

Robustest- Support

	1. RITE- RobusTest Integrated Testing Environment
	1.1. Home

	1.2. Undercovers

	1.3. Xpath finder

	1.4. Useful tips

	1.5. Examples

	2. Selenium
	2.1. Installation
	2.1.1. Introduction

	2.1.2. Downloading Python bindings for Selenium

	2.1.3. Detailed instructions for Windows users

	2.1.4. Downloading Selenium server

	2.2. Getting Started
	2.2.1. Simple Usage

	2.2.2. Walk through of the example

	2.2.3. Using Selenium to write tests

	2.2.4. Walk through of the example

	2.2.5. Using Selenium with remote WebDriver

	2.3. Navigating
	2.3.1. Interacting with the page

	2.3.2. Filling in forms

	2.3.3. Drag and drop

	2.3.4. Moving between windows and frames

	2.3.5. Popup dialogs

	2.3.6. Navigation: history and location

	2.3.7. Cookies

	2.4. Locating Elements
	2.4.1. Locating by Id

	2.4.2. Locating by Name

	2.4.3. Locating by XPath

	2.4.4. Locating Hyperlinks by Link Text

	2.4.5. Locating Elements by Tag Name

	2.4.6. Locating Elements by Class Name

	2.4.7. Locating Elements by CSS Selectors

	2.5. Waits
	2.5.1. Explicit Waits

	2.5.2. Implicit Waits

	2.6. WebDriver API
	2.6.1. Exceptions

	2.6.2. Action Chains

	2.6.3. Alerts

	2.6.4. Special Keys

	2.6.5. Firefox WebDriver

	2.6.6. Chrome WebDriver

	2.6.7. Remote WebDriver

	2.6.8. WebElement

	2.6.9. UI Support

	2.6.10. Color Support

	2.6.11. Expected conditions Support

	2.7. Appendix: Frequently Asked Questions
	2.7.1. How to use ChromeDriver ?

	2.7.2. Does Selenium 2 support XPath 2.0 ?

	2.7.3. How to scroll down to the bottom of a page ?

	2.7.4. How to auto save files using custom Firefox profile ?

	2.7.5. How to use firebug with Firefox ?

	2.7.6. How to take screenshot of the current window ?

Indices and tables

	Index

	Module Index

	Search Page

Robustest - One Click Automation [http://www.robustest.com?oneclickAutomation/]

Robustest - Contextual Bug Reporting [http://www.robustest.com?ContextualBugReporting/]

1. RITE- RobusTest Integrated Testing Environment

	1.1. Home

	1.2. Undercovers

	1.3. Xpath finder

	1.4. Useful tips

	1.5. Examples

1.1. Home

In this wiki, we mainly have these three parts.

	About-RITE This section introduces how to use each feature of RITE.

	Xpath-finder This section introduces how to use Xpath finder to get a custom Xpath

	Useful-tips This section is intended to help users avoid some known issues.

	Examples This section contains a few real site examples.

	Q&A This section answers quite a few common questions.

Please share your suggestions with us!

Google Moderator site [http://google.com/]

Contact us:

care@robustest.com

1.2. Undercovers

After introducing the basic functionalities, let’s take a look at the undercover stuff:

	verification

	code generation

	content map

	descriptor

Comments

You do not have permission to add comments.

1.3. Xpath finder

[image: _images/xpathfinder.png]
How to turn on Xpath finder?

The Xpath finder could be either a standalone tool to help find a custom xpath or it could be used along with RITE.

	If you click the Xpath finder option in the extension popup dialog, it goes the standalone mode.

	To use it with RITE, you could open the settings dialog on RITE main console, and check the option “Use Xpath”. Now when you enter the recording mode, you’ll see the Xpath Finder shown in page.

A few quick tips to use it

	Press the “Shift” key to pause/resume the content changing while moving cursor. Once you’ve paused it, you could continue customizing your xpath by checking the options.

	Every time you click on an checkbox in Xpath finder, it will recalculate the xpath based on the change.

	If the Shift key doesn’t pause/resume the xpath changing, it could be the tab is not focused.

How does it work?

When you move cursor around dom elements, you’ll see the content changes correspondingly in Xpath Finder. In the top text box, it shows the xpath that is generated using the default algorithm. You can also customize the way that Xpath is generated in the following ways.

Based on attributes:

For example, the text in this case might not be changed anytime soon, so you could check that option, and it’ll automatically show the updated xpath based on the text attribute.

Based on location:

Sometimes, none of the attributes are reliable, and you might just want to make the xpath based on the element’s location in the dom tree. In this case, you could check all of the options off.

Partial match:

For example, you might just need the text attribute partially matched in some cases. Then you could check the contains checkbox next to the text input box.

After you’ve customized your new xpath, you might want to click the “ping” button to check if it’s still matching the correct element. In the end, you could save it, so that RITE will use the new xpath instead of the default xpath when needed. When use the tool in the standalone mode, once your page navigates out, the Xpath finder will be gone, and you could reopen it if needed.

A real example

Let’s say we’d like to get the xpath of the Maps link on Google home page.

[image: _images/xpathfinder1.png]
When we move the cursor on top of the Maps link, we would see something like the above image, and by default, we get the xpath: //A[@id=”gb_8”]/SPAN[2]

If we think the id in the xpath might be changed a lot more frequently than the text “Maps”, then we could press the “Shift” key to pause the content changing, and then check the text checkbox before “Maps” in Xpath finder. Now, we get another xpath generated: //SPAN[text()=”Maps”]

In some circumstances, there might not be any attributes that are reliable enough, we might just want to generate the xpath based on its location. In this case, we could simply check all of the checkboxes in Xpath finder off. Then we’ll get another xpath: //DIV[1]/OL[1]/LI[5]/A[1]/SPAN[2]

Of course we would like to double check that after customizing the xpath, does it still match the correct element? That’s what the ping button next to the Xpath input box does. Clicking the button will highlight the corresponding element in page with a blue boarder, and it will disappear within a sec.

Limitation

	It doesn’t support iframe right now.

	When use it with RITE, for the custom xpath that is saved, it will be gone if you navigate out of the current page.

Comments

You do not have permission to add comments.

1.4. Useful tips

Main console

	Double click on a generated command like click(...), verify(...) will open the Details dialog.

	Ctrl + Alt +s to switch the generated script to readable mode and switch back.

Record

	To change the tab under record, click the RITE option in extension popup again. To check if the new tab is selected correctly, you could enter record mode and see if the new tab is popped up to the front and ready to record.

	To record an action like verify, verify not, and mouseover, try right clicking on the target element. In the popped up dialog in console, select the correct action and save the command.

	Always keep an eye on the generated code during recording. Most of the time, it should be obvious to understand the syntax. When there is a URL redirection happens, it should generate a redirectTo command following the original action command.

	Make sure the page is properly loaded and the dom element is yellow highlighted before performing actions, otherwise, it might miss recording the step.

	To turn the Xpath finder on, you’ll need to check the option “Use Xpath” in the settings dialog which could be opened by clicking the settings button in the RITE menu bar.

	During recording, if a new tab is opened after clicking a link, you are still able to record in the original tab but the new tab.

	Due to an extension bug [https://code.google.com/p/chromium/issues/detail?id=76429], RITE couldn’t perform well in case of dynamically created iframes. For example, Gmail or the Google+ sharebox. As a workaround, it’s possible to write up JS functions to simulate the behaviors.

Playback

	To run a whole project or any number of scripts within a project, you’ll need to load the project first, and select the script names in the playback runtime dialog and play. In the end, it will show the links to view the results.

	You could cancel the whole run of multiple tests by clicking the X button in the playback runtime dialog. It only appears when you are running multiple tests.

	Try the stop button in playback runtime dialog to clear any playback status in case anything gets stuck.

Code

	
	The commonly generated commands are the followings:

	
	click(Element) / dblclick(Element) / ...

	type(Element, Variable) / select(Element, Variable) / verify(Element, Variable) /...

	redirectTo(URL)

	call(Custom Function)

	changeUrl(URL), which could be manually typed in editor to perform a redirection.

Xpath finder

	“Shift” to pause/resume the content changing in Xpath finder.

	Turn on/off the checkboxes to customize the xpath.

Comments

You do not have permission to add comments.

1.5. Examples

In this section, we’ll have a look at a few scripts recorded on popular sites. Once you have the extension installed, you could click on any of the following screenshots and it will open the RITE main console and automatically load the script. Feel free to read the code, screenshots, or play it.

(Note that this page can not be recorded correctly because it contains special code for tutorial purpose.)

