

RIPE Atlas Tools (Magellan)

The official command-line client for RIPE Atlas.

Why This Exists

RIPE Atlas [https://atlas.ripe.net] is a powerful Internet measurements platform that until recently
was only accessible via the website and the RESTful API. The reality however is
that a great many people using RIPE Atlas are most comfortable on the
command-line, so this project is an attempt to fill that gap.

Contents

	Quickstart
	Viewing Public Data

	Creating a Measurement

	Advanced Use

	Requirements & Installation
	System Requirements

	Python Requirements

	Installation

	How to Use the RIPE Atlas Toolkit
	Configuration

	Quick Measurement Information

	Measurement Querying

	Probe Querying

	Result Reporting

	Result Streaming

	Measurement Creation

	How to Create Your Own Plugins
	Create Your Renderer File

	(Try to) Run It!

	Actually Write a Renderer

	Run It!

	Contributing

	How To Contribute

	Packaging
	Currently Supported

	In Progress

	Additional Distributions

	Further Information

	Troubleshooting
	InsecurePlatformWarning

	Sagan, OpenSSL, and OSX

	Complaints from libyaml

	Release History
	3.1.0 (release 2023-02-07)

	3.0.3 (release 2022-11-18)

	3.0.2 (release 2022-05-23)

	3.0.1 (release 2022-02-24)

	3.0.0 (release 2022-02-23)

	2.3.0 (released 2018-11-23)

	2.2.3 (released 2017-01-17)

	2.2.2 (released 2017-10-12)

	2.1 (released 2016-04-21)

	2.0.2 (released 2016-10-21)

	2.0.1 (released 2016-04-20)

	2.0.0 (released 2016-04-20)

	1.2.3 (released 2016-03-08)

	1.2.2 (released 2016-01-13)

	1.2.1 (released 2015-12-15)

	1.2.0 (released 2015-12-15)

	1.1.1 (released 2015-11-25)

	1.1.0 (released 2015-11-12)

	1.0.0 (released 2015-11-02)

Quickstart

This is a very fast break down of everything you need to start using Ripe Atlas
on the command line. Viewing public data is quick & easy, while creation is a
little more complicated, since you need to setup your authorisation key.

Viewing Public Data

	Install the toolkit.

	View help with: ripe-atlas --help

	View a basic report for a public measurement: ripe-atlas report <measurement_id>

	View the live stream for a measurement: ripe-atlas stream <measurement_id>

	Get a list of probes in ASN 3333: ripe-atlas probe-search --asn 3333

	Get a list of measurements with the word “wikipedia” in them: ripe-atlas measurement-search --search wikipedia

Creating a Measurement

	Log into RIPE Atlas [https://atlas.ripe.net/]. If you don’t have an
account, you can create one there for free.

	Visit the API Keys [https://atlas.ripe.net/keys/] page and create a new key
with the permission Create a new user defined measurement

	Install the toolkit as below.

	Configure the toolkit to use your key with ripe-atlas configure --set authorisation.create=MY_API_KEY

	View the help for measurement creation with ripe-atlas measure --help

	Create a measurement with ripe-atlas measure ping --target example.com

Advanced Use

Refer to the complete usage documentation for more advanced
options.

Requirements & Installation

This is a Linux-based tool, though it should work just fine in a BSD variant.
Windows is experimentally supported. In terms of the actual installation,
only Python’s package manager (pip) is currently supported, and the
installation process may require some system packages to be installed in order
for everything to work.

System Requirements

Some of the dependencies need to be compiled, so you’ll need a compiler on your
system, as well as the development libraries for Python. In the Linux world,
this typically means a few packages need to be installed from your standard
package manager, but in true Linux fashion, each distribution does things
slightly differently.

The most important thing to know is that you need Python 2.7 or 3. Python 2.6
will never be supported because it’s old, ugly, and needs to die.

Distribution Specific Requirements

Note

If you’re running OpenBSD, you can skip this whole section. You can even
skip the next one too. Just skip down to
Installation:OpenBSD and follow the
instructions. Everything else is taken care of for you.

Debian/Ubuntu

The following has been tested on Debian Jessie.

Debian-based distributions require three system packages to be installed first:

sudo apt-get install python-dev libffi-dev libssl-dev

You’ll also need either virtualenv (recommended), or if you’re not
comfortable with that, at the very least, you’ll need pip:

sudo apt-get install python-virtualenv python-pip

CentOS

This following has been tested on CentOS 7.

