

Welcome roboyVR documentation!

What is it?

RoboyVR is a virtual reality experience in which the user can watch,
but also interact with roboy (a humanoid robot) while he performs specific tasks, e.g. walking, waving, etc.
A virtual environment opens up a whole new set of perspectives for the user to enjoy and spectate roboy from all kinds of POVs.
In addition to the rendering of the virtual roboy a mobile HUD shows detailed information about various roboy components,
for example displaying the powerconsuption of particular motors. As the user chooses to take a more active part, roboy’s pose
can be influenced and altered by physical contact, e.g. shooting a projectile at the virtual model.

How does it work?

Roboy and its behavior is simulated on a virtual machine via Gazebo/ROS. Important information
regarding roboy’s movement are then sent through a ROSbridge(e.g. messages) towards Unity.
In Unity roboy is rendered and constantly updated concerning positions, rotations, etc.
On top of that detailed data (time lapsed) about components is displayed via graph rendering on different UI panels.
With the help of a VR-Headset you can watch roboy move around in a virtual space.

Current status of the project and goals

Currently the project can render roboy with his pose and generate random data about his motors to visualize them.
Our next tasks are as follow:

	Use real motor data and visualize that.

	Implement an interface to track the newest models and automate the process of creating the model in Unity.

	Implement an interface to record a simulation with all the data and save/ load it on runtime.

	Make the project completely Plug&Play meaning that you can send all kinds of data with a given format.

Relevant Background Information and Pre-Requisits

For the user:

One of roboyVR design goals is to be as user friendly and intuitively as possible.
Therefore the explorer in the virtual reality does not need to be familiar with explicit requirements.
Yet it does no harm to have a basic understanding of how the HTC Vive and its tracking mechanism work.

Putting on the head mounted display in a way that fits the user is important for a frust-free experience,
you can adjust the distance from the lenses to your eyes as well as the distance between the lenses itself, these tweaks
help immensely when it comes to maintaining a sharp field of view.

Apart from that the tracking system needs
to be setup correctly, too. The two base station should be able to see each other clearly with no viewing obstructions
in their sights. They should be put up diagonal spanning a virtual room of two by five meters.
For additional information take a look at this guide HTC Vive setup [https://www.vive.com/uk/setup/].

For the developer:

RoboyVR uses Unity3D to create an immersive and exciting virtual environment. Extensive expierence with Unity is recommended.
Unity natively relies on C#, so advanced knowledge in this field is highly advised. Otherwise see Unity3D [https://unity3d.com/].

The roboy simulation which runs on Gazebo/ROS is written in C++, for this section
a basic overview is sufficient to be able to understand/construct messages which are then
sent via a ROSbridge. For starting the simulation you should be familiar with Linux/Ubuntu.
Further it is useful to have some understanding of python in order to transform the roboy
models via the Blender-api(an early python script already exists for this purpose).

The following links can be seen as a guideline, of course you can do
the research by yourself.

	Unity provides a lot of tutorials for the editor and the API with code samples and videos: https://unity3d.com/de/learn/tutorials

	The UnifyWiki has a lot of example scripts for all kind of extensions: http://wiki.unity3d.com/index.php/Main_Page

	StackOverflow is a forum where you can search for answers regarding your coding problems: http://stackoverflow.com/

	UnityAnswers, similar to StackOverflow but only for Unity specific questions. The community is not as active and most questions
are really basic, so bear that in mind: http://answers.unity3d.com/

	As we use ROS and our own custom messages, it is important to understand how ROS works and how ROS messages are built: http://wiki.ros.org/

If you have any further questions about the project, feel free to contact us via email: roboyvr@gmail.com

Contents:

Usage and Installation

	Installation

	Getting started

Interfaces and Scope

	Context

	Conventions

	Architecture Constraints

	User Interfaces

	Public Interfaces

Development

	Solution Strategy

	Building Block View

	Runtime View

	Deployment View

	Presentations

	Libraries and external Software

	About arc42

Installation

Roboy and its behavior is simulated on the virtual machine via ROS. Important information
regarding roboy’s movement are then sent through a ROSbridge(e.g. messages) towards Unity.
In Unity roboy is rendered and constantly updated concerning positions, rotations, etc.
With the help of a VR-Headset you can watch roboy move around in a virtual space.

This tutorial will help you setup roboyVR with all necessities it comes with.

Part 1: Setup Virtualbox with Ubuntu

	Download and install Virtualbox for your OS https://www.virtualbox.org/

	Download Ubuntu 16.04 (64bit) https://www.ubuntu.com/download/desktop

	Mount the .iso and setup Virtualbox with the following settings (if available):

	4 cores (Settings->System->Processor)

	6 GB of RAM (Settings->System->Motherboard)

	128 MB of VRAM (Settings->Display->Screen)

	30 GB HDD space (Settings->Storage)

	Set network settings to Bridged-Adapter or Host-Only Adapter

Part 2: Simulation Setup

	Open Terminal and install the following packages

sudo add-apt-repository -y ppa:letrend/libcmaes
sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'
sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --recv-key 0xB01FA116
sudo apt-get update
sudo apt install libcmaes
sudo apt-get install ros-kinetic-desktop-full
sudo apt install ros-kinetic-controller-interface ros-kinetic-controller-manager ros-kinetic-gazebo-ros-control ros-kinetic-ros-controllers
sudo apt install ros-kinetic-ecl-geometry
sudo apt install libncurses-dev
sudo apt-get install catkin
sudo apt-get install git

	Clone the git repository into a ros working space

mkdir -p ~/ros_ws/src
cd ~/ros_ws/src
git clone https://github.com/Roboy/roboy-ros-control --recursive

	Get additional dependencies

cd roboy-ros-control
git submodule update --init --recursive
cd src/flexrayusbinterface
sudo dpkg -i lib/libftd2xx_1.1.12_amd64.deb

	Source the setup.bash

source /opt/ros/kinetic/setup.bash
cd ~/ros_ws
catkin_make

	OPTIONAL: add this to your bash script (otherwise you have to type this commands in every new terminal window)

echo 'source /opt/ros/kinetic/setup.bash' >> ~/.bashrc
echo 'source ~/ros_ws/devel/setup.bash' >> ~/.bashrc

	Create symlinks for gazebo to your roboy models

cd ~
mkdir -p ~/.gazebo/models
ln -s ~/ros_ws/src/roboy-ros-control/src/roboy_models/legs_with_upper_body ~/.gazebo/models/

	Install rosbridge

sudo apt install ros-kinetic-rosbridge-suite

Part 3: Unity Setup

	Download Unity

	(latest working version with roboyVR is 5.6.0: https://unity3d.com/de/get-unity/download/archive)

	Install Unity

	During the install process make sure to check also the standalone build option.