Google Maps

[image: _images/GoogleMaps.png]
Expedia

[image: _images/Expedia.png]
Amazon

[image: _images/amazon.png]
Wikipedia

[image: _images/Wikipedia.png]
Yahoo

[image: _images/Yahoo.png]
Youtube

[image: _images/Youtube.png]
Comments

You do not have permission to add comments.

2. Selenium

	2.1. Installation
	2.1.1. Introduction

	2.1.2. Downloading Python bindings for Selenium

	2.1.3. Detailed instructions for Windows users

	2.1.4. Downloading Selenium server

	2.2. Getting Started
	2.2.1. Simple Usage

	2.2.2. Walk through of the example

	2.2.3. Using Selenium to write tests

	2.2.4. Walk through of the example

	2.2.5. Using Selenium with remote WebDriver

	2.3. Navigating
	2.3.1. Interacting with the page

	2.3.2. Filling in forms

	2.3.3. Drag and drop

	2.3.4. Moving between windows and frames

	2.3.5. Popup dialogs

	2.3.6. Navigation: history and location

	2.3.7. Cookies

	2.4. Locating Elements
	2.4.1. Locating by Id

	2.4.2. Locating by Name

	2.4.3. Locating by XPath

	2.4.4. Locating Hyperlinks by Link Text

	2.4.5. Locating Elements by Tag Name

	2.4.6. Locating Elements by Class Name

	2.4.7. Locating Elements by CSS Selectors

	2.5. Waits
	2.5.1. Explicit Waits

	2.5.2. Implicit Waits

	2.6. WebDriver API
	2.6.1. Exceptions

	2.6.2. Action Chains

	2.6.3. Alerts

	2.6.4. Special Keys

	2.6.5. Firefox WebDriver

	2.6.6. Chrome WebDriver

	2.6.7. Remote WebDriver

	2.6.8. WebElement

	2.6.9. UI Support

	2.6.10. Color Support

	2.6.11. Expected conditions Support

	2.7. Appendix: Frequently Asked Questions
	2.7.1. How to use ChromeDriver ?

	2.7.2. Does Selenium 2 support XPath 2.0 ?

	2.7.3. How to scroll down to the bottom of a page ?

	2.7.4. How to auto save files using custom Firefox profile ?

	2.7.5. How to use firebug with Firefox ?

	2.7.6. How to take screenshot of the current window ?

	License:	This document is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License [http://creativecommons.org/licenses/by-sa/4.0/].

Note

This is not an official documentation. Official API documentation
is available here [http://selenium.googlecode.com/svn/trunk/docs/api/py/index.html].

2.1. Installation

2.1.1. Introduction

Selenium Python bindings provides a simple API to write
functional/acceptance tests using Selenium WebDriver. Through
Selenium Python API you can access all functionalities of Selenium
WebDriver in an intuitive way.

Selenium Python bindings provide a convenient API to access Selenium
WebDrivers like Firefox, Ie, Chrome, Remote etc. The current supported
Python versions are 2.7, 3.2, 3.3 and 3.4.

This documentation explains Selenium 2 WebDriver API. Selenium
1 / Selenium RC API is not covered here.

2.1.2. Downloading Python bindings for Selenium

You can download Python bindings for Selenium from the PyPI page for
selenium package [http://pypi.python.org/pypi/selenium]. However,
a better approach would be to use
pip [http://www.pip-installer.org/en/latest/installing.html] to
install the selenium package. Python 3.4 has pip available in the
standard library [http://docs.python.org/3.4/installing/index.html].
Using pip, you can install selenium like this:

pip install selenium

You may consider using virtualenv [http://www.virtualenv.org]
to create isolated Python environments. Python 3.4 has pyvenv [http://docs.python.org/3.4/using/scripts.html#scripts-pyvenv]
which is almost same as virtualenv.

2.1.3. Detailed instructions for Windows users

Note

You should have internet connection to perform this installation.

	Install Python 3.4 using the MSI available in python.org download
page [http://www.python.org/download].

	Start a command prompt using the cmd.exe program and run the
pip command as given below to install selenium.

C:\Python34\Scripts\pip.exe install selenium

Now you can run your test scripts using Python. For example,
if you have created a Selenium based script and saved it inside
C:\my_selenium_script.py, you can run it like this:

C:\Python34\python.exe C:\my_selenium_script.py

2.1.4. Downloading Selenium server

Note

The Selenium server is only required, if you want to use the remote
WebDriver. See the Using Selenium with remote WebDriver section for
more details. If you are a beginner learning Selenium, you can
skip this section and proceed with next chapter.

Selenium server is a Java program. Java Runtime Environment (JRE) 1.6
or newer version is recommended to run Selenium server.

You can download Selenium server 2.x from the download page of
selenium website [http://seleniumhq.org/download/]. The file name
should be something like this:
selenium-server-standalone-2.x.x.jar. You can always download the
latest 2.x version of Selenium server.

If Java Runtime Environment (JRE) is not installed in your system, you
can download the JRE from the Oracle website [http://www.oracle.com/technetwork/java/javase/downloads/index.html].
If you are using a GNU/Linux system and have root access in your system,
you can also use your operating system instructions to install JRE.

If java command is available in the PATH (environment variable),
you can start the Selenium server using this command:

java -jar selenium-server-standalone-2.x.x.jar

Replace 2.x.x with actual version of Selenium server you downloaded
from the site.

If JRE is installed as a non-root user and/or if it is
not available in the PATH (environment variable), you can type the
relative or absolute path to the java command. Similarly, you can
provide relative or absolute path to Selenium server jar file.
Then, the command will look something like this:

/path/to/java -jar /path/to/selenium-server-standalone-2.x.x.jar

2.2. Getting Started

2.2.1. Simple Usage

If you have installed Selenium Python bindings, you can start using it
from Python like this.

from selenium import webdriver
from selenium.webdriver.common.keys import Keys

driver = webdriver.Firefox()
driver.get("http://www.python.org")
assert "Python" in driver.title
elem = driver.find_element_by_name("q")
elem.send_keys("selenium")
elem.send_keys(Keys.RETURN)
driver.close()

The above script can be saved into a file (eg:-
python_org_search.py), then it can be run like this:

python python_org_search.py

The python which you are running should have the selenium module
installed.

2.2.2. Walk through of the example

The selenium.webdriver module provides all the WebDriver
implementations. Currently supported WebDriver implementations are
Firefox, Chrome, Ie and Remote. The Keys class provide keys in the
keyboard like RETURN, F1, ALT etc.

from selenium import webdriver
from selenium.webdriver.common.keys import Keys

Next, the instance of Firefox WebDriver is created.

driver = webdriver.Firefox()

The driver.get method will navigate to a page given by the URL.
WebDriver will wait until the page has fully loaded (that is, the
“onload” event has fired) before returning control to your test or
script. It’s worth noting that if your page uses a lot of AJAX on
load then WebDriver may not know when it has completely loaded.:

driver.get("http://www.python.org")

The next line is an assertion to confirm that title has “Python” word
in it:

assert "Python" in driver.title

WebDriver offers a number of ways to find elements using one of the
find_element_by_* methods. For example, the input text element can
be located by its name attribute using find_element_by_name
method. Detailed explanation of finding elements is available in the
Locating Elements chapter:

elem = driver.find_element_by_name("q")

Next we are sending keys, this is similar to entering keys using your
keyboard. Special keys can be send using Keys class imported from
selenium.webdriver.common.keys:

elem.send_keys("selenium")
elem.send_keys(Keys.RETURN)

After submission of the page, you should get the result if there is any:

Finally, the browser window is closed. You can also call quit
method instead of close. The quit will exit entire browser where
as close will close one tab, but if it just one tab, by default most
browser will exit entirely.:

driver.close()

2.2.3. Using Selenium to write tests

Selenium is mostly used for writing test cases. The selenium
package itself doesn’t provide a testing tool/framework. You can
write test cases using Python’s unittest module. The other choices as
a tool/framework are py.test and nose.

In this chapter, we use unittest as the framework of choice. Here
is the modified example which uses unittest module. This is a test
for python.org search functionality:

import unittest
from selenium import webdriver
from selenium.webdriver.common.keys import Keys

class PythonOrgSearch(unittest.TestCase):

 def setUp(self):
 self.driver = webdriver.Firefox()

 def test_search_in_python_org(self):
 driver = self.driver
 driver.get("http://www.python.org")
 self.assertIn("Python", driver.title)
 elem = driver.find_element_by_name("q")
 elem.send_keys("selenium")
 elem.send_keys(Keys.RETURN)

 def tearDown(self):
 self.driver.close()

if __name__ == "__main__":
 unittest.main()

You can run the above test case from a shell like this:

python test_python_org_search.py
.
--
Ran 1 test in 15.566s

OK

The above results shows that, the test has been successfully
completed.