Since we require Python’s pip, we first need to install the epel-release
repository:

sudo yum install epel-release

You’ll also need the following system libraries:

sudo yum install gcc libffi-devel openssl-devel

Once that’s finished, you’ll need access to virtualenv (recommended), or if
you’re not comfortable with that, at the very least, you’ll need pip:

sudo yum install python-virtualenv python-pip

Gentoo

If you’re a Gentoo user, you never have to worry about development libraries,
but if you intend to use the bleeding-edge version of this package (and what
self-respecting Gentoo user wouldn’t?) then you’ll probably want to make sure
that git is built with curl support:

sudo USE="curl" emerge git

If you’re not going bleeding edge, or if you’re just going to use SSH to get the
code from GitHub, then Gentoo will have everything ready for you.

Apple OSX

These instructions expect that you’ve got Python’s pip installed, so if you
have no idea what that is, or simply don’t have it yet, you should be able to
install pip with one easy command:

sudo easy_install pip

Outside of that, a few of the Python dependencies require that you have a
compiler on your system. For this, you need only get a free copy of Xcode [https://itunes.apple.com/us/app/xcode/id497799835]
from the app store, and from there you should be good to go.

Python Requirements

Importantly, Magellan requires Python 2.7 or higher. For most desktop users,
this shouldn’t be a problem, but for some older servers like CentOS 6 and lower,
this may cause some pain. Thankfully, for most such systems, there are usually
work-arounds that allow you to install a more modern version of Python in
parallel.

Magellan depends on two other RIPE Atlas libraries, Cousteau and Sagan, which in
turn depend on a reasonable number of Python libraries. Thankfully, Python’s
package manager, pip should handle all of these for you:

	ripe.atlas.cousteau

	ripe.atlas.sagan

	tzlocal

	pyyaml

Installation

OpenBSD

OpenBSD was the first platform to have a port for Magellan, so installation is
easy:

sudo pkg_add ripe.atlas.tools

FreeBSD

FreeBSD has a port ready for you:

cd /usr/ports/net/py-ripe.atlas.tools
make install

Gentoo

There’s an ebuild for Magellan in Portage, so installation is as any other
package:

sudo emerge ripe-atlas-tools

From PyPi

Python’s pip program can be used to install packages globally (not a good
idea since it conflicts with your system package manager) or on a per-user
basis. Typically, this is done with virtualenv [https://pypi.python.org/pypi/virtualenv], but if you don’t want to use
that, you can always pass --user to the pip program and it’ll install a
user-based copy in ${HOME}/.local/.

From within a virtualenv
pip install ripe.atlas.tools

In your user's local environment
pip install --user ripe.atlas.tools

Or if you want to live on the edge and perhaps try submitting a pull request of
your own:

One day, we want this process to be as easy as installing any other command-line
program, that is, with apt, dfn, or emerge, but until that day,
Python’s standard package manager, pip does the job nicely.

From GitHub

If you’re feeling a little more daring and want to go bleeding-edge and use
our master branch on GitHub, you can have pip install right from there:

pip install git+https://github.com/RIPE-NCC/ripe-atlas-tools.git

If you think you’d like to contribute back to the project, we recommend the use
of pip’s -e flag, which will place the Magellan code in a directory where
you can edit it, and see the results without having to go through a new install
procedure every time. Simply clone the repo on GitHub and install it like so:

pip install -e git+https://github.com/your-username/ripe-atlas-tools.git

From a Tarball

If for some reason you want to just download the source and install it manually,
you can always do that too. Simply un-tar the file and run the following in the
same directory as setup.py:

python setup.py install

Using Docker

You can find an unofficial Alpine-based docker image on Dockerhub here [https://hub.docker.com/r/anuragbhatia/ripe-atlas-tools], or simply build your own image based on the Dockerfile available here [https://github.com/anuragbhatia/ripe-atlas-tools].

How to Use the RIPE Atlas Toolkit

Configuration

For most features, Magellan will work out-of-the-box, but if you’d like to
customise the experience, or if you want to use this tool to create a
measurement of your own, then you’ll need to configure it.

Thankfully, configuration is easy by way of the configure command::

$ ripe-atlas configure --help

Options

	Option

	Arguments

	Explanation

	--editor

	
	Invoke ${EDITOR} to edit the
configuration directly

	--set

	path=value

	Permanently set a configuration value so
it can be used in the future.

	--init

	
	Create a configuration file and save it
into your home directory at:
${HOME}/.config/ripe-atlas-tools/rc

Examples

Create a standard configuration file. Note that this typically isn’t
necessary:

$ ripe-atlas configure --init

Invoke your editor of choice to manually fiddle with the configuration file:

$ ripe-atlas configure --editor

Set an arbitrary value within the configuration file. You can use dot-separated
notation to dictation the value you wish to change:

$ ripe-atlas configure --set authorisation.create=YOUR_API_KEY

Quick Measurement Information

For the impatient, and for those looking to see how they might write their own
plugins, we have a simple go command::

$ ripe-atlas go <measurement-id>

This will open a web browser and take you to the detail page for the measurement
id provided.