	Visual studio is recommended to use with Unity3D, as it is free and more user friendly than
MonoDevelop (standard option).

	Download this project

	Clone this github repository (master branch) to your system: https://github.com/sheveg/roboyVR.git

	Command: git clone -b master https://github.com/sheveg/roboyVR.git

Part 4: Blender & Python

	Install the latest version of Blender [https://www.blender.org/download/]

	Install the latest version of Python [https://www.python.org/downloads/]

Getting started

Part 1: Run rosbridge and roboySimulation

roslaunch rosbridge_server rosbridge_websocket.launch
rosrun roboy_simulation VRRoboy

Part 2: Open the project in Unity

Unity is organized in Scenes. In order to watch the simulation in Unity which is running on the VM (in gazebo),
open the ViveScene.

[image: https://cloud.githubusercontent.com/assets/10234845/21025492/f72657fc-bd88-11e6-912e-877ba72d782e.png]

Part 3: Setup the scene

In the Scene you can observe the simulation from the VM within Unity.
To do that you need to communicate the IP adress of your VM towards RoboyManager.
The IP information is quickly found in Ubuntu by clicking on the two arrows pointing in opposite directions,
right next to the system time. Afterwards a drop down menu will open, click on connection information.
Remember the IP and paste it in the respective field in Unity.

[image: https://cloud.githubusercontent.com/assets/10234845/21025737/da6cda5e-bd89-11e6-8755-af5fbf4a748b.png]
You also need to drag the roboy prefab onto the RoboyManager if it is not already done.
Each roboy model is tagged as a RoboyPart.
If you import new models for roboy you need to change the tag accordingly and change the roboy prefab.

[image: https://cloud.githubusercontent.com/assets/10234845/21025736/da6bcb1e-bd89-11e6-820d-be7b42853697.png]
You can reset the simulation with the R key, you can also change the key in RoboyManager.
To get a better view of the simulation we recommend to set the simulation to slow motion in rviz in the VM:

	If you want to start rviz, open a terminal (in the VM) and simply type rviz

	Set Fixed Frame to World (Displays->Fixed Frame)

	Add a marker (Add(Button)->marker)

	Add walking plugin (Panels->Add New Panel->WalkingPlugin)

	Turn slow motion on (within the walking plugin, it is a toggle button)

Extra: Update roboy models

IMPORTANT: The next part will be soon outdated as we plan update the models and automate the process,
so be aware!

In /roboyVR/Assets/RoboyModel/OriginModels there is a script meshDownloadScript.py.
When executed, it downloads roboy models from this location:

	https://github.com/Roboy/roboy_models/tree/master/legs_with_upper_body/cad.

After the download process is complete the models will be converted by blender so that they work fine with unity (.fbx format).
Obviously you need blender and python installed on your system so that the script can do it’s work.
You can use the template runScript bat file for Windows.

The format:

start "" "pathToBlender/blender.exe" -P "pathToScript\meshDownloadScript.py" **meshes name seperated by ',' without whitespace and file format**

Example:

start "" "C:\Programs\Blender\blender.exe" -P "C:\Documents\roboyVR\Assets\RoboyModel\OriginModels\meshDownloadScript.py" hip,torso,thigh_left,head

Context

The core of RoboyVR renders and updates roboy’s pose as its receiving data from the simulation
via ROS-messages. Additional information inside messages like current powerconsumption or motorforce
is displayed on an interactive GUI. Apart from that the user can actively manipulate the simulation
through various tools. On top of that the system can check for the latest roboymodel with the help of
github and update it if necessary.

[image: Context overview.]
RoboyVR Experience has two neighboring systems.
Roboy simulation to receive pose data and Github for model updates.

Conventions

We follow the coding guidelines:

Coding Guidelines

	Language
	Guideline
	Tools

	Python
	https://www.python.org/dev/peps/pep-0008/
	

	C++
	http://wiki.ros.org/CppStyleGuide
	clang-format: https://github.com/davetcoleman/roscpp_code_format

The project follows custom guidelines:

	All scripts are structured like this:

	The script is ordered in regions:

	PUBLIC_MEMBER_VARIABLES

	PRIVATE_MEMBER_VARIABLES

	UNTIY_MONOBEHAVIOUR_METHODS

	PUBLIC_METHODS

	PRIVATE_METHODS

	In PUBLIC_MEMBER_VARIABLES you have define at first your properties and then public variables.

	In PRIVATE_MEMBER_VARIABLES you have define at first your serialized private variables and then the normal ones.

	In UNTIY_MONOBEHAVIOUR_METHODS the order is as follows: Awake, Start, OnEnable, OnDisable, Update

	All variables and functions where it is not instantly clear what it does, have to be commented with a summary.

	Make variables only public if they need to be. Mark variables as Serializable when you need to edit them in the editor.

	The capitalization follows a specific set of rules:

	public variables and properties start with an uppercase

	private variables and properties start with a lowercase

	public functions start with an uppercase

	private functions start with an lowercase

	Coroutines which are accessed in other classes must have a public interface.

	When you store components in a variable, which are directly on the object itself, put a [RequireComponent(typeof(ComponentType))] on top of the class.

