

 Navigation

 	
 index

 	rmoq 1.0.0 documentation

rmoq [image: frigg] [https://ci.frigg.io/relekang/rmoq/last/] [image: coverage] [https://ci.frigg.io/relekang/rmoq/last/] [image: Latest Version] [https://pypi.python.org/pypi/rmoq/]

A simple request mocker that caches requests responses to files.

Installation

Install it with pip:

pip install rmoq

Usage

Function decorator

The example below will put the content of fixtures/example.com.txt
into the body of the request and if it does not exist the content
will be downloaded and stored in fixtures/example.com.txt.

@rmoq.activate()
def test_remote_call():
 response = requests.get('http://example.com')
 assert response.body == 'Example'

The example below works as the one above it just uses the given path
(test_fixtures) instead of the default path.

@rmoq.activate('test_fixtures')
def test_remote_call():
 response = requests.get('http://example.com')
 assert response.body == 'Example'

With statements

It can also be used in a with statement

def test_remote_call():
 with rmoq.Mock():
 response = requests.get('http://example.com')
 assert response.body == 'Example'

The mock object can also take a path as an argument.

Class decorator

The decorator will also work for classes, which means you can decorate a whole test-case:

@rmoq.activate()
class RemoteTestCase(unittest.TestCase)
 def test_remote_call():
 response = requests.get('http://example.com')
 assert response.body == 'Example'

Disable in one test run
Setting the environment variable RMOQ_DISABLED to True will disable rmoq:

$ RMOQ_DISABLED=True py.test

This can be useful to make sure that the a CI server does not use time on saving new fixtures if you
are only using fixtures locally.

The Mock class

	
class rmoq.Mock(prefix='fixtures', backend=<rmoq.backends.FileStorageBackend object at 0x7f69229f2210>)

	The mocker class that mocks requests in rmoq. It supports being used in with-statements
and have a method :method:`activate` that can be used as a decorator on functions or classes.

	
activate(prefix=None, backend=None)

	A decorator used to activate the mocker.

	Parameters:	
	prefix –

	backend – An instance of a storage backend.

Backends

rmoq supports custom storage backends by passing an instance into the backend parameter of
rmoq.activate() method. A storage backend must inherit from rmoq.RmoqStorageBackend
and implement the get() and put() methods.

	
class rmoq.RmoqStorageBackend

	Base backend for rmoq backends. All storage backends for rmoq must inherit this
backend if it is to be used with rmoq.

	
static clean_url(url, replacement='_')

	Cleans the url for protocol prefix and trailing slash and replaces special characters
with the given replacement.

	Parameters:	
	url – The url of the request.

	replacement – A string that is used to replace special characters.

	
get(prefix, url)

	Fetches a request response from storage. Should be overridden by subclasses.

	Parameters:	
	prefix – A prefix that separates containers of request responses in the storage.

	url – The url of the request.

	
put(prefix, url, content, content_type)

	Writes a request response in to storage. Should be overridden by subclasses.

	Parameters:	
	prefix – A prefix that separates containers of request responses in the storage.

	url – The url of the request.

	content – The content of the request response.

	content_type – The content type header of the request response.

	
class rmoq.FileStorageBackend

	Bases: rmoq.backends.RmoqStorageBackend

A rmoq backend that reads and writes to the local file system.
This is the default backend.

	
get(prefix, url)

	

	
get_filename(prefix, url)

	Creates a file path on the form: current-working-directory/prefix/cleaned-url.txt

	Parameters:	
	prefix – The prefix from the .get() and .put() methods.

	url – The url of the request.

	Returns:	The created path.

	
put(prefix, url, content, content_type)

	

	
class rmoq.MemcachedStorageBackend(servers, **options)

	Bases: rmoq.backends.RmoqStorageBackend

Storage backend for rmoq that uses memcached for storage. Takes a the same arguments
as python-memcached: a list of servers and options as keyword arguments.

	
create_key(*parts)

	

	
get(prefix, url)

	

	
put(prefix, url, content, content_type)

	

 Copyright 2015, Rolf Erik Lekang.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	rmoq 1.0.0 documentation

Index

 A
 | C
 | F
 | G
 | M
 | P
 | R

A

 	

 	activate() (rmoq.Mock method), [1]

C

 	

 	clean_url() (rmoq.RmoqStorageBackend static method), [1]

 	

 	create_key() (rmoq.MemcachedStorageBackend method), [1]

F

 	

 	FileStorageBackend (class in rmoq), [1]

G

 	

 	get() (rmoq.FileStorageBackend method), [1]

 	

 	(rmoq.MemcachedStorageBackend method), [1]

 	(rmoq.RmoqStorageBackend method), [1]

 	

 	get_filename() (rmoq.FileStorageBackend method), [1]

M

 	

 	MemcachedStorageBackend (class in rmoq), [1]

