06.243.bin
 ├── trust.img
 └── uboot.img

2 directories, 8 files

To create the [Raw Firmare]:

./build/mk-image.sh -c rk3328 -t system -r out/rootfs.img

The command above will pack the neccessary image files into out/system.img, according to this Storage Map [http://opensource.rock-chips.com/wiki_Partitions#Default_storage_map].

To flash this Raw Firmware, please follow the Getting Started chapter.

Building Debian Root Filesystem

Preparing Build System

git clone https://github.com/FireflyTeam/rk-rootfs-build.git
cd rk-rootfs-build
sudo apt-get install binfmt-support qemu-user-static
sudo dpkg -i ubuntu-build-service/packages/*
sudo apt-get install -f

Compile the Root File System

	Build the Debian basic system:

VERSION=stretch TARGET=desktop ARCH=armhf ./mk-base-debian.sh

This will use live-build to create a basic Debian Stretch desktop system, which is later packed as file linaro-stretch-alip-*.tar.gz. This operation takes time and only needs to run once unless you have modified the live-build configuration.

	Build the rk-debian system:

VERSION=stretch TARGET=desktop ARCH=armhf ./mk-rootfs.sh

This will install/setup Rockchip components such as mali and video encode/decode, based on the linaro-stretch-alip-*.tar.gz file from previous step, to create the full rk-debian system.

	Create the ext4 image file linaro-rootfs.img:

./mk-image.sh

Note: default user and password is “linaro”.

Building Ubuntu Root Filesystem

Environment:

	Ubuntu 16.04 amd64

Install required packages:

sudo apt-get install qemu qemu-user-static binfmt-support debootstrap

Download Ubuntu core:

wget -c http://cdimage.ubuntu.com/ubuntu-base/releases/16.04.1/release/ubuntu-base-16.04.1-base-arm64.tar.gz

Create a root filesystem image file sized 1000M and populate it with the ubuntu base tar file:

fallocate -l 1000M rootfs.img
sudo mkfs.ext4 -F -L ROOTFS rootfs.img
mkdir mnt
sudo mount rootfs.img mnt
sudo tar -xzvf ubuntu-base-16.04.1-base-arm64.tar.gz -C mnt/
sudo cp -a /usr/bin/qemu-aarch64-static mnt/usr/bin/

qemu-aarch64-static is the magic cure here, which make possible chrooting into an Arm64 filesystem under x86_64 host system.

Chroot to the new filesystem and initialize:

sudo chroot mnt/

Change the setting here
USER=firefly
HOST=firefly

Create User
useradd -G sudo -m -s /bin/bash $USER
passwd $USER
enter user password

Hostname & Network
echo $HOST > /etc/hostname
echo "127.0.0.1 localhost.localdomain localhost" > /etc/hosts
echo "127.0.0.1 $HOST" >> /etc/hosts
echo "auto eth0" > /etc/network/interfaces.d/eth0
echo "iface eth0 inet dhcp" >> /etc/network/interfaces.d/eth0
echo "nameserver 127.0.1.1" > /etc/resolv.conf

Enable serial console
ln -s /lib/systemd/system/serial-getty\@.service /etc/systemd/system/getty.target.wants/serial-getty@ttyS0.service

Install packages
apt-get update
apt-get upgrade
apt-get install ifupdown net-tools network-manager
apt-get install udev sudo ssh
apt-get install vim-tiny

Unmount filesystem:

sudo umount rootfs/

Credit: bholland [https://forum.armbian.com/topic/6850-document-about-compiling-a-kernel-and-rootfs-for-the-firefly-boards/]

Reference

	http://opensource.rock-chips.com/wiki_Distribution

Compiling Android 7.1

Preparation

Hardware Requiremnts

Recommended hardware requirement of development workstation compiling Android 7.1:

	64 bit CPU

	16GB Physical memory + Swap memory

	30GB Free disk space is used for building, and the source tree takes about 8GB

See also the hardware and software configuration stated in Google official document:

	https://source.android.com/setup/build/requirements

	https://source.android.com/setup/initializing

Software Requiements

Installing JDK 8

sudo add-apt-repository ppa:openjdk-r/ppa
sudo apt-get update
sudo apt-get install openjdk-8-jdk