We include a template class with all rules implemented.

	
class TemplateClass

	Describe your class shortly here.

Inherits from Monobehaviour

Public Functions

	
void TemplateClass.SomePublicMethod()

	Describe the function shortly here.

	
void TemplateClass.ActivateBear()

	Describe the function shortly here.

Public Members

	
string TemplateClass.SomePublicVariable

	Describe your public variable shortly here.

Property

	
property TemplateClass::SomeProperty

	Describe your property shortly here.

Private Functions

	
void TemplateClass.Awake()

	Describe the function shortly here.

	
void TemplateClass.Start()

	Describe the function shortly here.

	
void TemplateClass.OnEnable()

	Describe the function shortly here.

	
void TemplateClass.OnDisable()

	Describe the function shortly here.

	
void TemplateClass.Update()

	Describe the function shortly here.

	
void TemplateClass.somePrivateMethod()

	Describe the function shortly here.

	
IEnumerator TemplateClass.someBearCoroutine()

	Describe the coroutine shortly here.

Private Members

	
float TemplateClass.m_SomeSerializedVariable

	Describe your serialized variable shortly here.

	
Rigidbody TemplateClass.m_Rigidbody

	Rigidbody component on the object

	
int TemplateClass.m_SomePrivateVariable

	Describe your private variable shortly here.

Architecture Constraints

Hardware Constraints

	Constraint Name
	Description

	HTC Vive
	We need user position tracking and movement tracking.

Software Constraints

	Constraint Name
	Description

	Unity3D
	Unity provides an interface for the HTC Vive with the steamVR plugin. On top of that it renders the simulation.

	Gazebo&ROS
	The simulation uses both systems.

	OracleVM
	We use the VM for running Ubuntu on the same machine. You can also just use Ubuntu on a separate machine.

	Blender
	We used blender to convert the roboy models so that Unity can import them.

Additional Plugins

	Constraint Name
	Description

	ROSBridge
	It connects the simulation on Ubuntu with Unity on Windows.

	Vuforia
	This interface connects the HTC Vive with Unity.

	steamVR
	We use this interface to use the API of the HTC Vive.

Operating System Constraints

	Constraint Name
	Description

	Windows 10
	We did not test it yet on other Windows versions. It may also work on older machines.

	Ubuntu 16.04
	The simulation runs on Ubuntu.

Programming Constraints

	Constraint Name
	Description

	C++
	The simulation is written in C++.

	C#
	Unity uses C# as the standard programming language.

	Python
	We use Python with the Blender API to automate the process of converting the roboy models.

User Interfaces

In the following figures you can see multiple tools to interact with roboy. The user can select different parts
of roboy and inspect these parts further with detailed information about the motors.
On top of that the user can actively interact with roboy with the Shooting Tool. It triggers
an external force in the simulation and displays the result in real time in the VR environment.
In the future it will be possible to control time, so to rewind the simulation and save/ load them on runtime.

[image: Selector Tool]
Tool for selecting roboy parts.

[image: UI Panels]
UI Panels displaying motor force of several roboy parts.

[image: Shooting Tool]
Tool to shoot roboy and trigger an external force.

[image: Time Tool]
Tool to alter flow of time.

Public Interfaces

Managers

RoboyManager

	
class RoboyManager

	Roboymanager has different tasks:

- Run ROS:
	Connect to the simulation.

	Add subscriber to the pose.

	Add publisher for external force.

	Add service response for world reset.

- Receive and send ROS messages:
	receive pose msg to adjust roboy pose.

	subscribe to external force event and send msg to simulation.

	send service call for world reset.

	FUTURE: receive motor msg and forward it to the according motors.

Inherits from Singleton< RoboyManager >

Public Functions

	
void RoboyManager.InitializeRoboyParts()

	Initializes the roboy parts with a random count of motors => WILL BE CHANGED IN THE FUTURE, for now just a template

	
void RoboyManager.ReceiveMessage(RoboyPoseMsg msg)

	Main function to receive messages from ROSBridge.

Adjusts the roboy pose and the motors values (future).

	Parameters

	
	msg: JSON msg containing roboy pose.

	
void RoboyManager.ReceiveExternalForce(RoboyPart roboyPart, Vector3 position, Vector3 force, int duration)

	Sends a message to the simualation to apply an external force on a certain position.

	Parameters

	
	roboyPart: The roboypart where the force should be applied.

	position: The relative position of the force to the roboypart.

	force: The direction and the amount of force relative to roboypart.

	duration: The duration for which the force should be applied.

Public Members

	
string RoboyManager.VM_IP = ""

	The IP address of the VM or the machine where the simulation is running

	
Transform RoboyManager.Roboy

	Transform of roboy with all roboy parts as child objects

Property

	
property RoboyManager::RoboyParts

	Public variable for the dictionary with all roboyparts, used to adjust pose and motor values

Private Functions

	
void RoboyManager.Awake()

	Initialize ROSBridge and roboy parts

	
void RoboyManager.Update()

	Run ROSBridge

	
void RoboyManager.OnApplicationQuit()

	Disconnect from the simulation when Unity is not running.

	
Quaternion RoboyManager.gazeboRotationToUnity(Quaternion gazeboRot)

	Converts a quaternion in gazebo coordinate frame to unity coordinate frame.

	Return

	Quaternion in unity coordinate frame.

	Parameters

	
	gazeboRot: Quaternion in gazebo coordinate frame.

	
Vector3 RoboyManager.gazeboPositionToUnity(Vector3 gazeboPos)

	Converts a vector in gazebo coordinate frame to unity coordinate frame.

	Return

	Vector in unity coordinate frame.

	Parameters

	
	gazeboPos: Vector in gazebo coordinate frame.

	
Vector3 RoboyManager.unityPositionToGazebo(Vector3 unityPos)

	Converts a vector in unity coordinate frame to gazebo coordinate frame.

	Return

	Vector in gazebo coordinate frame.