2.2.4. Walk through of the example

Initially, all the basic modules required are imported. The unittest [http://docs.python.org/library/unittest.html] module is a built-in
Python based on Java’s JUnit. This module provides the framework for
organizing the test cases. The selenium.webdriver module provides
all the WebDriver implementations. Currently supported WebDriver
implementations are Firefox, Chrome, Ie and Remote. The Keys class
provide keys in the keyboard like RETURN, F1, ALT etc.

import unittest
from selenium import webdriver
from selenium.webdriver.common.keys import Keys

The test case class is inherited from unittest.TestCase.
Inheriting from TestCase class is the way to tell unittest module
that, this is a test case:

class PythonOrgSearch(unittest.TestCase):

The setUp is part of initialization, this method will get called
before every test function which you are going to write in this test
case class. Here you are creating the instance of Firefox WebDriver.

def setUp(self):
 self.driver = webdriver.Firefox()

This is the test case method. The first line inside this method
create a local reference to the driver object created in setUp
method.

def test_search_in_python_org(self):
 driver = self.driver

The driver.get method will navigate to a page given by the URL.
WebDriver will wait until the page has fully loaded (that is, the
“onload” event has fired) before returning control to your test or
script. It’s worth noting that if your page uses a lot of AJAX on
load then WebDriver may not know when it has completely loaded.:

driver.get("http://www.python.org")

The next line is an assertion to confirm that title has “Python” word
in it:

self.assertIn("Python", driver.title)

WebDriver offers a number of ways to find elements using one of the
find_element_by_* methods. For example, the input text element can
be located by its name attribute using find_element_by_name
method. Detailed explanation of findind elements is available in the
Locating Elements chapter:

elem = driver.find_element_by_name("q")

Next we are sending keys, this is similar to entering keys using your
keyboard. Special keys can be send using Keys class imported from
selenium.webdriver.common.keys:

elem.send_keys("selenium")
elem.send_keys(Keys.RETURN)

After submission of the page, you should get result as per search if
there is any.

The tearDown method will get called after every test method. This
is a place to do all cleanup actions. In the current method, the
browser window is closed. You can also call quit method instead of
close. The quit will exit entire browser, where as close
will close a tab, but if it is just one tab, by default most browser
will exit entirely.:

def tearDown(self):
 self.driver.close()

Final lines are some boiler plate code to run the test suite:

if __name__ == "__main__":
 unittest.main()

2.2.5. Using Selenium with remote WebDriver

To use the remote WebDriver, you should have Selenium server running.
To run the server, use this command:

java -jar selenium-server-standalone-2.x.x.jar

While running the Selenium server, you could see a message looks like
this:

15:43:07.541 INFO - RemoteWebDriver instances should connect to: http://127.0.0.1:4444/wd/hub

The above line says that, you can use this URL for connecting to
remote WebDriver. Here are some examples:

from selenium.webdriver.common.desired_capabilities import DesiredCapabilities

driver = webdriver.Remote(
 command_executor='http://127.0.0.1:4444/wd/hub',
 desired_capabilities=DesiredCapabilities.CHROME)

driver = webdriver.Remote(
 command_executor='http://127.0.0.1:4444/wd/hub',
 desired_capabilities=DesiredCapabilities.OPERA)

driver = webdriver.Remote(
 command_executor='http://127.0.0.1:4444/wd/hub',
 desired_capabilities=DesiredCapabilities.HTMLUNITWITHJS)

The desired capabilities is a dictionary, so instead of using the
default dictionaries, you can specifies the values explicitly:

driver = webdriver.Remote(
 command_executor='http://127.0.0.1:4444/wd/hub',
 desired_capabilities={'browserName': 'htmlunit',
 'version': '2',
 'javascriptEnabled': True})

2.3. Navigating

The first thing you’ll want to do with WebDriver is navigate to a
link. The normal way to do this is by calling get method:

driver.get("http://www.google.com")

WebDriver will wait until the page has fully loaded (that is, the
onload event has fired) before returning control to your test or
script. It’s worth noting that if your page uses a lot of AJAX on
load then WebDriver may not know when it has completely loaded. If
you need to ensure such pages are fully loaded then you can use
waits.

2.3.1. Interacting with the page

Just being able to go to places isn’t terribly useful. What we’d
really like to do is to interact with the pages, or, more
specifically, the HTML elements within a page. First of all, we need
to find one. WebDriver offers a number of ways to find elements. For
example, given an element defined as:

<input type="text" name="passwd" id="passwd-id" />

you could find it using any of:

element = driver.find_element_by_id("passwd-id")
element = driver.find_element_by_name("passwd")
element = driver.find_element_by_xpath("//input[@id='passwd-id']")

You can also look for a link by its text, but be careful! The text
must be an exact match! You should also be careful when using XPATH
in WebDriver. If there’s more than one element that matches the
query, then only the first will be returned. If nothing can be found,
a NoSuchElementException will be raised.

WebDriver has an “Object-based” API; we represent all types of
elements using the same interface. This means that although you may
see a lot of possible methods you could invoke when you hit your IDE’s
auto-complete key combination, not all of them will make sense or be
valid. Don’t worry! WebDriver will attempt to do the Right Thing, and
if you call a method that makes no sense (“setSelected()” on a “meta”
tag, for example) an exception will be raised.

So, you’ve got an element. What can you do with it? First of all, you
may want to enter some text into a text field:

element.send_keys("some text")

You can simulate pressing the arrow keys by using the “Keys” class:

element.send_keys(" and some", Keys.ARROW_DOWN)

It is possible to call send_keys on any element, which makes it
possible to test keyboard shortcuts such as those used on GMail. A
side-effect of this is that typing something into a text field won’t
automatically clear it. Instead, what you type will be appended to
what’s already there. You can easily clear the contents of a text
field or textarea with clear method:

element.clear()

2.3.2. Filling in forms

We’ve already seen how to enter text into a textarea or text field,
but what about the other elements? You can “toggle” the state of
drop down, and you can use “setSelected” to set something like an
OPTION tag selected. Dealing with SELECT tags isn’t too bad:

element = driver.find_element_by_xpath("//select[@name='name']")
all_options = element.find_elements_by_tag_name("option")
for option in all_options:
 print("Value is: %s" % option.get_attribute("value"))
 option.click()

This will find the first “SELECT” element on the page, and cycle
through each of it’s OPTIONs in turn, printing out their values, and
selecting each in turn.

As you can see, this isn’t the most efficient
way of dealing with SELECT elements . WebDriver’s support classes
include one called “Select”, which provides useful methods for
interacting with these:

from selenium.webdriver.support.ui import Select
select = Select(driver.find_element_by_name('name'))
select.select_by_index(index)
select.select_by_visible_text("text")
select.select_by_value(value)

WebDriver also provides features for deselecting all the selected options:

select = Select(driver.find_element_by_id('id'))
select.deselect_all()

This will deselect all OPTIONs from the first SELECT on the page.

Suppose in a test, we need the list of all default selected options, Select
class provides a property method that returns a list:

select = Select(driver.find_element_by_xpath("xpath"))
all_selected_options = select.all_selected_options

To get all available options:

options = select.options

Once you’ve finished filling out the form, you probably want to submit
it. One way to do this would be to find the “submit” button and click
it:

Assume the button has the ID "submit" :)
driver.find_element_by_id("submit").click()

Alternatively, WebDriver has the convenience method “submit” on every
element. If you call this on an element within a form, WebDriver will
walk up the DOM until it finds the enclosing form and then calls
submit on that. If the element isn’t in a form, then the
NoSuchElementException will be raised:

element.submit()

2.3.3. Drag and drop

You can use drag and drop, either moving an element by a certain
amount, or on to another element:

element = driver.find_element_by_name("source")
target = driver.find_element_by_name("target")

from selenium.webdriver import ActionChains
action_chains = ActionChains(driver)
action_chains.drag_and_drop(element, target)

2.3.4. Moving between windows and frames

It’s rare for a modern web application not to have any frames or to be
constrained to a single window. WebDriver supports moving between
named windows using the “switch_to_window” method:

driver.switch_to_window("windowName")

All calls to driver will now be interpreted as being directed to
the particular window. But how do you know the window’s name? Take a
look at the javascript or link that opened it:

Click here to open a new window

Alternatively, you can pass a “window handle” to the
“switch_to_window()” method. Knowing this, it’s possible to iterate
over every open window like so:

for handle in driver.window_handles:
 driver.switch_to_window(handle)

You can also swing from frame to frame (or into iframes):

driver.switch_to_frame("frameName")

It’s possible to access subframes by separating the path with a dot,
and you can specify the frame by its index too. That is:

driver.switch_to_frame("frameName.0.child")

would go to the frame named “child” of the first subframe of the frame
called “frameName”. All frames are evaluated as if from *top*.