Installing required packages

sudo apt-get install git-core gnupg flex bison gperf libsdl1.2-dev \
 libesd0-dev libwxgtk2.8-dev squashfs-tools build-essential zip curl \
 libncurses5-dev zlib1g-dev pngcrush schedtool libxml2 libxml2-utils \
 xsltproc lzop libc6-dev schedtool g++-multilib lib32z1-dev lib32ncurses5-dev \
 lib32readline-gplv2-dev gcc-multilib libswitch-perl

sudo apt-get install gcc-arm-linux-gnueabihf \
 libssl1.0.0 libssl-dev \
 p7zip-full

Downloading Android SDK

Due to the huge size of the Android SDK, please select one of the following clouds to download ROC-RK3328-CC_Android7.1.2_git_20171204.7z:

	Baiduyun [https://pan.baidu.com/s/1eRT6isE]

	Google Drive [https://drive.google.com/drive/folders/1N8fpfoeWLD4-VJcYN6Qfh_3-YBYzXxGq]

After the download completes, verify the MD5 checksum before extraction:

$ md5sum /path/to/ROC-RK3328-CC_Android7.1.2_git_20171204.7z
6d34e51fd7d26e9e141e91b0c564cd1f ROC-RK3328-CC_Android7.1.2_git_20171204.7z

Then extract it:

mkdir -p ~/proj/roc-rk3328-cc
cd ~/proj/roc-rk3328-cc
7z x /path/to/ROC-RK3328-CC_Android7.1.2_git_20171204.7z
git reset --hard

Update the correct git remote:

git remote rm origin
git remote add gitlab https://gitlab.com/TeeFirefly/RK3328-Nougat.git

Synchronize source code from gitlab:

git pull gitlab roc-rk3328-cc:roc-rk3328-cc

You can also view the source code online at:
https://gitlab.com/TeeFirefly/RK3328-Nougat/tree/roc-rk3328-cc

Compiling with Firefly Scripts

Compiling Kernel

./FFTools/make.sh -k -j8

Compiling U-Boot

./FFTools/make.sh -u -j8

Compiling Android

./FFTools/make.sh -a -j8

Compiling Everying

This will compile kernel, U-Boot and Android with a single command:

./FFTools/make.sh -j8

Compiling Without Script

Before compilation, execute the following commands to configure environment variables:

export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64
export PATH=$JAVA_HOME/bin:$PATH
export CLASSPATH=.:$JAVA_HOME/lib:$JAVA_HOME/lib/tools.jar

Compiling Kernel

make ARCH=arm64 firefly_defconfig
make -j8 ARCH=arm64 rk3328-roc-cc.img

Compiling U-Boot

make rk3328_box_defconfig
make ARCHV=aarch64 -j8

Compiling Android

source build/envsetup.sh
lunch roc_rk3328_cc_box-userdebug
make installclean
make -j8
./mkimage.sh

Packing Rockchp Firmware

Packing Fimware in Linux

After compiling you can use Firefly official script to pack all partition image files into the one true Rockchip firmware or the one true original firmware, by executing the following command:

rk firmware:
./FFTools/mkupdate/mkupdate.sh update

original firmware:
./FFTools/mkupdate/sd_mkupdate.sh update

The resulting file is rockdev/Image-rk3328_firefly_box/update.img.

The RK firmware needs to use the SD_Firmware_Tool tool and the function mode to select SD Startup to create the boot card,
and original firmware can use the SDCard-installer to make the boot card.

Packing Fimware in Windows

It is also very simple in packaging Rockchip firmware update.img under Windows:

	Copy all the compiled files in rockdev/Image-rk3328_firefly_box/ to the rockdev\Image directory of AndroidTool

	Run the mkupdate.bat batch file in the rockdev directory of AndroidTool.

	update.img will be created in rockdev\Image directory.

Partition Images

update.img is the firmware released to end users, which is convenient to upgrade the system of the deveopment board.

During development cycle, it is a great time saving to only flash modified partition images.