	Parameters

	
	unityPos: Vector in unity coordinate frame.

	
Quaternion RoboyManager.unityRotationToGazebo(Quaternion unityRot)

	Converts a quaternion in unity coordinate frame to gazebo coordinate frame.

	Return

	Quaternion in gazebo coordinate frame.

	Parameters

	
	unityRot: Quaternion in unity coordinate frame.

	
void RoboyManager.drawTendons()

	Test function to draw tendons.

For now draws only random lines. TEMPLATE!

	
void RoboyManager.adjustPose(RoboyPoseMsg msg)

	Adjusts roboy pose for all parts with the values from the simulation.

	Parameters

	
	msg: JSON msg containing the roboy pose.

Private Members

	
ROSBridgeWebSocketConnection RoboyManager.m_Ros = null

	ROSBridge websocket

	
RoboyPoseMsg RoboyManager.m_RoboyPoseMessage

	Pose message of roboy in our build in class

	
Dictionary<string, RoboyPart> RoboyManager.m_RoboyParts = new Dictionary<string, RoboyPart>()

	Dictionary with all roboyparts, used to adjust pose and motor values

InputManager

	
class InputManager

	InputManager holds a reference of every tool.

On top of that it listens to button events from these tools and forwards touchpad input to the respective classes.

Inherits from Singleton< InputManager >

Public Types

	
enum TouchpadStatus

	Possible touchpad positions.

Values:

	
Right

	

	
Left

	

	
Top

	

	
Bottom

	

	
None

	

Public Functions

	
void InputManager.GUIControllerSideButtons(object sender, ClickedEventArgs e)

	Changes view mode when the user presses the side button on the controller.

	Parameters

	
	sender

	e

	
void InputManager.ToolControllerSideButtons(object sender, ClickedEventArgs e)

	Changes the tool when the user presses the side button on the controller.

	Parameters

	
	sender

	e

	
void InputManager.GetTouchpadInput(object sender, ClickedEventArgs e)

	Retrives the touchpad input of the tool controller and updates the values.

	Parameters

	
	sender

	e

Property

	
property InputManager::GUI_Controller

	Public GUIController reference.

	
property InputManager::Selector_Tool

	Public SelectorTool reference.

	
property InputManager::ShootingTool

	Public ShootingTool reference.

	
property InputManager::TimeTool

	Public TimeTool reference.

	
property InputManager::SelectorTool_TouchpadStatus

	Touchpad status of the controller where selector tool is attached to.

	
property InputManager::GUIController_TouchpadStatus

	Touchpad status of the controller where gui controller tool is attached to.

Private Functions

	
void InputManager.Start()

	Initialize all tools.

	
void InputManager.Update()

	Calls the ray cast from the selector tool if it is active.

	
IEnumerator InputManager.InitControllers()

	Initializes all controllers and tools.

	Return

	

Private Members

	
SelectorTool InputManager.m_SelectorTool

	Private SelectorTool reference.

Is serialized so it can be dragged in the editor.

	
ShootingTool InputManager.m_ShootingTool

	Private ShootingTool reference.

Is serialized so it can be dragged in the editor.

	
TimeTool InputManager.m_TimeTool

	Private TimeTool reference.

Is serialized so it can be dragged in the editor.

	
GUIController InputManager.m_GUIController

	Private GUIController reference.

Is serialized so it can be dragged in the editor.

ModeManager

	
class ModeManager

	ModeManager holds a reference of every active mode and provides function to switch between them.

This includes:
	Current tool: ShootingTool, SelectionTool etc.

	Current view mode: singe vs. comparison

	Current GUI mode: selection vs. GUI panels

	Current panel mode: motorforce, motorvoltage etc.

Inherits from Singleton< ModeManager >

Public Types

	
enum Viewmode

	We change between Single view where we can choose only one objet at a time and comparison view with three maximum objects at a time.

Values:

	
Single

	

	
Comparison

	

	
enum Panelmode

	Describes the different modes for panel visualization.

Values:

	
Motor_Force

	

	
Motor_Voltage

	

	
Motor_Current

	

	
Energy_Consumption

	

	
Tendon_Forces

	

	
enum GUIMode

	Enum for current GUI mode.

Values:

	
Selection

	

	
GUIPanels

	

	
enum ToolMode

	SelectorTool: Select roboy meshes.

ShooterTool: Shoot projectiles at roboy. TimeTool: Reverse/stop time.

Values:

	
SelectorTool

	

	
ShooterTool

	

	
TimeTool

	

Public Functions

	
void ModeManager.ChangeViewMode()

	Changes between single and comparison view.

	
void ModeManager.ChangeGUIMode()

	Switches between selection and panels GUI mode.

	
void ModeManager.ChangeToolMode()

	Switches between all tools.

	
void ModeManager.ChangePanelModeNext()

	Changes the panel mode to the next one based on the order in the enum defintion.

	
void ModeManager.ChangePanelModePrevious()

	Changes the panel mode to the previous one based on the order in the enum defintion.

	
void ModeManager.ResetPanelMode()

	Resets current panel mode to MotorForce.

Property

	
property ModeManager::CurrentViewmode

	Current view mode, READ ONLY.

	
property ModeManager::CurrentPanelmode

	Current panel mode, READ ONLY.

	
property ModeManager::CurrentGUIMode

	Current GUI mode, READ ONLY.

	
property ModeManager::CurrentToolMode

	Current Tool mode, READ ONLY.

Private Members

	
Viewmode ModeManager.m_CurrentViewmode = Viewmode.Comparison

	Private variable for current view mode.

	
Panelmode ModeManager.m_CurrentPanelmode = Panelmode.Motor_Force

	Private variable for current panel mode.

	
GUIMode ModeManager.m_CurrentGUIMode = GUIMode.Selection

	Private variable for current GUI mode.

	
ToolMode ModeManager.m_CurrentToolMode = ToolMode.SelectorTool

	Private variable for current Tool mode.