Once we are done with working on frames, we will have to come back
to the parent frame which can be done using:

driver.switch_to_default_content()

2.3.5. Popup dialogs

Selenium WebDriver has built-in support for handling popup dialog
boxes. After you’ve triggerd and action that would open a popup, you
can access the alert with the following:

alert = driver.switch_to_alert()

This will return the currently open alert object. With this object
you can now accept, dismiss, read its contents or even type into a
prompt. This interface works equally well on alerts, confirms,
prompts. Refer to the API documentation for more information.

2.3.6. Navigation: history and location

Earlier, we covered navigating to a page using the “get” command (
driver.get("http://www.example.com")) As you’ve seen, WebDriver
has a number of smaller, task-focused interfaces, and navigation is a
useful task. To navigate to a page, you can use get method:

driver.get("http://www.example.com")

To move backwards and forwards in your browser’s history:

driver.forward()
driver.back()

Please be aware that this functionality depends entirely on the
underlying driver. It’s just possible that something unexpected may
happen when you call these methods if you’re used to the behaviour of
one browser over another.

2.3.7. Cookies

Before we leave these next steps, you may be interested in
understanding how to use cookies. First of all, you need to be on the
domain that the cookie will be valid for:

Go to the correct domain
driver.get("http://www.example.com")

Now set the cookie. This one's valid for the entire domain
cookie = {"key": "value"})
driver.add_cookie(cookie)

And now output all the available cookies for the current URL
all_cookies = driver.get_cookies()
for cookie_name, cookie_value in all_cookies.items():
 print("%s -> %s", cookie_name, cookie_value)

2.4. Locating Elements

There are vaious strategies to locate elements in a page. You can use
the most appropriate one for your case. Selenium provides the following
methods to locate elements in a page:

	find_element_by_id

	find_element_by_name

	find_element_by_xpath

	find_element_by_link_text

	find_element_by_partial_link_text

	find_element_by_tag_name

	find_element_by_class_name

	find_element_by_css_selector

To find multiple elements (these methods will return a list):

	find_elements_by_name

	find_elements_by_xpath

	find_elements_by_link_text

	find_elements_by_partial_link_text

	find_elements_by_tag_name

	find_elements_by_class_name

	find_elements_by_css_selector

2.4.1. Locating by Id

Use this when you know id attribute of an element. With this
strategy, the first element with the id attribute value matching the
location will be returned. If no element has a matching id
attribute, a NoSuchElementException will be raised.

For instance, conside this page source:

<html>
 <body>
 <form id="loginForm">
 <input name="username" type="text" />
 <input name="password" type="password" />
 <input name="continue" type="submit" value="Login" />
 </form>
 </body>
<html>

The form element can be located like this:

login_form = driver.find_element_by_id('loginForm')

2.4.2. Locating by Name

Use this when you know name attribute of an element. With this
strategy, the first element with the name attribute value matching
the location will be returned. If no element has a matching name
attribute, a NoSuchElementException will be raised.

For instance, conside this page source:

<html>
 <body>
 <form id="loginForm">
 <input name="username" type="text" />
 <input name="password" type="password" />
 <input name="continue" type="submit" value="Login" />
 <input name="continue" type="button" value="Clear" />
 </form>
</body>
<html>

The username & password elements can be located like this:

username = driver.find_element_by_name('username')
password = driver.find_element_by_name('password')

This will give the “Login” button as it occur before the “Clear”
button:

continue = driver.find_element_by_name('continue')

2.4.3. Locating by XPath

XPath is the language used for locating nodes in an XML document. As
HTML can be an implementation of XML (XHTML), Selenium users can
leverage this powerful language to target elements in their web
applications. XPath extends beyond (as well as supporting) the simple
methods of locating by id or name attributes, and opens up all sorts
of new possibilities such as locating the third checkbox on the page.

One of the main reasons for using XPath is when you don’t have a
suitable id or name attribute for the element you wish to locate. You
can use XPath to either locate the element in absolute terms (not
advised), or relative to an element that does have an id or name
attribute. XPath locators can also be used to specify elements via
attributes other than id and name.

Absolute XPaths contain the location of all elements from the root
(html) and as a result are likely to fail with only the slightest
adjustment to the application. By finding a nearby element with an id
or name attribute (ideally a parent element) you can locate your
target element based on the relationship. This is much less likely to
change and can make your tests more robust.

For instance, conside this page source:

<html>
 <body>
 <form id="loginForm">
 <input name="username" type="text" />
 <input name="password" type="password" />
 <input name="continue" type="submit" value="Login" />
 <input name="continue" type="button" value="Clear" />
 </form>
</body>
<html>

The form elements can be located like this:

login_form = driver.find_element_by_xpath("/html/body/form[1]")
login_form = driver.find_element_by_xpath("//form[1]")
login_form = driver.find_element_by_xpath("//form[@id='loginForm']")

	Absolute path (would break if the HTML was changed only slightly)

	First form element in the HTML

	The form element with attribute named id and the value loginForm

The username element can be located like this:

username = driver.find_element_by_xpath("//form[input/@name='username']")
username = driver.find_element_by_xpath("//form[@id='loginForm']/input[1]")
username = driver.find_element_by_xpath("//input[@name='username']")

	First form element with an input child element with attribute named
name and the value username

	First input child element of the form element with attribute named
id and the value loginForm

	First input element with attribute named ‘name’ and the value
username

The “Clear” button element can be located like this:

clear_button = driver.find_element_by_xpath("//input[@name='continue'][@type='button']")
clear_button = driver.find_element_by_xpath("//form[@id='loginForm']/input[4]")

	Input with attribute named name and the value continue and
attribute named type and the value button

	Fourth input child element of the form element with attribute named
id and value loginForm

These examples cover some basics, but in order to learn more, the
following references are recommended:

	W3Schools XPath Tutorial [http://www.w3schools.com/Xpath/]

	W3C XPath Recommendation [http://www.w3.org/TR/xpath]

	XPath Tutorial [http://www.zvon.org/comp/r/tut-XPath_1.html]
- with interactive examples.

There are also a couple of very useful Add-ons that can assist in
discovering the XPath of an element:

	XPath Checker [https://addons.mozilla.org/en-US/firefox/addon/1095?id=1095] -
suggests XPath and can be used to test XPath results.

	Firebug [https://addons.mozilla.org/en-US/firefox/addon/1843] -
XPath suggestions are just one of the many powerful features of this
very useful add-on.

	XPath Helper [https://chrome.google.com/webstore/detail/hgimnogjllphhhkhlmebbmlgjoejdpjl] -
for Google Chrome

2.4.4. Locating Hyperlinks by Link Text

Use this when you know link text used within an anchor tag. With this
strategy, the first element with the link text value matching the
location will be returned. If no element has a matching link text
attribute, a NoSuchElementException will be raised.

For instance, consider this page source:

<html>
 <body>
 <p>Are you sure you want to do this?</p>
 Continue
 Cancel
</body>
<html>

The continue.html link can be located like this:

continue_link = driver.find_element_by_link_text('Continue')
continue_link = driver.find_element_by_partial_link_text('Conti')

2.4.5. Locating Elements by Tag Name

Use this when you want to locate an element by tag name. With this
strategy, the first element with the give tag name will be returned.
If no element has a matching tag name, a NoSuchElementException
will be raised.

For instance, conside this page source:

<html>
 <body>
 <h1>Welcome</h1>
 <p>Site content goes here.</p>
</body>
<html>

The heading (h1) element can be located like this:

heading1 = driver.find_element_by_tag_name('h1')

2.4.6. Locating Elements by Class Name

Use this when you want to locate an element by class attribute name.
With this strategy, the first element with the matching class attribute
name will be returned. If no element has a matching class attribute name,
a NoSuchElementException will be raised.

For instance, consider this page source:

<html>
 <body>
 <p class="content">Site content goes here.</p>
</body>
<html>

The “p” element can be located like this:

content = driver.find_element_by_class_name('content')

2.4.7. Locating Elements by CSS Selectors

Use this when you want to locate an element by CSS selector syntaxt.
With this strategy, the first element with the matching CSS selector
will be returned. If no element has a matching CSS selector,
a NoSuchElementException will be raised.