Here’s a table summarising the partition image in various stage:

|------------------|---------------------|-----------|
Stage	Product	Partition
Compiling Kernel	kernel/kernel.img	kernel
	kernel/resource.img	resource
------------------	---------------------	-----------
Compiling U-Boot	u-boot/uboot.img	uboot
------------------	---------------------	-----------
./mkimage.sh	boot.img	boot
	system.img	system
------------------	---------------------	-----------

Note that by excuting ./mkimage.sh, boot.img and system.img will be repacked wth the compiled results of Android in out/target/product/rk3328_firefly_box/ directory, and all related image files will be copied to the directory rockdev/Image-rk3328_firefly_box/.

The following is a list of the image files:

	boot.img: Android initramfs image, contains base filesystem of Android root directory, whcih is responsible for initializing and loading the system partition.

	system.img: Android system partition image in ext4 filesystem format.

	kernel.img: kernel image.

	resource.img: Resource image, containing boot logo and kernel device tree blob.

	misc.img: misc partition image, responsible for starting the mode switch and first aid mode parameter transfer.

	recovery.img: Recovery mode image.

	rk3328_loader_v1.08.244.bin: Loader files.

	uboot.img: U-Boot image file.

	trust.img: Arm trusted file (ATF) image file.

	parameter.txt: Partition layout and kernel command line.

Unpack/Packing Rockchip Firmware

Rockchip Firmware Format

The rockchip firmware release_update.img, contains the boot loader loader.img and the real firmware data update.img:

release_update.img

|- loader.img
`- update.img

update.img is packed with multiple image files, described by a control file named package-file. A typical package-file is:

NAME Relative path
package-file package-file
bootloader Image/MiniLoaderAll.bin
parameter Image/parameter.txt
trust Image/trust.img
uboot Image/uboot.img
misc Image/misc.img
resource Image/resource.img
kernel Image/kernel.img
boot Image/boot.img
recovery Image/recovery.img
system Image/system.img
backup RESERVED
#update-script update-script
#recover-script recover-script

	package-file: packing description of update.img, which is also included by update.img.

	Image/MiniLoaderAll.bin: The first bootloader loaded by cpu rom code.

	Image/parameter.txt: Parameter file where you can set the kernel boot parameters and partition layout.

	Image/trust.img: The Arm Trusted Image.

	Image/misc.img: misc partition image, used to control boot mode of Android.

	Image/kernel.img: Android kernel image.

	Image/resource.img: Resource image with boot logo and kernel device tree blob.

	Image/boot.img: Android initramfs, a root filesystem loaded in normal boot, contains important initialization and services description.

	Image/recovery.img: Recovery mode image.

	Image/system.img: Android system partition image.

Unpacking is extracting update.img from release_update.img, and then unpacking all the image files inside.

While repacking, it is the inverse process. It synthesizes the image files described by the package-file, into update.img, which will be further packed together with the bootloader to create the final release_update.img.

Installation of Tools

git clone https://github.com/TeeFirefly/rk2918_tools.git
cd rk2918_tools
make
sudo cp afptool img_unpack img_maker mkkrnlimg /usr/local/bin

Unpacking Rockchip Firmware

	Unpacking release_update.img:

$ cd /path/to/your/firmware/dir
$ img_unpack Firefly-RK3399_20161027.img img
rom version: 6.0.1
build time: 2016-10-27 14:58:18
chip: 33333043
checking md5sum....OK

	Unpacking update.img:

$ cd img
$ afptool -unpack update.img update
Check file...OK
------- UNPACK -------
package-file 0x00000800 0x00000280
Image/MiniLoaderAll.bin 0x00001000 0x0003E94E
Image/parameter.txt 0x00040000 0x00000350
Image/trust.img 0x00040800 0x00400000
Image/uboot.img 0x00440800 0x00400000
Image/misc.img 0x00840800 0x0000C000
Image/resource.img 0x0084C800 0x0003FE00
Image/kernel.img 0x0088C800 0x00F5D00C
Image/boot.img 0x017EA000 0x0014AD24
Image/recovery.img 0x01935000 0x013C0000
Image/system.img 0x02CF5000 0x2622A000
RESERVED 0x00000000 0x00000000
UnPack OK!