SelectorManager

	
class SelectorManager

	SelectorManager is responsible to hold references of all selected roboy parts and the corresponding UI elements.

Inherits from Singleton< SelectorManager >

Public Functions

	
void SelectorManager.AddSelectedObject(SelectableObject obj)

	Adds the roboy part to selected objects.

	Parameters

	
	obj: SelectableObject component of the roboy part.

	
void SelectorManager.RemoveSelectedObject(SelectableObject obj)

	Removes the roboy part from the selected objects.

	Parameters

	
	obj: SelectableObject component of the roboy part.

	
void SelectorManager.ResetSelectedObjects()

	Resets all roboy parts to default state and empties the selected objects list.

Property

	
property SelectorManager::UI_Elements

	Property which returns a dictionary of all UI elements in the SelectionPanel.

	
property SelectorManager::SelectedParts

	Reference of all currently selected roboy parts.

	
property SelectorManager::MaximumSelectableObjects

	Integer to switch between single mode selection and normal mode collection.

Private Functions

	
IEnumerator SelectorManager.Start()

	Initializes all variables.

	Return

	

Private Members

	
Transform SelectorManager.m_Roboy

	Transform of roboy model.

	
List<SelectableObject> SelectorManager.m_RoboyParts = new List<SelectableObject>()

	List of SelectableObject components of all roboy parts.

	
List<SelectableObject> SelectorManager.m_SelectedParts = new List<SelectableObject>()

	List of SelectableObject components of all selected parts.

	
int SelectorManager.m_MaximumSelectableObjects = 3

	Maximum cound of selectable objects in multiple selection mode.

	
int SelectorManager.m_CurrentMaximumSelectedObjects = 3

	Current count of maximum selectable objects.

	
Dictionary<string, GameObject> SelectorManager.m_UI_Elements = new Dictionary<string, GameObject>()

	Private reference to all UI elements.

	
Material SelectorManager.m_UI_Line_Material

	I am not sure what this is.

Will be deleted soon.

Tools

ControllerTool

	
class ControllerTool

	ControllerTool is a base class for all tools which are attached to a controller.

It provides access to steamVR functions to track the input of the controllers. On top of that it provides a function to vibrate the controller for a defined time.

Inherits from MonoBehaviour

Subclassed by SelectorTool, ShootingTool

Public Functions

	
void ControllerTool.Vibrate()

	Starts a coroutine to vibrate the controller for a fixed time.

	
void ControllerTool.Initialize()

	Initiliazes the controller in a coroutine.

Intermediate function for outside classes.

Property

	
property ControllerTool::Controller

	Returns the controller identity for verification purposes for outside classes.

	
property ControllerTool::ControllerEventListener

	Returns a component which listens to controller events like OnTouchpad.

Private Functions

	
void ControllerTool.Awake()

	Calls initialize for all controller members.

	
IEnumerator ControllerTool.vibrateController()

	Coroutine to vibrate the controller for a fixed time.

	Return

	

	
IEnumerator ControllerTool.initializeCoroutine()

	Coroutine to initialize all controller members.

	Return

	

SelectorTool

	
class SelectorTool

	SelectorTool provides a functionality to select parts of roboy on the mesh itself or through the GUI.

Inherits from ControllerTool

Public Functions

	
void SelectorTool.GetRayFromController()

	Starts a ray from the controller.

If the ray hits a roboy part, it changes its selection status. Otherwise it resets the last selected/targeted roboy part.

Private Functions

	
void SelectorTool.Start()

	Initializes the lineRenderer component.

Private Members

	
LineRenderer SelectorTool.m_LineRenderer

	LineRenderer to draw the laser for selection.

	
SelectableObject SelectorTool.m_LastSelectedObject

	Variable to track the last selected object for comparison.

	
float SelectorTool.m_RayDistance = 3f

	Maximum ray length for selection.

ShootingTool

	
class ShootingTool

	ShootingTool is used to shoot a projectile on roboy.

The projectile then triggers a ROS message to send an external force to the simulation.

Inherits from ControllerTool

Public Members

	
Projectile ShootingTool.ProjectilePrefab

	Projectile prefab which is responsible to send the ROS message.

	
Transform ShootingTool.SpawnPoint

	Spawn transform to retrieve the spawn position and direction.

	
Transform ShootingTool.Trigger

	Trigger transform for trigger animation.

	
Transform ShootingTool.TriggerBack

	Transform of the position when trigger is fully pressed.

	
float ShootingTool.ShootDelay = 0.5f

	Reload time between shots.

Private Functions

	
void ShootingTool.Start()

	Initializes trigger position.

	
void ShootingTool.Update()

	Shoots when the user presses the trigger to maximum value if shooting is not on cooldown.

	
void ShootingTool.Shoot()

	Instantiates a projectile prefab on the SpawnPoint.

	
void ShootingTool.animateTrigger()

	Animates trigger based on current trigger value.

Private Members

	
Vector3 ShootingTool.m_InitTriggerPosition

	The standard trigger position.

	
float ShootingTool.m_CurrentShootCooldown = 0f

	Variable for tracking current shooting cooldown.

GUIController

	
class GUIController

	GUIController is attached on another controller as the Tools like ShootingTool or SelectorTool.

It is mainly responsible for animating so the following tasks refer always to animation:
	manage the switch between selection mode and panel mode

	manage switch between different panel modes

	manage page switch inside a panel mode NOTICE: Right now GUIController is not inheriting from ControllerTool as we implemented this script at the beginning of the project. This will be changed soon, so be aware that this documentation could be out of date!

Inherits from MonoBehaviour

Public Types

	
enum UIPanelAlignment

	Enum for possible panel alignments.

Values:

	
Left

	

	
Top

	

	
Right

	

Public Functions

	
void GUIController.CheckTouchPad(InputManager.TouchpadStatus touchpadStatus)

	Checks the touchpad input of the controller and acts accordingly:
	Left: changes to previous panel if in panel mode

	Right: changes to next panel if in panel mode

	Top: changes between GUI modes

	Bottom: changes the page of the current panel if in panel mode

	Parameters

	
	touchpadStatus

	
void GUIController.InitializePanels()

	Initialize the position of all panels and set their corresponding roboy part reference.