For instance, consider this page source:

<html>
 <body>
 <p class="content">Site content goes here.</p>
</body>
<html>

The “p” element can be located like this:

content = driver.find_element_by_css_selector('p.content')

Sauce Labs has good documentation [http://saucelabs.com/resources/selenium/css-selectors]
on CSS selectors.

2.5. Waits

These days most of the web apps are using AJAX techniques. When a
page is loaded to browser, the elements within that page may load at
different time intervals. This makes locating elements difficult, if
the element is not present in the DOM, it will raise
ElementNotVisibleException exception. Using waits, we can solve
this issue. Waiting provides some time interval between actions
performed - mostly locating element or any other operation with the
element.

Selenium Webdriver provides two types of waits - implicit & explicit.
An explicit wait makes WebDriver to wait for a certain condition to
occur before proceeding further with executions. An implicit wait
makes WebDriver to poll the DOM for a certain amount of time when
trying to locate an element.

2.5.1. Explicit Waits

An explicit waits is code you define to wait for a certain condition
to occur before proceeding further in the code. The worst case of
this is time.sleep(), which sets the condition to an exact time period
to wait. There are some convenience methods provided that help you
write code that will wait only as long as required. WebDriverWait in
combination with ExpectedCondition is one way this can be
accomplished.

from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC

driver = webdriver.Firefox()
driver.get("http://somedomain/url_that_delays_loading")
try:
 element = WebDriverWait(driver, 10).until(
 EC.presence_of_element_located((By.ID, "myDynamicElement"))
)
finally:
 driver.quit()

This waits up to 10 seconds before throwing a TimeoutException or if
it finds the element will return it in 0 - 10 seconds. WebDriverWait
by default calls the ExpectedCondition every 500 milliseconds until it
returns successfully. A successful return is for ExpectedCondition
type is Boolean return true or not null return value for all other
ExpectedCondition types.

Expected Conditions

There are some common conditions that are frequently come across when
automating web browsers. Listed below are Implementations of
each. Selenium Python binding provides some convienence methods so you
don’t have to code an expected_condition class yourself or create your
own utility package for them.

	title_is

	title_contains

	presence_of_element_located

	visibility_of_element_located

	visibility_of

	presence_of_all_elements_located

	text_to_be_present_in_element

	text_to_be_present_in_element_value

	frame_to_be_available_and_switch_to_it

	invisibility_of_element_located

	element_to_be_clickable - it is Displayed and Enabled.

	staleness_of

	element_to_be_selected

	element_located_to_be_selected

	element_selection_state_to_be

	element_located_selection_state_to_be

	alert_is_present

from selenium.webdriver.support import expected_conditions as EC

wait = WebDriverWait(driver, 10)
element = wait.until(EC.element_to_be_clickable((By.ID,'someid')))

The expected_conditions module contains a set of predefined conditions
to use with WebDriverWait.

2.5.2. Implicit Waits

An implicit wait is to tell WebDriver to poll the DOM for a certain
amount of time when trying to find an element or elements if they are
not immediately available. The default setting is 0. Once set, the
implicit wait is set for the life of the WebDriver object instance.

from selenium import webdriver

driver = webdriver.Firefox()
driver.implicitly_wait(10) # seconds
driver.get("http://somedomain/url_that_delays_loading")
myDynamicElement = driver.find_element_by_id("myDynamicElement")

2.6. WebDriver API

Note

This is not an official documentation. Official API documentation
is available here [http://selenium.googlecode.com/svn/trunk/docs/api/py/index.html].

This chapter cover all the interfaces of Selenium WebDriver.

Recommended Import Style

The API definitions in this chapter shows the absolute location of classes.
However the recommended import style is as given below:

from selenium import webdriver

Then, you can access the classes like this:

webdriver.Firefox
webdriver.FirefoxProfile
webdriver.Chrome
webdriver.ChromeOptions
webdriver.Ie
webdriver.Opera
webdriver.PhantomJS
webdriver.Remote
webdriver.DesiredCapabilities
webdriver.ActionChains
webdriver.TouchActions
webdriver.Proxy

The special keys class (Keys) can be imported like this:

from selenium.webdriver.common.keys import Keys

The exception classes can be imported like this (Replace the TheNameOfTheExceptionClass with actual class name given below):

from selenium.common.exceptions import [TheNameOfTheExceptionClass]

Conventions used in the API

Some attributes are callable (or methods) and others are non-callable
(properties). All the callable attributes are ending with round
brackets.

Here is an example for property:

	current_url

URL of the current loaded page.

Usage:

driver.current_url

Here is an example for a method:

	close()

Closes the current window.

Usage:

driver.close()

2.6.1. Exceptions

2.6.2. Action Chains

2.6.3. Alerts

2.6.4. Special Keys

2.6.5. Firefox WebDriver

2.6.6. Chrome WebDriver

2.6.7. Remote WebDriver

2.6.8. WebElement

2.6.9. UI Support

2.6.10. Color Support

2.6.11. Expected conditions Support

2.7. Appendix: Frequently Asked Questions

Another FAQ: https://code.google.com/p/selenium/wiki/FrequentlyAskedQuestions

2.7.1. How to use ChromeDriver ?

Download the latest chromedriver from download page [https://code.google.com/p/chromedriver/downloads/list]. Unzip the
file:

unzip chromedriver_linux32_x.x.x.x.zip

You should see a chromedriver executable. Now you can create an instance of
Chrome WebDriver like this:

driver = webdriver.Chrome(executable_path="/path/to/chromedriver")

The rest of the example should work as given in other documentation.

2.7.2. Does Selenium 2 support XPath 2.0 ?

Ref: http://seleniumhq.org/docs/03_webdriver.html#how-xpath-works-in-webdriver

Selenium delegates XPath queries down to the browser’s own XPath
engine, so Selenium support XPath supports whatever the browser
supports. In browsers which don’t have native XPath engines (IE
6,7,8), Selenium supports XPath 1.0 only.

2.7.3. How to scroll down to the bottom of a page ?

Ref: http://blog.varunin.com/2011/08/scrolling-on-pages-using-selenium.html

You can use the execute_script method to execute javascript on the
loaded page. So, you can call the JavaScript API to scroll to the
bottom or any other position of a page.

Here is an example to scroll to the bottom of a page:

driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")

The window [http://www.w3schools.com/jsref/obj_window.asp] object
in DOM has a scrollTo [http://www.w3schools.com/jsref/met_win_scrollto.asp] method to
scroll to any position of an opened window. The scrollHeight [http://www.w3schools.com/jsref/dom_obj_all.asp] is a common
property for all elements. The document.body.scrollHeight will give
the height of the entire body of the page.

2.7.4. How to auto save files using custom Firefox profile ?

Ref: http://stackoverflow.com/questions/1176348/access-to-file-download-dialog-in-firefox

Ref: http://blog.codecentric.de/en/2010/07/file-downloads-with-selenium-mission-impossible/

The first step is to identify the type of file you want to auto save.

To identify the content type you want to download automatically, you
can use curl [http://curl.haxx.se/]:

curl -I URL | grep "Content-Type"

Another way to find content type is using the requests [http://python-requests.org] module, you can use it like this:

import requests
content_type = requests.head('http://www.python.org').headers['content-type']
print(content_type)

Once the content type is identified, you can use it to set the firefox
profile preference: browser.helperApps.neverAsk.saveToDisk

Here is an example:

import os

from selenium import webdriver

fp = webdriver.FirefoxProfile()

fp.set_preference("browser.download.folderList",2)
fp.set_preference("browser.download.manager.showWhenStarting",False)
fp.set_preference("browser.download.dir", os.getcwd())
fp.set_preference("browser.helperApps.neverAsk.saveToDisk", "application/octet-stream")

browser = webdriver.Firefox(firefox_profile=fp)
browser.get("http://pypi.python.org/pypi/selenium")
browser.find_element_by_partial_link_text("selenium-2").click()

In the above example, application/octet-stream is used as the
content type.

The browser.download.dir option specify the directory where you
want to download the files.