 	

 	Mock (class in rmoq), [1]

P

 	

 	put() (rmoq.FileStorageBackend method), [1]

 	

 	(rmoq.MemcachedStorageBackend method), [1]

 	(rmoq.RmoqStorageBackend method), [1]

R

 	

 	RmoqStorageBackend (class in rmoq), [1]

 Copyright 2015, Rolf Erik Lekang.
 Created using Sphinx 1.2.2.

 mock.html

 Navigation

 		
 index

 		rmoq 1.0.0 documentation »

The Mock class

		
class rmoq.Mock(prefix='fixtures', backend=<rmoq.backends.FileStorageBackend object at 0x7f69229f2210>)

		The mocker class that mocks requests in rmoq. It supports being used in with-statements
and have a method :method:`activate` that can be used as a decorator on functions or classes.

		
activate(prefix=None, backend=None)

		A decorator used to activate the mocker.

		Parameters:		
		prefix –

		backend – An instance of a storage backend.

 © Copyright 2015, Rolf Erik Lekang.
 Created using Sphinx 1.2.2.

_static/plus.png

search.html

 Navigation

 		
 index

 		rmoq 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Rolf Erik Lekang.
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

_static/comment.png

backends.html

 Navigation

 		
 index

 		rmoq 1.0.0 documentation »

Backends

rmoq supports custom storage backends by passing an instance into the backend parameter of
rmoq.activate() method. A storage backend must inherit from rmoq.RmoqStorageBackend
and implement the get() and put() methods.

		
class rmoq.RmoqStorageBackend

		Base backend for rmoq backends. All storage backends for rmoq must inherit this
backend if it is to be used with rmoq.

		
static clean_url(url, replacement='_')

		Cleans the url for protocol prefix and trailing slash and replaces special characters
with the given replacement.

		Parameters:		
		url – The url of the request.

		replacement – A string that is used to replace special characters.

		
get(prefix, url)

		Fetches a request response from storage. Should be overridden by subclasses.

		Parameters:		
		prefix – A prefix that separates containers of request responses in the storage.

		url – The url of the request.

		
put(prefix, url, content, content_type)

		Writes a request response in to storage. Should be overridden by subclasses.

		Parameters:		
		prefix – A prefix that separates containers of request responses in the storage.

		url – The url of the request.

		content – The content of the request response.

		content_type – The content type header of the request response.

		
class rmoq.FileStorageBackend

		Bases: rmoq.backends.RmoqStorageBackend

A rmoq backend that reads and writes to the local file system.
This is the default backend.

		
get(prefix, url)

		

		
get_filename(prefix, url)

		Creates a file path on the form: current-working-directory/prefix/cleaned-url.txt

		Parameters:		
		prefix – The prefix from the .get() and .put() methods.

		url – The url of the request.

		Returns:		The created path.

		
put(prefix, url, content, content_type)

		

		
class rmoq.MemcachedStorageBackend(servers, **options)

		Bases: rmoq.backends.RmoqStorageBackend

Storage backend for rmoq that uses memcached for storage. Takes a the same arguments
as python-memcached: a list of servers and options as keyword arguments.

		
create_key(*parts)

		

		
get(prefix, url)

		

		
put(prefix, url, content, content_type)

		

 © Copyright 2015, Rolf Erik Lekang.
 Created using Sphinx 1.2.2.

_static/down.png

_static/comment-close.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

usage.html

 Navigation

 		
 index

 		rmoq 1.0.0 documentation »

Usage

Function decorator

The example below will put the content of fixtures/example.com.txt
into the body of the request and if it does not exist the content
will be downloaded and stored in fixtures/example.com.txt.

@rmoq.activate()
def test_remote_call():
 response = requests.get('http://example.com')
 assert response.body == 'Example'

The example below works as the one above it just uses the given path
(test_fixtures) instead of the default path.

@rmoq.activate('test_fixtures')
def test_remote_call():
 response = requests.get('http://example.com')
 assert response.body == 'Example'

With statements

It can also be used in a with statement

def test_remote_call():
 with rmoq.Mock():
 response = requests.get('http://example.com')
 assert response.body == 'Example'

The mock object can also take a path as an argument.

Class decorator

The decorator will also work for classes, which means you can decorate a whole test-case:

@rmoq.activate()
class RemoteTestCase(unittest.TestCase)
 def test_remote_call():
 response = requests.get('http://example.com')
 assert response.body == 'Example'

Disable in one test run
Setting the environment variable RMOQ_DISABLED to True will disable rmoq:

$ RMOQ_DISABLED=True py.test

This can be useful to make sure that the a CI server does not use time on saving new fixtures if you
are only using fixtures locally.

 © Copyright 2015, Rolf Erik Lekang.
 Created using Sphinx 1.2.2.

_static/minus.png