Public Members

	
UIPanelRoboyPart GUIController.UIPanelRoboyPartPrefab

	Prefab variable for a roboy UI panel.

Property

	
property GUIController::Controller

	Public variable for outside classes to track input.

	
property GUIController::ControllerEventListener

	Public variable for outside classes to track controller events.

	
property GUIController::UIFadePanels

	Property which holds a dictionary to store a reference to the standard position of panels in panel mode.

Private Functions

	
void GUIController.Start()

	Initializes the controller variables.

Intializes the UI Panels and creates them for every roboy part for every panel mode.

	
void GUIController.changePageOfPanel()

	Changes the page of the current panel if the current GUI mode is set to panel mode.

	
void GUIController.changepanelsToNextMode()

	Changes to the next panel if the current GUI mode if set to panel mode.

	
void GUIController.changeToPreviousMode()

	Changes to the previous panel if the current GUI mode if set to panel mode.

	
IEnumerator GUIController.changeGUIMode()

	Changes GUI mode between selection and panel mode.

	Return

	

	
void GUIController.positionPanels()

	Positions the panels according to the template panel positions in the editor.

Private Members

	
SteamVR_Controller.Device GUIController.m_SteamVRDevice

	Private variable to track controller input.

	
SteamVR_TrackedObject GUIController.m_SteamVRController

	Private variable to track controller identity.

	
SteamVR_TrackedController GUIController.m_SteamVRTrackedController

	Private variable to track controller events.

	
Dictionary<RoboyPart, UIPanelRoboyPart> GUIController.m_RoboyPartPanelsDic =
 new Dictionary<RoboyPart, UIPanelRoboyPart>()

	Dictionary to store a reference to all UI Panels which are created at the start of the scene.

	
Dictionary<UIPanelAlignment, FadePanelStruct> GUIController.m_UIFadePanels = new Dictionary<UIPanelAlignment, FadePanelStruct>()

	Dictionary to store a reference to the standard position of panels in panel mode.

	
SelectionPanel GUIController.m_SelectionPanel

	Reference to the SelectionPanel.

	
struct FadePanelStruct

	Struct to store the position where a panel should fade in and out.

Additional classes

SelectableObject

	
class SelectableObject

	SelectableObject is attached on every roboy part.

Is used to switch between selection states, which then again changes the material and manages GUI highlighting.

Inherits from MonoBehaviour

Public Types

	
enum State

	Enum for possible selection states.

Values:

	
DEFAULT

	

	
TARGETED

	

	
SELECTED

	

Public Functions

	
void SelectableObject.SetStateSelected()

	Changes the state depending on the current state and updates the result in SelectorManager.

	
void SelectableObject.SetStateTargeted()

	Sets the state to targeted if the last state was default.

	
void SelectableObject.SetStateDefault(bool forceMode = false)

	Resets the state to default if the last state was targeted (without force mode).

	Parameters

	
	forceMode: Boolean to force the state switch.

Public Members

	
Material SelectableObject.TargetedMaterial

	Material of meshes which are targeted.

	
Material SelectableObject.SelectedMaterial

	Material of meshes which are selected.

Property

	
property SelectableObject::CurrentState

	Public property to track the selection state for outside classes.

Private Functions

	
void SelectableObject.Awake()

	Initializes the renderer array and default material.

	
void SelectableObject.changeState(State s)

	Switches the state based on the parameter and manages GUI highlighting.

	Parameters

	
	s: State to which the object should switch to.

Private Members

	
State SelectableObject.m_CurrentState = State.DEFAULT

	Variable to track the current selection state.

	
Renderer [] SelectableObject.m_Renderers

	Array of all renderer to change the material.

	
Material SelectableObject.m_DefaultMaterial

	Default material of all meshes.

SelectionPanel

	
class SelectionPanel

	SelectionPanel is the panel where you can select roboy parts with the SelectorTool on a GUI interface.

Whereas the components inside the panel provide functions to switch between selection states, this class is responsible to animate the switch between Selection Mode and GUI Panel mode.

Inherits from MonoBehaviour

Public Functions

	
void SelectionPanel.Shrink()

	Starts a coroutine to shrink the selection panel.

	
void SelectionPanel.Enlarge()

	Starts a coroutine to enlarge the selection panel.

	
IEnumerator SelectionPanel.shrinkCoroutine()

	Coroutine to shrink the selection panel.

Fades out the UI elements, turns off the colliders and shrinks the selection panel.

	Return

	

Public Members

	
Text SelectionPanel.CurrentPanelMode

	Reference to the text component to display the current panel mode like MotorForce etc.

Private Functions

	
void SelectionPanel.Awake()

	Initializes all variables like the RectTransform and the lists.

	
IEnumerator SelectionPanel.enlargeCoroutine()

	Coroutine to enlarge the selection panel.

Fades in the UI elements, turns on the colliders and enlarges the selection panel.

	Return

	

Private Members

	
RectTransform SelectionPanel.m_RectTransform

	Private RectTransform component for animation purposes.

	
List<CanvasGroup> SelectionPanel.m_ChildCanvasGroups = new List<CanvasGroup>()

	List of all canvas groups to change the alpha value.

	
List<BoxCollider> SelectionPanel.m_ChildBoxColliders = new List<BoxCollider>()

	List of all colliders on the UI elements to switch them off and on.

Projectile

	
class Projectile

	Inherits from MonoBehaviour

Public Members

	
float Projectile.projectileSpeed

	The speed of the projectile.

Private Functions

	
void Projectile.Update()

	Move forward and destroy yourself if you are not in the roboy cave.

	
void Projectile.OnCollisionEnter(Collision collision)

	Triggers a ROS external force message.

Transforms the hit point from world space to roboy local space.

