

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/riscv-multi-cycle/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/riscv-multi-cycle/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

layout: default
title: Micro-architecture | RISCV Multi Cycle

This page details the implementation of the core and it’s
micro-architecture.

Top Level Signals

These are the signals which must be connected in order to use and implement
the core.

 TBD

Module Hierarchy

	rvm_core
	rvm_adder

	rvm_shifter

	rvm_bitwise

	rvm_gprs

	rvm_control

	rvm_fdu
	rv32ui_decoder

	rvm_scu

Major Blocks

These are the main components of the core. Each is implement in a different
file and stitched together according to the hierarchy above.

rvm_core

Top level module for the whole core. Contains instances of the control logic
and functional units, as well as the PRA.

rvm_adder

Performs additional and comparison operations. Single cycle.

rvm_shifter

Performs arithmetic and logical shift operations using a single cycle barrel
shifter.

rvm_bitwise

Performs logical bitwise operations: and, or & xor.

rvm_gprs

Contains the 31 general purpose architectural registers and the zero register.
Has two read only ports and a single write port.

rvm_control

This contains the main control and routing logic for the core. It implements a
finite state machine (FSM) which is generated automatically from a YAML
description of the semantics of each instruction.

The YAML file is found in bin/fsm-spec.yaml. It also defines the various
interfaces to the functional units.

rvm_fdu

The fetch and decode unit responsible for buffering fetched instruction words.
It contains the decoder as a sub module.

rv32ui_decoder

Responsible for taking a single 32 bit instruction word and decoding it into a
unique control code for the FSM and extracting it’s operands.

rvm_scu

Implements the privilege resource architecture for the core. Only the machine
mode is supported and only the relevant registers are implemented.

FSM State Diagram

The diagram below is generated from the same YAML specification as the
rvm_control module. It shows the various control states of the core and the
transition conditions between them.

FSM Control Diagram

layout: default
title: Flow | RISCV Multi Cycle

Describes the build, simulation and synthesis tool flows.

Tools Used

It is assumed that you have a unix-like enironment with the following tools
installed already. The workspace scripts assume a bourne-shell (sh/bash)
compatible environment.

	Icarus Verilog Simulator

	Yosys Open Sythesis Tool

	Python2.7

	Python3.5

	GTKWave

Further, the bitstring python package is also used.

Workspace Setup

First, set the RISCV environment variable to the root of your riscv-tools
installation.

To prepare the workspace for building and simulating the core, move to the
top of the project directory tree and run:

$> source ./bin/source.me.sh

This will setup the RVM_HOME environment variable, which is used by the
various makefiles and build scripts. It will also copy the compiled
riscv-isa-test suite into ./verif/isa-tests folder.

RTL

This section deals with how to build a simulation from the RTL source files.
These files are found in rtl/main/ for the “core” synthesisable files, and
rtl/test/ for the testbench infrastructure and peripheral models.

RTL Build

Icarus verilog is used to build a simulation executable. Run the following
command to build the default self-checking test environment:

$> make build

This uses the sim/manifest-iverilog.cmd script to load the appropriate
testbench and RTL files.
This will put a sim.bin file in the work/ directory.

RTL Simulation

Running the simulation is done with the vvp tool, which is part of the
Icarus toolset.

$> make run-test

Will run the default isa test (addi) and dump the results into work/sim.log
and write a VCD wave database of the simulation to work/waves.vcd

There are several arguments (plusargs, in verilog terminology) which can be
passed to the simulation to configure the pass/fail conditions and which test
file to run.

	TEST_HEX - The .hex file which is loaded into the simulator memories
at the start of the test. These contain the programs to run.

	TIMEOUT - An integer which will cause the simuation to fail out after this
many cycles of activity.

	HALT_ADDR - Stop the simulation if we hit this address. Used to catch
runaway program counters.

	PASS_ADDR - Stop the simulation when the PC hits this address and report
pass.

	FAIL_ADDR - Stop the simulation when the PC hits this address and report
fail.

For example:

$> make TEST_HEX=./my-custom-test.hex HALT_ADDR=0x00000500 run-test

Will run a specified hex file and stop when the PC hits address 0x00000500.

After simulation, run make view-waves to load the work/waves.vcd file
into GTKWave for analysis. There is a script file in sim/wave-view.gtkw which
will load common sets of signals into the window view to make debugging easier.

RTL Synthesis

Synthesis is the process of translating RTL code into a netlist of actual
gates which can be implemented in a circuit.

Yosys is used as the synthesis tool to build gate-level models of the
core. All synthesis related work is performed in the ./synth/ directory.
The following commands will create a synthesised netlist version of the core:

$> cd $RVM_HOME/synth
$> make netlist

This will produce a logfile, and the core-synth.v file. This is the
synthesised netlist. No particular technology library is used, but yosys
will support this if you have one available.

The command script yosys uses to build the core is ./synth/yosys.cmd. An
explanation of the steps it takes can be found in ./synth/README.md.

Verification

This core is not verified. I make no claims as to its fitness for purpose.

That said, I have tried to build enough confidence in the implementation
such that it is something I can build on in other projects. This takes a
three step approach:

	Self checking directed tests. These are part of the riscv-tests
repository and contain lots of self-checking tests for each instruction.
Any RISCV implementation must be able to run these tests.

	Random testing. I have built a small random-testing flow. It is not
complete yet, but it allows random sequences of arithmetic instructions to
be run and the final processor state to be checked against the SPIKE ISA
simulator.

	Functional Coverage. Again, I have built a simple tool to allow specification
of coverage points and crosscoverage and data extraction from VCD files.