Measurement Querying

A querying tool for finding existing measurements in the RIPE Atlas database.
You can request a table-formatted list of measurements based on search-string
lookups, type, start time, etc.

Options

	Option

	Arguments

	Explanation

	--search

	A free-form string

	This could match the target or
description.

	--status

	One of: scheduled,
stopped, ongoing

	The measurement status.

	--af

	One of: 4, 6

	The address family.

	--type

	One of: ping,
traceroute, dns,
sslcert, ntp,
http

	The measurement type.

	--field

	One of: status,
target, url, type,
id, description

	The field(s) to display.
Invoke multiple times for
multiple fields. The default
is id, type, description, and
status.

	--ids-only

	
	Display a list of measurement
ids matching your filter
criteria.

	--limit

	An integer

	The number of measurements to
return. The number must be
between 1 and 1000

	--started-before

	An ISO timestamp

	Filter for measurements that
started before a specific
date. The format required is
YYYY-MM-DDTHH:MM:SS

	--started-after

	An ISO timestamp

	Filter for measurements that
started after a specific date.
The format required is
YYYY-MM-DDTHH:MM:SS

	--stopped-before

	An ISO timestamp

	Filter for measurements that
stopped before a specific
date. The format required is
YYYY-MM-DDTHH:MM:SS

	--stopped-after

	An ISO timestamp

	Filter for measurements that
stopped after a specific date.
The format required is
YYYY-MM-DDTHH:MM:SS

Examples

Get a list of measurements:

$ ripe-atlas measurement-search

Filter that list by status=ongoing:

$ ripe-atlas measurement-search --status ongoing

Further filter it by getting measurements that conform to IPv6:

$ ripe-atlas measurement-search --status ongoing --af 6

Get that same list, but strip out everything but the measurement ids:

$ ripe-atlas measurement-search --status ongoing --af 6 --ids-only

Limit that list to 200 entries:

$ ripe-atlas measurement-search --status ongoing --af 6 --limit 200

Get that list, but show only the id, url and target fields:

	$ ripe-atlas measurement-search –status ongoing –af 6

	–field id –field url –field target

Filter for measurements of type dns that started after January 1, 2015:

$ ripe-atlas measurement-search --type dns --started-after 2015-01-01

Probe Querying

Just like the measurement-search command, but for probes, and a lot more powerful.
You can use this command to find probes within an ASN, prefix, or geographical
region, and then aggregate by country, ASN, and/or prefix.

Options

	Option

	Arguments

	Explanation

	--limit

	An integer

	Return limited number of
probes.

	--field

	One of: status,
description,
address_v6,
address_v4,
asn_v4, is_public,
asn_v6, id,
prefix_v4,
prefix_v6,
is_anchor,
country,
coordinates

	The field(s) to display.
Invoke multiple times for
multiple fields. The default
is id, asn_v4, asn_v6,
country, and status.

	--aggregate-by

	country, asn_v4,
asn_v6,
prefix_v4,
prefix_v6

	Aggregate list of probes based
on all specified aggregations.
Multiple aggregations
supported.

	--all

	
	Fetch ALL probes. That will
give you a loooong list.

	--max-per-aggregation

	An integer

	Maximum number of probes per
aggregated bucket.

	--ids-only

	
	Print only IDs of probes.
Useful to pipe it to another
command.

	--asn

	An integer

	Filter the list by an ASN

	--asnv4

	An integer

	Filter the list by an ASN

	--asnv6

	An integer

	Filter the list by an ASN

	--prefix

	A prefix string

	Filter the list by a prefix

	--prefixv4

	A prefix string

	Filter the list by a prefix

	--prefixv6

	A prefix string

	Filter the list by a prefix

	--location

	A free-form string

	The location of probes as a
string i.e. ‘Amsterdam’

	--center

	A pair of
geographic
coordinates

	Location as
<lat>,<lon>-string, i.e.
“48.45,9.16”

	--radius

	An integer

	Radius in km from specified
center/point.

	--country

	A two-letter
ISO country code

	The country in which the
probes are located.