	Parameters

	
	collision

Solution Strategy

RoboyVR consists of different components which work together.
One big part deals with the transition
between the different coordinate frames of Gazebo and Unity. At first the rotations were
represented via Euler Angles, this lead to gimbal locks. To avoid this we switched to quaternions.
Roboy’s pose needs to be converted to Unity’s coordinate frame.
In addition we convert the model of roboy to a unity friendly format.
The other part deals with user interaction. RoboyVR uses user input to manipulate the simulation
and renders the result on a GUI.

[image: Project whiteboard]
Whiteboard showing problems and solutions that occured during development of roboyVR.

[image: Comparison view sketch]
Handdrawn sketch showcasing the design of a specific UI Panelmode (comparison).

[image: Single view sketch]
Handdrawn sketch showcasing the design of a specific UI Panelmode (single).

Building Block View

[image: Bulding blocks overview]
RoboyVR Experience has several neighbouring systems like the simulation and github,
it consists of various components like RoboyManager/Inputmanager and
can be manipulated by the user through the HMD system.

Runtime View

Runtime Display Information regarding Roboyparts

[image: Usecase Roboypart Information]
User needs detailed information regarding specific roboy parts, e.g. power-consumption in motor24 upper_left_arm.

Runtime Physical impact on roboy (shooting)

[image: Usecase Shooting]
User wants to physically harm the poor roboy and shoots a nerf dart towards him.

...

Deployment View

[image: Roboy simulation runs on a virtual machine, RoboyVR Experience runs on Unity.]
Roboy simulation runs on a virtual machine, RoboyVR Experience runs on Unity.

Presentations

Midterm WS16/17: https://drive.google.com/open?id=0BxLtAtPNIIYQOHFIRjdrajR0UVk

Endterm WS16/17: https://drive.google.com/open?id=0BxLtAtPNIIYQUVhzNHY5NlVHbVE

Libraries and external Software

Contains a list of the libraries and external software used by this system.

Todo

List libraries you are using

Libraries and external Software

	Name
	URL/Author
	License
	Description

	Unity
	https://unity3d.com/
	Creative Commens Attribution license.
	Game engine for developing interactive software.

	SteamVR Plugin for Unity
	https://www.assetstore.unity3d.com/en/#!/content/32647
	Creative Commens Attribution license.
	Unity-Plugin for HTC Vive Headset support.

	Vuforia Plugin for Unity
	https://developer.vuforia.com/downloads/sdk
	Creative Commens Attribution license.
	Unity-Plugin for a VR interface.

	Blender
	https://www.blender.org/
	Creative Commens Attribution license.
	Tool for modeling and animating.

	Oracle Virtual Machine
	https://www.oracle.com
	Creative Commens Attribution license.
	Tool to run a virtual machine.

	arc42
	http://www.arc42.de/template/
	Creative Commens Attribution license.
	Template for documenting and developing software

About arc42

This information should stay in every repository as per their license: http://www.arc42.de/template/licence.html

arc42, the Template for documentation of software and system
architecture.

By Dr. Gernot Starke, Dr. Peter Hruschka and contributors.

Template Revision: 6.5 EN (based on asciidoc), Juni 2014

© We acknowledge that this document uses material from the arc 42
architecture template, http://www.arc42.de. Created by Dr. Peter
Hruschka & Dr. Gernot Starke. For additional contributors see
http://arc42.de/sonstiges/contributors.html

Note

This version of the template contains some help and explanations. It
is used for familiarization with arc42 and the understanding of the
concepts. For documentation of your own system you use better the
plain version.

Literature and references

	Starke-2014

	Gernot Starke: Effektive Softwarearchitekturen - Ein praktischer
Leitfaden. Carl Hanser Verlag, 6, Auflage 2014.

	Starke-Hruschka-2011

	Gernot Starke und Peter Hruschka: Softwarearchitektur kompakt.
Springer Akademischer Verlag, 2. Auflage 2011.

	Zörner-2013

	Softwarearchitekturen dokumentieren und kommunizieren, Carl Hanser
Verlag, 2012

Examples

	HTML Sanity
Checker [http://aim42.github.io/htmlSanityCheck/hsc_arc42.html]

	DocChess [http://www.dokchess.de/dokchess/arc42/] (german)

	Gradle [http://www.embarc.de/arc42-starschnitt-gradle/] (german)

	MaMa
CRM [http://confluence.arc42.org/display/arc42beispielmamacrm]
(german)

	Financial Data
Migration [http://confluence.arc42.org/display/migrationEg/Financial+Data+Migration]
(german)

Acknowledgements and collaborations

arc42 originally envisioned by Dr. Peter
Hruschka [http://b-agile.de] and Dr. Gernot
Starke [http://gernotstarke.de].

	Sources

	We maintain arc42 in asciidoc format at the moment, hosted in
GitHub under the
aim42-Organisation [https://github.com/aim42/aim42].

	Issues

	We maintain a list of open topics and
bugs [https://github.com/arc42/arc42-template/issues].

We are looking forward to your corrections and clarifications! Please
fork the repository mentioned over this lines and send us a pull
request!

Collaborators

We are very thankful and acknowledge the support and help provided by
all active and former collaborators, uncountable (anonymous) advisors,
bug finders and users of this method.