	Check the file tree in the update directory:

$ cd update/
$ tree
.
├── Image
│ ├── boot.img
│ ├── kernel.img
│ ├── MiniLoaderAll.bin
│ ├── misc.img
│ ├── parameter.txt
│ ├── recovery.img
│ ├── resource.img
│ ├── system.img
│ ├── trust.img
│ └── uboot.img
├── package-file
└── RESERVED

1 directory, 12 files

Packing Rockchip Firmware

First of all, make sure system partition in parameter.txt file is larger enough to hold system.img. You can reference Parameter file format [http://www.t-firefly.com/download/Firefly-RK3399/docs/Rockchip%20Parameter%20File%20Format%20Ver1.3.pdf] to understand the partition layout.

For example, in the line prefixed with “CMDLINE” in parameter.txt, you will find the description of system partition similiar to the following content:

0x00200000@0x000B0000(system)

The heximal string before the “@” is the partiton size in sectors (1 sector = 512 bytes here), therefore the size of the system partition is:

$ echo $((0x00200000 * 512 / 1024 / 1024))M
1024M

To create release_update_new.img:

The current directory is still update/, which contains package-file,
and files that package-file lists still exist
Copy the parameter file to paramter, because afptool is used by default

$ afptool -pack . ../update_new.img
------ PACKAGE ------
Add file: ./package-file
Add file: ./Image/MiniLoaderAll.bin
Add file: ./Image/parameter.txt
Add file: ./Image/trust.img
Add file: ./Image/uboot.img
Add file: ./Image/misc.img
Add file: ./Image/resource.img
Add file: ./Image/kernel.img
Add file: ./Image/boot.img
Add file: ./Image/recovery.img
Add file: ./Image/system.img
Add file: ./RESERVED
Add CRC...
------ OK ------
Pack OK!

$ img_maker -rk33 loader.img update_new.img release_update_new.img
generate image...
append md5sum...
success!

Customization

Customizing system.img

system.img is an ext4 file system format image file which can be mounted directly to the system for modification:

sudo mkdir -p /mnt/system
sudo mount Image/system.img /mnt/system
cd /mnt/system
Modify the contents of the inside.
Pay attention to the free space,
You can not add too many APKs

When finished, you need to unmount it
cd /
sudo umount /mnt/system

Note that the free space of system.img is almost 0. If you need to expand the image file, do adjust the partition layout in parameter.txt accordingly.

The following is an example of how to increase the size of the image file by 128MB.

Before expanding, make sure system.img is not mounted by running:

mount | grep system

Resize the image file:

dd if=/dev/zero bs=1M count=128 >> Image/system.img
Expand file system information
e2fsck -f Image/system.img
resize2fs Image/system.img

Adb Instructions

Adb, short for Android Debug Bridge, is a versatile command line debugging tools, which has a variety of functions, such as tracking system logs, upload and download files, install and uninstall applications.

Preparation

In order to use adb, you need to:

	Use the male to male USB cable to connect host PC with the lower USB OTG port of the board:

[image: _images/hw_board_usbconn.png]

	In Android running on the board, select Settings -> USB, and check on Connect to PC option.

	Install adb driver and command, depending on your OS.

Adb Installation in Windows

	Install Rockusb Driver.

	Download adb.zip [http://adbshell.com/upload/adb.zip], then unzip it to C:\adb for convenience.

Open a cmd window and run:

C:\adb\adb shell

You are entering the adb shell if everything goes well.

Adb Installation in Ubuntu

	Install adb tool：

sudo apt-get install android-tools-adb

	Add device ID:

mkdir -p ~/.android
vi ~/.android/adb_usb.ini
add the following line:
0x2207

	Add udev rules for non-root user use：

sudo vi /etc/udev/rules.d/51-android.rules
add the following line：
SUBSYSTEM=="usb", ATTR{idVendor}=="2207", MODE="0666"

	Reload udev rules:

sudo udevadm control --reload-rules
sudo udevadm trigger

	Restart adb with normal user:

sudo adb kill-server
adb start-server

The next you can invoke adb directly, for example:

adb shell

Frequently Used Adb Commands

Connection Management

List all connected devices and their serial numbers:

adb devices

If there are multiple connected devices, you need to use the serial number to distinguish them:

export ANDROID_SERIAL=<device serial number>
adb shell ls

Also adb can be connected via the tcp/ip network.

adb tcpip 5555

Adb will restart on the device side and listen on TCP port 5555.
The USB cable can be disconnected from now on.