2.7.5. How to use firebug with Firefox ?

First download the Firebug XPI file, later you call the
add_extension method available for the firefox profile:

from selenium import webdriver

fp = webdriver.FirefoxProfile()

fp.add_extension(extension='firebug-1.8.4.xpi')
fp.set_preference("extensions.firebug.currentVersion", "1.8.4") #Avoid startup screen
browser = webdriver.Firefox(firefox_profile=fp)

2.7.6. How to take screenshot of the current window ?

Use the save_screenshot method provided by the webdriver:

from selenium import webdriver

driver = webdriver.Firefox()
driver.get('http://www.python.org/')
driver.save_screenshot('screenshot.png')
driver.quit()

Index

Playback

The prerequisites to playback

First of all, you would need either load an existing script or record something. In other words, you’d need to make sure there is some code in the RPF editor. During playback, RPF will execute the script line by line.

How to start playback

Click the playback button in the RPF menu bar. This will bring up a playback runtime dialog on top of the main console. If we simply click the play button, RPF will automatically:

	Opens a new tab and gets content script injected.

	Parses the script and forms a list of commands. (for example: click..., type.. etc.)

	Sends a request to content script listener to execute command by command in the tab.

	Receives the result and either retries it or continues with the next command.

	Returns either a pass or failure when done.

The playback runtime dialog

[image: _images/image4.png]
On the left side, it lists all of the script names of the current project. You could select one or more script to playback. Otherwise, if you don’t select any, it will playback the currently loaded script by default. Also, if you didn’t load any project yet, it won’t show the left side selector at all. While you playback a group of scripts, it will show you the current status like x out of y are completed, and you’ll have a choice to cancel the whole run by clicking the X cancel button.

The right side panel is the main controller for playback a script. It’s obvious to understand the buttons which are: play, pause, step by step, and stop. It’s worth mentioning that you could also set a break point step in the input box. This is useful if you expect something will go wrong immediately after the step. If you encounter any issues during playback, you could always try the stop button to clear any status and continue to playback.

The failures

Normally there are two types of common failures during playback.

URL redirection timeout

This happens when an expected URL redirection takes too long (by default, greater than 40 secs). It could be caused by several reasons: 1. The element you’ve interacted with doesn’t go to the original URL any more. 2. The new URL takes too long until it finishes loading.

Dom element couldn’t be located

Since the fragility of web UI testing, once the dom elements are changed, it’s possible that we couldn’t locate the element anymore. Normally RITE retries to find the element for 6 secs by default until it reports the error.

How RITE handles the failures

This time, let’s play with the bold “verify this” text in our example site [http://rpfserver.appspot.com/examples] by:

	Enter record mode.

	Right click on the “verify this” text.

	In the newly popped up dialog on RITE main console, let’s change the “verify this” to “verify” and change its corresponding option from “Optional” to “Must”, and finally hit Save to generate the command.

	Playback the script until it fails. Note that this failure was introduced when we made the change in step 3 to simulate a scenario that dom text changes.

At this point, we should see the following options appeared in the playback runtime dialog.

[image: _images/handlers.png]
We could definitely choose “delete” to remove the line, but let’s try “Update” now. Once clicked, the tab under playback should pop up to front and if you right click on the “verify this” text again, the original dom element will be replaced by the new element. In the end, you could playback the script again and it should pass now.

Comments

You do not have permission to add comments

Descriptor

What’s descriptor?

It’s well known that one of the biggest pain of web UI automation is to maintain all of the dom element locators. In RITE, we provide two ways of locating an element. The traditional way is by xpath, which will be talked in the Xpath finder section. The other way is by descriptor, which is actually an object containing all of the useful information of the dom element, for example the attributes, location, iframe info, etc.

How does descriptor work?

RITE uses a scoring algorithm to give all of the potential candidate elements scores based on how they match the information recorded in descriptor. The element which gets the top score succeeds. Because of the fuzziness, the recorded automation becomes less fragile than before. For example, some element might have a random id, or some of the minor attributes have been changed, etc. In those cases, descriptor can do a very good job to continue getting the elements.

By default, RITE uses descriptor to locate elements. If you feel more comfortable with xpaths, you could turn the “Use Xpath” option on in the settings dialog.

Comments

You do not have permission to add comments.

Content Map

[image: _images/image10.png]
What’s Content Map?

ContentMap is used as the global variable storage. For example, if you’ve recorded a script which types in an “hello” to a search box, you might get a generated line as “type(getElem(“type-button-Search-123”), ContentMap[“INPUT-109”])”. In the mean time, you’ll see some additional code generated in the way similar to the above image, which assigns a variable with value “hello”. Of course you could define your own global variable like ContentMAp[‘myVar’] and replace the ContentMap[“INPUT4-109”] in your script.

Another example is when you have a custom JS method defined, say:

function sayHello(words) {
 alert(words);
}

you could invoke it by call(sayHello, ContentMap[“myVar”]); As a result, it will alert an “hi” during playback.

Comments

You do not have permission to add comments.

Advanced

The advanced usage of RITE includes:

	Custom script

	Details dialog

	Runs and results

	Webdriver

Comments

You do not have permission to add comments.

About RITE

What’s RITE?

RITE stands for Record and playback framework for Chrome web UI testing. With RITE, users could quickly record scripts in Chrome, save them locally or in the cloud, and playback on their machine. Some other important features are:

	Custom Javascript functions

	Translation to Java Webdriver code

	Screenshots

	Less fragile element locators (descriptor)

	Export/Import to/from file

	Simple playback by opening a link

	Customizable xpath

	Verification methods

	Parameterization for data inputs

The tool is still in an early stage, please feel free to share your comments and suggestions with us care@robustest.com.

Subpages (16): Advanced A quick start Basics code generation content map custom-script
descriptor details-dialog main console playback server-pages save and load undercovers verification webdriver Xpath-finder

Comments

You do not have permission to add comments.

Webdriver

How RITE and Webdriver are related

RITE could translate a project - a group of scripts into the Java webdriver code, which brings in several benefits:

	The RITE generated code could be potentially run across other browsers.

	After being translated into Java page classes, users could easily write their own code to extend the classes and implement any complicate methods.

How to translate a RITE project to Webdriver code

Again, let’s start with a real example. Suppose we have a RITE project which contains two scripts that both start on Google home page. In one script, it navigates to Videos page then News page, and in the other, it navigates to Images page and News page.
After we load the project, let’s click the project details button, and we’ll see:

[image: _images/projectdetails.png]
There are three tabs in this dialog: Export, Import, and Tests.

The Export tab handles translating the project to Webdriver code. Let’s give it a package path say “com.google.testing”, save it, and then hit the export button. Now you should see a zip has been downloaded which might be called “tests.zip”.
Open the zip and we’ll find a few Java files inside:

	BasePage.java. This contains all of the fundamental methods for automation including click, select, verifyElement, type, move, etc.

	PageGoogle0.java and PageNewsGoogle1.java. By default, RITE creates a page class for each unique domain appears in the project. In this case, we have two different domains: www.google.com and news.google.com.

	Tests.java. For each script in the project, we’ll have a corresponding unit test defined in this file.

For more details of the generated code, feel free to try it out or take a look at the attached zip.

The Import tab requires the local server, which will be discussed later.

The Tests tab will list all of the scripts within the project, and you could select any number of them for deletes.

Extending the generated Java page classes

Though RITE could generate Java code, you might need more complicated logic or maybe some internal API calls. In this case, you could simply write your own extended Java page classes to implement those, and leave the tedious xpath finding/maintenance work to RITE.

A diagram describing code generation

[image: _images/RITECodeGenerationDesignDoc_1.png]
Comments

You do not have permission to add comments.

Runs and results

After running multiple scripts of a project, RITE will return two links, one for runs overview and the other for results overview. Let’s say we’ve run two scripts and both failed, you’ll see the followings.

Runs overview

[image: _images/runspage.png]
Results overview

[image: _images/resultpage.png]
At this point, if you click on the “here” link in the result page, you’ll see the screenshot captured when it failed.

Comments

You do not have permission to add comments.

Details dialog

[image: _images/Detailedinfo.png]
Double clicking on most of the generated command in editor will open the details dialog in console. We could do quite a few things here:

Insert new/move up or down/delete steps.

These options could be chosen in the Actions dropdown menu. It’s worth mentioning that if you choose to insert steps, then you would automatically enter the record mode, so you might want to set the right tab under record first and prepare it to the right status to start.

Switch back and forth between screenshot view and the details view.

These are the two basic views associated with a command. For many actions, like click, type, dblclick, select, etc, RITE also captures a screenshot for reference. Any command that involves an interaction with a dom element will have the details view, where users could easily update the element.

Update the current step.

This will also enter the record mode, the only difference is that once you right click on an element, RITE will automatically replace with the new xpath/attributes info. After this, it will exit the record mode. Of course, you could even manually modify the values, ping it for double checking and finally save the change to script.

Comments

You do not have permission to add comments.