Currently active

	Gernot Starke

	Stefan Zörner

	Markus Schärtel

	Ralf D. Müller

	Peter Hruschka

	Jürgen Krey

Former collaborators

(in alphabetical order)

	Anne Aloysius

	Matthias Bohlen

	Karl Eilebrecht

	Manfred Ferken

	Phillip Ghadir

	Carsten Klein

	Prof. Arne Koschel

	Axel Scheithauer

Index

 C
 | G
 | I
 | M
 | P
 | R
 | S
 | T

C

 	
 	ControllerTool (C++ class)

G

 	
 	GUIController (C++ class)

 	GUIController::FadePanelStruct (C++ class)

 	GUIController::Left (C++ class)

 	
 	GUIController::Right (C++ class)

 	GUIController::Top (C++ class)

 	GUIController::UIPanelAlignment (C++ type)

I

 	
 	InputManager (C++ class)

 	InputManager::Bottom (C++ class)

 	InputManager::Left (C++ class)

 	
 	InputManager::None (C++ class)

 	InputManager::Right (C++ class)

 	InputManager::Top (C++ class)

 	InputManager::TouchpadStatus (C++ type)

M

 	
 	ModeManager (C++ class)

 	ModeManager::Comparison (C++ class)

 	ModeManager::Energy_Consumption (C++ class)

 	ModeManager::GUIMode (C++ type)

 	ModeManager::GUIPanels (C++ class)

 	ModeManager::Motor_Current (C++ class)

 	ModeManager::Motor_Force (C++ class)

 	ModeManager::Motor_Voltage (C++ class)

 	
 	ModeManager::Panelmode (C++ type)

 	ModeManager::Selection (C++ class)

 	ModeManager::SelectorTool (C++ class)

 	ModeManager::ShooterTool (C++ class)

 	ModeManager::Single (C++ class)

 	ModeManager::Tendon_Forces (C++ class)

 	ModeManager::TimeTool (C++ class)

 	ModeManager::ToolMode (C++ type)

 	ModeManager::Viewmode (C++ type)

P

 	
 	Projectile (C++ class)

R

 	
 	RoboyManager (C++ class)

S

 	
 	SelectableObject (C++ class)

 	SelectableObject::DEFAULT (C++ class)

 	SelectableObject::SELECTED (C++ class)

 	SelectableObject::State (C++ type)

 	
 	SelectableObject::TARGETED (C++ class)

 	SelectionPanel (C++ class)

 	SelectorManager (C++ class)

 	SelectorTool (C++ class)

 	ShootingTool (C++ class)

T

 	
 	TemplateClass (C++ class)

 _static/down.png

_images/buildingblocks.png
® Github
)
=
jo
8 Roboy Simulation
s
L]
P R
[« N .
o) .
o .
w e User
\
_ ~fefined(as new N
_~ whitebox diagram) N
Roboy VR-Experience \ Gilws
(Whitebox) -
— -
(0] Roboy Simulation
>
(0] - | Rosbridge |« _ - RaboyManager . _ _ inputManager| . _ | _______
— | 1
- i 0
- | i
= i + User
| i N
I I N
I 7
-7 refined(as new 1 i refined(as new
- whitebox diagram) " | whitebox diagram)
- | I N
Github RoboyManager ! ! N
(Whitebox) InputManager | N
S~ (Whitebox)
N RoboyModel <~~~ _
[0) N
> N
Q User
| Roboy Simulation

ROSbridge

_images/04.png

_images/02.png

_images/usecase_shooting.png
Roboy Simulation

The trigger

User pulls
animateTrigger()
Vibrate()

g
i 3z
s z
H H
il 2
E 2
§ §
2 2
E
§
- | O o
o N
=
2
g
s
H
$
o
e
=
g X
al 3
g
| 2K
g -1
2K
&
F
g
E
sy S 1. 1 B
E
&

_images/uml_context.png
RoboyVR Experience creates a immersivel
Communication virtual environment, in which Roboy can Repository used
via ROS-messages. be observed and interacted with to keep the roboy

model up-to-date.

ccomponents =l ccomponents =l <components
Roboy Simulation RoboyVR Experience Github

ccomponents =
ROSBridge
[e] Tracking data and input (controller)
ccomponent» =
Visual stream (HMD) RoboyManager
Player
(components =

InputManager

_images/03.png

_images/usecase_roboypart_information.png
GUIController

InputManager

CheckTouchPad()

[changeGUIMode()

GetTouch
padinput()

SelectorManager

Update mobile HUDZ:

Update mobile HUD

SelectableObject

data

T
|
|
|
|
|
|
|
|
|
I
L
|
|
|
|
|
|
|
User ndeds

Jetalled|

Changestate()
Changestate()

GetRayFromController()
Trigger is pulled

SelectorTool

T
|
i
i
i
i
User s interested !
T Specifc roboy part
T
'
|
i
i
i
i

_static/comment-close.png

_static/up.png

_images/deployment.png
roboyVR deployment diagram,

«device»
VirtualServer

«execution environment»
Ubuntu

Roboy 3]

Simulation

TCP

«devicer
WindowsServer

«execution environmenty
Unity

Roboy 3]

VR-Experience

HTTP

«device»
GithubServer

Holds the latest
roboy models. Can
be contacted to
download the models

_images/01.png
S——

N e
AN AW b
g W

o s———

T T NS
S S
. .

Tt AN

_static/minus.png

nav.xhtml

 Table of Contents

 		Welcome roboyVR documentation!

 		Installation

 		Part 1: Setup Virtualbox with Ubuntu

 		Part 2: Simulation Setup

 		Part 3: Unity Setup

 		Part 4: Blender & Python

 		Getting started

 		Part 1: Run rosbridge and roboySimulation

 		Part 2: Open the project in Unity

 		Part 3: Setup the scene

 		Extra: Update roboy models

 		Context

 		Conventions

 		Architecture Constraints

 		User Interfaces

 		Public Interfaces

 		Managers

 		RoboyManager

 		InputManager

 		ModeManager

 		SelectorManager

 		Tools

 		ControllerTool

 		SelectorTool

 		ShootingTool

 		GUIController

 		Additional classes

 		SelectableObject

 		SelectionPanel

 		Projectile

 		Solution Strategy

 		Building Block View

 		Runtime View

 		Runtime Display Information regarding Roboyparts

 		Runtime Physical impact on roboy (shooting)

 		Deployment View

 		Presentations

 		Libraries and external Software

 		About arc42

 		Literature and references

 		Examples

 		Acknowledgements and collaborations

 		Collaborators

 		Currently active

 		Former collaborators

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