If the IP address of the device is 192.168.1.100, you the following command to connect:

adb connect 192.168.1.100:5555

Once connected, you can run adb command as usual:

adb shell ps
adb logcat

Until you explictly disconnect adb:

adb disconnect 192.168.1.100:5555

Debug

Getting System Log

Usage:

adb logcat [option] [Application label]

For example:

View all logs
adb logcat

View only part of the log
adb logcat -s WifiStateMachine StateMachine

Gathering Bug Report

adb bugreport is used for error reporting, which gathers useful system information.

adb bugreport

Save to local, make it easy to use editor view
adb bugreport >bugreport.txt

Running shell

Open an interactive shell:

adb shell

Run shell command:

adb shell ps

Apk Management

Install Apk

adb install [option] example.apk

options:
-l forward-lock
-r Reinstall the application to retain the original data
-s Install to SD card instead of internal storage

For example:

install facebook.apk
adb install facebook.apk

upgrade twitter.apk
adb install -r twitter.apk

If install fails, check the common reasons below:

	INSTALL_FAILED_ALREADY_EXISTS: Try to add -r parameter to install again.

	INSTALL_FAILED_SIGNATURE_ERROR: APK signature is inconsistent, and it may be due to the different version of the signature and debug version. If you confirm the APK file signature is normal, you can use the adb uninstall command to uninstall the old application, and then install again.

	INSTALL_FAILED_INSUFFICIENT_STORAGE: There is not enough storage space.

Uninstall Apk

adb uninstall apk_name

For example：

adb uninstall com.android.chrome

The name of the apk package can be listed with the following command:

adb shell pm list packages -f
...
package:/system/app/Bluetooth.apk=com.android.bluetooth
...

The apk file path and package name are separated by =.

FAQ

How to write MAC address？

You can change ROC-RK3328-CC MAC address by yourself. Please enter RockUSB mode, then write MAC address with WNpctool.

No sound in the headset

In Ubuntu system, run PluseAudio Volume Control in Multimedia menu. Then in Configuration, select the working sound card and close others.

Firmware and Tools

	Firmware Download Page [http://en.t-firefly.com/doc/download/34.html]

Firmware Flashing Tools:

	To flash to the SD card:

	GUI:

	SDCard Installer (Linux/Windows/Mac)

	Etcher (Linux/Windows/Mac)

	CLI:

	dd (Linux)

	To flash to the eMMC:

	GUI:

	AndroidTool (Windows)

	CLI:

	upgrade_tool (Linux)

	rkdeveloptool (Linux)

Documents and Reference

	Partition and Storage Map [http://opensource.rock-chips.com/wiki_Partitions]

Hardware Datasheets and Interfaces

Datasheets:

	ROC-RK3328-CC Schematic [http://www.t-firefly.com/download/ROC-RK3288-CC/ROC-RK3328-CC-V1.0-A_yl.pdf]

	ROC-RK3328-CC Components Position Reference [http://www.t-firefly.com/download/ROC-RK3288-CC/ROC-RK3328-CC-V1.0-A_tp.pdf]

	Rockchip RK3328 Datasheet [http://www.t-firefly.com/download/ROC-RK3288-CC/Rockchip%20RK3328%20Datasheet%20V1.0-20170117.pdf]

	Rockchip RK805 Datasheet V1.1 [http://files.pine64.org/doc/rock64/Rockchip_RK805_Datasheet_V1.1%C2%A020160921.pdf]

Expansion Interface:
[image: _images/hw_expansion_interface.png]

Board Top:
[image: _images/hw_board_interface_top.png]

Board Bottom:
[image: _images/hw_board_interface_bottom.png]

Community

Firefly:

	Forum [http://bbs.t-firefly.com/]

	Facebook [https://www.facebook.com/TeeFirefly]

	Google+ [https://plus.google.com/u/0/communities/115232561394327947761]

	Youtube [https://www.youtube.com/channel/UCk7odZvUrTG0on8HXnBT7gA]

	Twitter [https://twitter.com/TeeFirefly]

	Shop [http://shop.t-firefly.com/]

Index

 _images/androidtool_del.png
Download Insze Uperade Firmears Advenced Function

Clear tems
Mave Up
Mave Dawn
Load Canfig
Export Config

Retepenz Run Switch LowerFormat Clear

Found One MASKROM Device

_images/androidtool_flash_image.png
Download Insze Uperade Firmears Advenced Function

]
Address Path
--———-

¥ | 0x00000000 systen /ROC-RE3328-CC_Ubuntul6. 04_rohéd.