Code generation

[image: _images/image9.png]
In this page, we’ll use the following scenario: A user clicks the video link on Google home page, and the page redirects to the Google videos page. The user then clicks the news link on Google videos page, and it redirects to Google news page afterwards.

The above image shows the snippet of generated code whose syntax is relatively self-explanatory.

How to read the generated code:

/**
 *@fileoverview

 *@author

*/

The top doc string documents the site that the script starts on is Google home page, as well as the author info.

click(getElem(“click-span-Videos-345”));

From this line, we know that it’s talking about a click action is performed on an element which has Videos as text.

redirectTo(“http://www.google.com/videohp?hl=en”);

This line doesn’t do anything and only acts like a comment.

Under the cover

RITE generates click(getElem(“click-span-Videos-345”)); when user clicks on the video link. The syntax is composed of three parts:

	Action. In this case, it’s a click action. It could also be a type, verify, select, or move, etc.

	getElem. This is an internal defined function which reads a step id and returns the associated dom element.

	Step id. During recording, RITE actually collects much more information like screenshot, the dom element’s attributes, location, xpath, etc. and hide them from users. The information is associated with the step id, which in this case is “click-span-Videos-345”. The step id is generated on the fly which is composed of step action, dom element’s tagname, text/value, and a random number.

In short, the generated command syntax is simply ACTION(STEP ID, DATA VAR), which represents you’ve done some actions and maybe with some inputs to a particular dom element. We might get rid of the “getElem” syntax at some point since it’s not recommended to manually modify the script any more.

Comments

You do not have permission to add comments.

Main console

[image: image/image1.png]

	Roughly speaking, the main RITE console is composed of three parts. From top to bottom, they are menu bar, script editor, and status bar. The menu bar includes (from left to right):

	
	Add button: Clears the script editor and makes it ready to record a new script under the current project.

	Load button: Toggles the script loading/saving area.

	Project button: Opens the project details dialog which handles tasks like importing/exporting a project and deleting scripts from project.

	Play button: Shows the playback runtime dialog for playing back the current script(s).

	Record button: Starts recording in the tab under record.

	Custom JS button: Shows the dialog where users could write custom Javascript functions.

	Settings button: Shows the settings dialog.

	Content Map button: Shows the content map area.

	Refresh button: Refreshes the console, note that this will lose all the current recorded but not saved script and any RITE status.

Comments

You do not have permission to add comments.

Basics

The basic functionalities of RITE includes the following:

	record

	playback

	save and load

	screenshots

	settings

Subpages (3): record screenshots settings

Comments

You do not have permission to add comments.

Record

Terms

Tab under record: The tab which will be/is recorded.

Select a tab to record

	Navigate to the URL you’d like to record.

	Click the RITE browser icon on Chrome.

	Click the RITE option in the popup dialog.

This will open the RITE main console, and also sets the selected tab as the tab under record. Note that it’s allowed to change the tab under record while the main console is opened.

Start recording the tab

Click the record button in the RITE main console. By design, the tab under record should be popped up to front and ready to record now. To check if it’s properly working, you could move your cursor in page, and find whether the dom elements are yellow highlighted.

If not, there are several potential causes:

	The tab was opened before installing the RITE extension. This is very likely to happen to the first time users. You could simply refresh the tab under record and check it again.

	The tab under record was accidentally closed. The solution is to select a new tab to be recorded.

	The URL doesn’t allow recording. For example:
chrome://extensions/,

https://chrome.google.com/webstore/category/home, and a few more.

How RITE recording works

RITE injects a content script in the tab under record which

	Adds event listeners to dom events including mousedown, mouseover, mouseout, change, submit, keydown, dlbclick, and mouseup.
All of the listeners are registered on document object in capturing phase, which guarantees we could intercept the events on most of the sites.

	When an event is caught, the content script will send info back to the background page including action, element locating related info, iframe info etc.

What are recorded?

	The common actions while users are interacting with page, for example the clicks, types, selects, etc.

	The dom element’s information which is used to locate it while playback.

	The data inputs like a query.

	Other important actions like verification.

What are NOT recorded?

	RITE can only record Dom level events/elements, that said, anything outside the target page can not be recorded. For example, the browser back button, address bar etc.

	Flash can not be recorded.

	The keyboard strokes are not recorded, for example, “Enter” key. This excludes the typings in input boxes.

	Mouse wheel, right mouse click can not be recorded.

	Complex scenarios, for example, elements within dynamically created iframes can not be recorded.

Limitation

RITE currently only supports recording one Chrome tab at a time.

Comments

You do not have permission to add commen

Custom Script

The Custom script dialog

[image: _images/customjs.png]
The custom JS dilaog contains a play button and an editor for writing JS methods. Clicking the play button will immediately inject the script in the tab under record and executes it. Note that the added JS functions belong to the current project, so each script underneath could invoke the methods.

Why do we need the custom JS methods

Experienced devs/testers always want to do more things like handling an edge case that is hard to record, adding complicated validations, or even making an xmlHttpRequest to fetch data from server, etc. All these things could be achieved by writing up some JS methods. Basically, using custom JS, you could achieve anything you want in Javascript, so as to extend the RITE capability.

How to use the custom JS methods

Once you have the hello function defined, let’s close the dialog and add call(hello); to a new line in the RITE main console editor. As a result, when RITE executes the line, it will inject the function in page and run it. You could also define arguments in your method, and invoke it by call(hello, arg1, arg2, etc);

Async calls

Sometimes we might want to call a server API to fetch data and proceed. Suppose we have the following custom methods defined:

function hello(sendRequestBack) {
 setTimeout(function() {hi(sendRequestBack);}, 2000);
}

function hi(sendRequestBack) {
 alert('delayed alert.');
 sendRequestBack(true);
}

In this case, we could invoke it by call(true, sendResultToBackground, hello); By passing true as the first parameter, RITE will understand it’s an async call, and users need to explicitly call the sendResultToBackground method (pre-defined) to finish the aysnc call, otherwise, RITE will keep waiting until it’s timeout.

Returning results

Again, this could potentially make RITE complicated, so we are still considering how to implement. Some thoughts could be instead of returning results, users directly assign values to ContentMap, which serves as a “global” storage object, and use it somewhere else in the script later. Any suggestions are welcomed.

Comments

You do not have permission to add comments.

Screenshots

In the main console toolbar, there is a screenshot button which displays the screenshots collected during recording.
Note that RITE only captures the screenshot for basic actions like click, type, but not for the advanced actions like verification.
The screenshots could be saved along with the script, note that there is a limitation on the total screenshots size, which can not exceed 32MB.

[image: _images/image6.png]
Comments

You do not have permission to add comments.

Verification

In a recorded web UI test, verification is the most important part. RITE provides two ways of verification.

Right click to verify element’s attributes

For most of the time, you might just want to verify whether the attributes of an element are as expected. During recording, you could right click on any element which needs verification, and a popup will be shown in the main console:

[image: _images/image8.png]
This dialog is used to generate the not so obvious commands, in this case, the verify command (you could also generate verifyNot and mouseover command here). As is shown, the dialog contains the xpath and all the attributes of the selected dom element. For example, if users want to verify that the dom element needs to have the text “Images”, then they could simply switch from Optional to Must. As a result, during playback, if the dom element doesn’t have the exact text, it would report an error.

A real example

Let’s open our example site [http://rpfserver.appspot.com/examples] again. In record mode, let’s right click the bold font text “verify this”, this will open the Validation dialog in console. If we’d like to verify both the text and and style, we’ll need to choose the corresponding “Must” radio buttons. After that, we click save button to generate the verify command. We could always change it again in the details dialog.

Custom script to verify more complicated tasks

The other way is to call custom JS functions. More details will be discussed in the custom script section. In short, for verification like validate the number of entries in page, whether a group of elements are aligned up, or whether the page title is correct and background color looks alright, users could write their own JS script to verify.

Comments

You do not have permission to add comments.

Save and load

The project/script loading area

[image: _images/image5.png]
Project

Contains one or more scripts. A project could be saved/loaded to localStorage and web. It could also be exported as a json file and imported back.

Script

Contains the recorded commands. Depending on users choice, it could be either a module like a login process, or a test which does an end to end task.

Location

Either local or web, which indicates where the script/project is located. Local means localStorage and web is the RITE server.

Start URL

Which URL the script starts from.

load project/script

When you click the text box of project or script, it should prompt you the available names for loads. The normal sequence is to select the location radio button first, pick a project name, and then the script name. As a result, the script should be loaded into the editor. If you move the cursor to the icon next to script box, it will show the script id if any.