ISA Tests

$> make regress

Random Testing

$> make run-random-tests

Functional Coverage

$> make coverage

RISCV Multi-cycle CPU implementation

This is the top level for the project documentation.

	Features - An overview of what the core implements.

	Architecture - Details of the RISCV architecture.

	Micro-Architecture - Details of the implementation.

	Flow - How to build, simulate and implement the core.

Core Feature List

A short description of the main features which the core implements.

	Single issue, multi-cycle, in-order CPU. It’s not fast!

	Implements the RV32UI instruction set architecture.

	Single AXI4 bus master interface for instructions and data.

	Easy to integrate into a larger design.

	Designed to be very small and easy to fit into an FPGA design.

	Multi-cycle micro-architecture allows for maximum logic sharing at the
expense of performance.

	Free!

layout: default
title: Architecture | RISCV Multi Cycle

This page details all ISA specific information which the core implements.

ISA Documentation

This documentation is supplied by the RISC-V Foundation [https://riscv.org/].
The most recent coppies can be found here [https://riscv.org/specifications/].

	RISCV ISA Specification PDF

	RISCV Privileged Resource Architecture PDF

A concise description of all RV32UI instructions can be found
here. Quirks in the current version of the RISCV toolchain
can also make it difficult to work out exactly which register an instruction
is addressing when viewing dissassembly. A mapping table to make debugging
easier is listed here.

Implementation Notes

This is an implementation of the RISCV RV32UI architecture. It implements
only the minimum required amount of logic in the privilidged resource
architecture in order to run programs.

Fence Instructions

The fence and fencei instruction are implemented as NOP instructions. This
is because there are no caches supported.

Memory Alignment

The core uses byte addressed memory. Interfaces to memory are word addressed,
where one word is four bytes.

LOAD and STORE instructions can access words, half-words and bytes.

Support for accessing words and half-words which span a word boundary is not
present. Access to halfwords which are misaligned within a word, but which do
not straddle a word boundary are supported.

Todo List

Specs

	[X] Check all RISCV specs are up to date.

	[] Write a feature list which the core supports.

Verification

	[] Plan of attack.

	[] Coverage script updates.

	[] Top level testbench re-write.

	[] Spike + DPI interface research?

RTL

	[X] SRAM <-> AXIv4 Bridge.

	[] Interrupt support.

Flow

	[] Document all aspects of the flow

	[] Build

	[] Simulaton

	[] Implementation

Documentation

	[] Scripts

	[] Getting started

layout: default
title: Getting Started | RISCV Single Cycle

A quick guide to actually using the core in your own projects.

Getting Started

TBD

layout: default
title: Instruction Actions | RISCV Multi Cycle

This page shows concisely the side effects of every instruction in the RV32UI
subset which the core implements.

Instruction | Action————|—————————————————-
[] ADDI | rd <- rs + signextend(s12)
[] SLTI | rd <- rs < signextend(s12) ? 1 : 0
[] ANDI | rd <- rs & signextend(s12)
[] ORI | rd <- rs | signextend(s12)
[] XORI | rd <- rs ^ signextend(s12)
[] LUI | rd[31:12] <- u20, rd[11:0] <- 0
[] AUIPC | rd[31:12] <- PC + u20, rd[11:0] <- 0
[] ADD | rd <- rs1 + rs2
[] SUB | rd <- rs1 - rs2
[] AND | rd <- rs1 & rs2
[] OR | rd <- rs1 | rs2
[] XOR | rd <- rs1 ^ rs2
[] SLTU | rd <- rs1 < rs2
[] SLL | rd <- rs1 << rs2
[] SRL | rd <- rs1 >> rs2
[] SRA | rd <- rs1 >>> rs2
[] JAL | rd <- PC + 4, PC <- PC + s20
[] JALR | rd <- PC + 4, PC <- rs1 + s12
[] BEQ | PC <- rs1 == rs2 ? PC+s12 : PC+4
[] BNE | PC <- rs1 != rs2 ? PC+s12 : PC+4
[] BLT | PC <- rs1 < rs2 ? PC+s12 : PC+4
[] BGT | PC <- rs1 > rs2 ? PC+s12 : PC+4
[] LOAD | rd <- mem[rs1+s12]
[] STORE | mem[rs1+s12] <- rs2
[] CSRRW | tmp <- rs1, rs1 <- CSR[rd], CSR[rd] <- tmp
[] CSRRS | tmp <- rs1, rs1 <- CSR[rd], CSR[rd] <- CSR[rd] | tmp
[] CSRRC | tmp <- rs1, rs1 <- CSR[rd], CSR[rd] <- CSR[rd] & ~tmp

layout: default
title: Register Aliases | RISCV Multi Cycle

This page Details the general purpose registers of the RISCV architecture.

Due to quirks of the RISCV toolchain, the disassembly output
does not describe the names of registers clearly. Here is the mapping
between the name in the disassembly and the integer address index.

Index | Disassembly Name
——-|——————————
00 | zero
01 | ra
02 | sp
03 | gp
04 | tp
05 | t0
06 | t1
07 | t2
08 | s0
09 | s1
10 | a0
11 | a1
12 | a2
13 | a3
14 | a4
15 | a5
16 | a6
17 | a7
18 | s2
19 | s3
20 | s4
21 | s5
22 | s6
23 | s7
24 | s8
25 | s9
26 | s10
27 | s11
28 | t3
29 | t4
30 | t5
31 | t6

 _static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

_static/plus.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/comment.png

_static/down.png

_static/up-pressed.png