Retepenz Run Switch LowerFormat Clear

Found One MASKROM Device

_images/androidtool.png
Download Insze Uperade Firmears Advenced Function

T
--——_-

¥ | 0x00000000 systen /ROC-RE3328-CC_Ubuntul6. 04_rohéd.

Retepenz Run Switch LowerFormat Clear

No Devices Found

_images/androidtool_add.png
Download Insze Uperade Firmears Advenced Function

AMiress Nene | Path

Delltem

Clear tems
Mave Up
Mave Dawn
Load Canfig
Export Config

Retepenz Run Switch LowerFormat Clear

Found One MASKROM Device

_images/debug_con.png

_images/debug_devicemanager_com.png
le Action View Help

e mEEm B EXx®

DESKTOP-TILSOPE
> 4 Audio inputs and outputs
> B Batteries
5 A Computer
> Diskdrives
> [Display adapters
> 2 DVD/CD-ROM drives
> @ Human Interface Devices
@ IDE ATA/ATAPI controllrs
> = Keyboards
5 (9 Mice snd other ponting deices
> [Monitors
> @ Network adapters
v @ Ports (COM&LPT)
§ Siicon Labs CP210¢ USB to UART Bridge (COMS)
> % Print queues
> [Processors
5 B Software devices
> i Sound, video and game controllrs
>
>
>

G Storage controllers
System devices
§ Universal Seis Bus controlers

_images/debug_putty_serial.png
Category:

& Session
Logging

& Terminal
Keyboard
Bel
Fealues

£ Window
Appeatance
Behaviour
Translation
Selection
Colours

& Connection

Data

Pray

Teket

Rlogin

SSH

Seial

About

Basic optons for you PuTTY session

Speciy the destination you want to connect to

Sealine

Com3

Cornestion ype:

Ofaw O Telnet Oflogn OS5H @ Serial

Load, save or deete a stored session

Saved Sessions

.