Save script

After recording/editing a script, you could enter a script name to save. To avoid the auto complete, you could choose the “New Name” option to enter the name.

Delete script(s)

You could delete any number of scripts within a project in the project details dialog.

Comments

You do not have permission to add comments.

Glossary

References

	Official API: http://selenium.googlecode.com/svn/trunk/docs/api/py/index.html

	Blog post explaining how to use headless X for running Selenium
tests:
http://coreygoldberg.blogspot.com/2011/06/python-headless-selenium-webdriver.html

	Jenkins plugin for headless Selenium tests:
https://wiki.jenkins-ci.org/display/JENKINS/Xvnc+Plugin

A quick start

Before moving to each individual section, let’s take a look at a real example and get hands on RITE.

1.Prerequisites

Please make sure you’ve got Chrome [https://www.google.com/chrome/browser/] , and the latest RITE extension [https://chrome.google.com/] installed.

2.Open example site and RITE console

In this tutorial, we’ll play with the dom elements in our example site [http://rpfserver.appspot.com/examples]. Let’s open the link in a new Chrome tab, and then click RITE icon (which is around the top right corner of Chrome), choose the RITE option in popup, and now we should see the RITE main console.

3.Start recording

To start recording, let’s click the round record button. Some changes you will notice are: The button set in menu bar changes, A project/script loading/saving area shows up, the URL of the selected page is recorded, some doc string appears in editor and if you move cursor in the tab under record, you should see elements get yellow highlighted on mouse over.

Now let’s perform the following (or any number) actions:

	Click the “change color” button

	Click one of the radio buttons

	Click the checkbox

	Select an option say Chrome

	Type in some text in the input box and click show

	Type in some text in the text area and click show

[image: image/image2.png]
In the RPF editor, we will see the following scripts generated:

click(getElem(“click-input-changecolor-869”));

click(getElem(“click-input-2-497”));

click(getElem(“click-input-950”));

select(getElem(“select-select-GoogleChromeAndroid-367”), ContentMap[“SELECT0-488”]);

click(getElem(“click-input-text-226”));

type(getElem(“type-input-text-362”), ContentMap[“INPUT4-206”]);

click(getElem(“click-input-show-262”));

click(getElem(“click-textarea-textarea-87”));

input(getElem(“change-textarea-textarea-889”), ContentMap[“TEXTAREA0-651”]);

click(getElem(“click-input-show-652”));

4.Play it back

Let’s first click the stop button in the menu bar to stop recording. Now you’ll have more buttons appear, and let’s click the play button next to the record button. At this point we should see a playback runtime dialog shows up.

[image: image/image3.png]
Once we click the play button in the dialog, we’ll see RPF automatically opens a new Chrome browser and executes the recorded script step by step.

5.Save it to cloud

Let’s close the playback runtime dialog, type in the project and script name, and hit the save button in menu bar. If it’s successful, the script should have been saved to the server.

6.Load it back

Let’s click the refresh button (the last one in menu bar) to refresh the main console. Now let’s click the load button to turn on the project/script area, and type in both names which you just created. Now we should see the script gets loaded back to editor. You could also try to click the camera look button on menu bar to view the screenshots of the steps to remind you of the scenario. A quick trick here is that you could try Ctrl+Alt+s to switch the view back and forth between the script and readable modes.

Comments

You do not have permission to add comments.

Settings

[image: _images/image7.png]
In the Settings dialog, there are several options you could config:

	Playback Interval: The interval between two consecutive time ticks during playback.

	Default timeout: The default timeout value when a step takes too long during playback. The default value is 40 secs.

	Take Screenshot: In case you wouldn’t want to include any screenshots during recording, you could check this option off.

	Use Xpath: By default, RITE uses descriptor to locate elements. Once check this option, it’ll locate the elements by xpath, also it opens the Xpath finder by default in recording mode to help with finding the right xpath.

Comments

You do not have permission to add comments.

Test Design Considerations

Page Objects

Page objects is a design pattern used for web automated testing.

Few links:

	http://code.google.com/p/selenium/wiki/PageObjects

	http://www.theautomatedtester.co.uk/tutorials/selenium/page-object-pattern.htm

	http://pragprog.com/magazines/2010-08/page-objects-in-python

	http://docs.seleniumhq.org/docs/06_test_design_considerations.jsp

 _images/handlers.png
Ovemide Update Insert Fail

_images/amazon.png

_images/xpathfinder.png
@ Xpath Finder

IIA@iG="gb_5"YSPANIZ) ping [save
Atibutes used fo the ancestors.
<
Attrbutes used for the element Contains
O text MNews @
O class gots]

O stye e

_images/image10.png
+ & 2mO0O0 RA@T P C

Contentizp("myuas] - "hifs
Contentiap ("INEUT4-109"] - "helle";

_images/image6.png
Project

+EAmMOO0O RGBT P C

O local © web

| Enter a nmiect nam,
Screenshots

x

T

Stopped recording

_images/Detailedinfo.png
Detailed info:

Actions ™ Swieh to screenshots

Xpatn
sPAN
Atributes.
Recorded coment | Parent Grandparent

At Vatue st
Teg: | san °
Text: | venty tis

style: | fontweignt: bold;

rsun| [Poa] 3em

More Info
Stepname verfy-spanverlytnis G99 Swve

Class name. e

_images/image8.png
Action

verity ~
Xpath
JIA[@I0="gb_Z"YSPANIZ]

Attributes.
Recorded clement | Parent
Attribute. Value Must
Tag: SPAN °
Text: Images °
class: | gbts °
style: °

Grandparent

ccccg

_images/runspage.png

_images/image7.png
Settings

Playback Intervl (sec)
Defauit tmeout (seconds)
Take Screenshot

Use Xpath?

ok
ok

_static/RobusTest.png
O z02usTesT

_static/file.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		Robustest- Support

 		RITE- RobusTest Integrated Testing Environment

 		Home

 		Undercovers

 		Xpath finder

 		Useful tips

 		Examples

 		Selenium

 		Installation

 		Introduction

 		Downloading Python bindings for Selenium

 		Detailed instructions for Windows users

 		Downloading Selenium server

 		Getting Started

 		Simple Usage

 		Walk through of the example

 		Using Selenium to write tests

 		Walk through of the example

 		Using Selenium with remote WebDriver

 		Navigating

 		Interacting with the page

 		Filling in forms

 		Drag and drop

 		Moving between windows and frames

 		Popup dialogs

 		Navigation: history and location

 		Cookies

 		Locating Elements

 		Locating by Id

 		Locating by Name

 		Locating by XPath

 		Locating Hyperlinks by Link Text

 		Locating Elements by Tag Name

 		Locating Elements by Class Name

 		Locating Elements by CSS Selectors

 		Waits

 		Explicit Waits

 		Implicit Waits

 		WebDriver API

 		Exceptions

 		Action Chains

 		Alerts

 		Special Keys

 		Firefox WebDriver

 		Chrome WebDriver

 		Remote WebDriver

 		WebElement

 		UI Support

 		Color Support

 		Expected conditions Support

 		Appendix: Frequently Asked Questions

 		How to use ChromeDriver ?

 		Does Selenium 2 support XPath 2.0 ?

 		How to scroll down to the bottom of a page ?

 		How to auto save files using custom Firefox profile ?

 		How to use firebug with Firefox ?

 		How to take screenshot of the current window ?

_static/up-pressed.png

_static/comment-bright.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/minus.png

_static/plus.png

_images/Wikipedia.png

_images/Youtube.png

_images/Expedia.png

_static/down-pressed.png

_static/comment.png

_images/projectdetails.png
Project details

o | T

g
[rr— p—
s : o
e Pt)
it

-

_images/resultpage.png

_images/GoogleMaps.png

_images/RITECodeGenerationDesignDoc_1.png

_images/image9.png
1
2 eu This is an auto-generated test on www.google.com.
3 * The generated commands are in the format of:

4 * ACTION(ELEMENT, OPT_TEXT);

5+ Gauthor phutg
B

7

e

ogle.com
“

9 click(getslem("click-span-Videos-345"));
10 redirectTo("http://waw.google.com/videohp?hl=en") ;

12 click(getElem("click-span-News-732")) ;
13 redirectTo("http://news.google.con/nushp?hl=enstab=vn")

_images/customjs.png
Javascriptunctions.
o

T,

_images/xpathfinder1.png

_images/image4.png
Playback Runtime

testt 0000

pause at line #

_images/Yahoo.png

_images/image5.png
O Local © web

Seript
testi a

hitps://www.google.com/