Default Setings

Close window on e

Oiways O Never

@® Oniy on clean exit

Speed

Load

Save

Delete

Cancel

nav.xhtml

 Table of Contents

 		
 Welcome to ROC-RK3328-CC Manual

 		
 Introduction

 		
 Welcome

 		
 Specification

 		
 Package & Accessories

 		
 Getting Started

 		
 Firmware Format

 		
 Download & Flash

 		
 System Boot Up

 		
 Flashing to the SD Card

 		
 Preparing the SD Card

 		
 Flashing Tools

 		
 SDCard Installer

 		
 Etcher

 		
 dd

 		
 SD Firmware Tool

 		
 Flashing to the eMMC

 		
 Boot Mode

 		
 Rockusb Mode

 		
 Maskrom Mode

 		
 Flashing Tools

 		
 AndroidTool

 		
 Installing Rockusb Driver

 		
 Installing AndroidTool

 		
 Flashing Raw Firmware

 		
 Flashing RK Firmware

 		
 Flashing Partition Image

 		
 upgrade_tool

 		
 Installing upgrade_tool

 		
 Flashing Raw Firmware

 		
 Flashing RK Firmware

 		
 Flashing Partition Image

 		
 FAQ

 		
 rkdeveloptool

 		
 Installing rkdeveloptool

 		
 Flashing Raw Firmware

 		
 Flashing Partition Image

 		
 udev

 		
 Partition Offset

 		
 GPT Partition

 		
 parameter

 		
 Serial Debug

 		
 Preparing a USB Serial Adapter

 		
 Choosing a USB Serial Adapter

 		
 Connecting to the Debug Port

 		
 Serial Parameters

 		
 Serial Debugging in Windows

 		
 Install Driver

 		
 Putty

 		
 Serial Debugging in Linux

 		
 picocom

 		
 minicom

 		
 Compiling Linux Firmware

 		
 Preparation

 		
 Download the Linux SDK

 		
 Compiling U-Boot

 		
 Compiling Kernel

 		
 Building Root Filesystem

 		
 Packing Raw Format Firmware

 		
 Building Debian Root Filesystem

 		
 Preparing Build System

 		
 Compile the Root File System

 		
 Building Ubuntu Root Filesystem

 		
 Reference

 		
 Compiling Android 7.1

 		
 Preparation

 		
 Hardware Requiremnts

 		
 Software Requiements

 		
 Downloading Android SDK

 		
 Compiling with Firefly Scripts

 		
 Compiling Without Script

 		
 Packing Rockchp Firmware

 		
 Partition Images

 		
 Unpack/Packing Rockchip Firmware

 		
 Rockchip Firmware Format

 		
 Installation of Tools

 		
 Unpacking Rockchip Firmware

 		
 Packing Rockchip Firmware

 		
 Customization

 		
 Customizing system.img

 		
 Adb Instructions

 		
 Preparation

 		
 Adb Installation in Windows

 		
 Adb Installation in Ubuntu

 		
 Frequently Used Adb Commands

 		
 Connection Management

 		
 Debug

 		
 Running shell

 		
 Apk Management

 		
 FAQ

 		
 How to write MAC address？

 		
 No sound in the headset

 		
 Firmware and Tools

 		
 Documents and Reference

 		
 Hardware Datasheets and Interfaces

 		
 Community

_images/hw_board_usbconn.png

_images/hw_expansion_interface.png
SPDIFL

— @3 \—e

DEBUG — (T2 |-\ —®

W rover
 c\o

_images/hw_board_interface_bottom.png

_images/hw_board_interface_top.png

_images/started_driverassistant_dev.png
File Action View Help

L= =k

5 A Audia inputs and outputs

5 B Bateries

(5] Classforrockusb devices
Rockusb Device

5 B Computer

> Disk drives

> [Display adapters

> wm DVD/CD-ROM drives

> Human Interface Devices

5 o3 IDE ATAVATAR] contrallers

> = Keyhoards

> (9 Mice and other pointing devices

> 1 Monitors

> @ Netwark adapters

5 R Print queues

> [Processors

_images/started_sdcard-installer.png
Choose an 0OS

. Android 7.1.2
I'I Android 7.1.2 for ROC-RK3328-CC build 20180324
Ubuntu 16.04
Ubuntu 16.04 for ROC-RK3328-CC build 20180315~
[] sStation 0S
f
Station OS is based on Android operating system, More than 20 kinds of buldvi23
L optimization.
LibreELEC
LibreELEC — Just enough OS for KODI. build 20180324

Browse image file from local drive
Supported format: zip, etch, img.gz, img bz2, img xz, img, s, dsk, hddimg,

raw

_images/rk3328_maskrom_pads.jpg
e T e

Y-01A-09-32654-008
pR9g snduo) 2.
s ynduorany
workijanj-y
Aoy

_images/started_driverassistant.png
B WEROEHBF 5

W SENFE

OO0

_images/started_sdcard-installer_flashing.png
Card Installer

system.img \\\PHYSICALDRIVE1 -

Powered by ETCHER

_images/started_sdcard-installer_umount_fail.png
 Attention

Failed to unmount. Failed to unmount the
drive.

ROC-RK3328-...
0180324 zip

Change
Change

_images/started_sdfirmwaretool.png
FirstChoose removable disk SDBoot:2.12

Mass Storage Device 8 Device. 29,86 v
Second:Choose function made

Upgrads Firmware POBATESt

Third:Choose firmware

[cotuserstasievipesttontefly-Rka399_anchoid7 1.1] [Fifriare |

Fourth:Choose dema(Option)

i =

Restore

_static/ajax-loader.gif

_images/started_sdfirmwaretool_done.png
dlh Rockehip Create Upgrade Disk Tool v1.46

FirstChoose remavable disk
Mass Storage Device 8 Device. 29,86

Second:ChogSumiiu’
Upl

tononn Q) Cestnawarse e

=

Fourth:Choo

Writing system...

SDBoot:2.12

(50 Boot

Firmware

Dermo,

Create

Restore

_static/Logo.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