Examples

Get a list of probes within ASN 3333:

$ ripe-atlas probe-search --asn 3333

Further filter that list to show only probes in ASN 3333 from the Netherlands:

$ ripe-atlas probe-search --asn 3333 --country nl

Change the limit from the default of 25 to 200:

$ ripe-atlas probe-search --asn 3333 --limit 200

Aggregate the probes by country, and then by ASN:

$ ripe-atlas probe-search --asn 3333 --aggregate-by country --aggregate-by asn_v4

Show the id, url, target, description, and whether the probe is public or not:

$ ripe-atlas probe-search --asn 3333 --field id --field url --field description \
 --field is_public

Result Reporting

A means to generate a simple text-based report based on the results from a
measurement. Typically, this is used to get the latest results of a measurement
in a human-readable format, but with the --start-time and --stop-time
options, you can get results from any time range you like. It’s possible to generate the report by automatically fetching the results from the API, by reading a local file, or by reading standard input.

Options

	Option

	Arguments

	Explanation

	--auth

	RIPE Atlas key
alias

	One of the RIPE Atlas key alias
configured for results fetching.

	--probes

	A comma-separated
list of probe ids

	Limit the report to only results
obtained from specific probes.

	--probe-asns

	A comma-separated
list of ASNs

	Limit the report to only results
obtained from probes belonging to
specific ASNs.

	--renderer

	One of: dns, http,
ntp, ping, raw,
ssl_consistency,
sslcert,
traceroute,
traceroute_aspath,
aggregate_ping

	The renderer you want to use. If this
isn’t defined, an appropriate renderer
will be selected.

	--from-file

	A file path

	The source of the data to be
rendered. Conflicts with
specifying a measurement_id to
fetch from the API.

	--aggregate-by

	One of: status,
prefix_v4,
prefix_v6,
country,
rtt-median,
asn_v4, asn_v6

	Tell the rendering engine to aggregate
the results by the selected option. Note
that if you opt for aggregation, no
output will be generated until all
results are received.

	--start-time

	An ISO timestamp

	The start time of the report. The format
should conform to YYYY-MM-DDTHH:MM:SS

	--stop-time

	An ISO timestamp

	The stop time of the report. The format
should conform to YYYY-MM-DDTHH:MM:SS

Examples

Get the latest results of measurement 1001:

$ ripe-atlas report 1001

The same, but specifically request the ping renderer:

$ ripe-atlas report 1001 --renderer ping

Aggregate those results by country:

$ ripe-atlas report 1001 --aggregate-by country

Get results from the same measurement, but show all results from the first week
of 2015:

$ ripe-atlas report 1001 --start-time 2015-01-01 --stop-time 2015-01-07

Get results from the first day of 2015 until right now:

$ ripe-atlas report 1001 --start-time 2015-01-01

Pipe the contents of an arbitrary file into the renderer. The rendering
engine will be guessed from the first line of input:

$ cat /path/to/file/full/of/results | ripe-atlas report

The same, but point Magellan to a file deliberately rather than using a pipe:

$ ripe-atlas report --from-file /path/to/file/full/of/results

Result Streaming

Connect to the streaming API and render the results in real-time as they come
in.

Options

	Option

	Arguments

	Explanation

	--auth

	RIPE Atlas key
alias

	One of the RIPE Atlas key alias
configured for results fetching.

	--limit

	A number < 1000

	The maximum number of results you want
to stream. The default is to stream
forever until you hit Ctrl+C.

	--renderer

	One of: dns, http,
ntp, ping, raw,
ssl_consistency,
sslcert,
traceroute,
traceroute_aspath,
aggregate_ping

	The renderer you want to use. If this
isn’t defined, an appropriate renderer
will be selected.

Examples

Stream the results from measurement #1001:

$ ripe-atlas stream 1001

Limit those results to 500:

$ ripe-atlas stream 1001 --limit 500

Specify a renderer:

$ ripe-atlas stream 1001 --renderer ping

Combine for fun and profit:

$ ripe-atlas stream 1001 --renderer ping --limit 500

Measurement Creation

The most complicated command we have, this will create a measurement (given a
plethora of options) and begin streaming the results back to you in a
standardised rendered form.

It’s invoked by using a special positional argument that dictates the type of
measurement you want to create. This also unlocks special options, specific to
that type. See the examples for more information.

Options

All measurements share a base set of options.

	Option

	Arguments

	Explanation

	--renderer

	One of: dns, http,
ntp, ping, raw,
ssl_consistency,
sslcert,
traceroute,
traceroute_aspath,
aggregate_ping

	The renderer you want to use. If
this isn’t defined, an appropriate
renderer will be selected.

	--dry-run

	
	Do not create the measurement, only
show its definition.

	--auth

	An API key

	The API key you want to use to
create the measurement.

	--af

	One of: 4, 6

	The address family, either 4 or 6.
The default is a guess based on the
target, favouring 6.

	--description

	A free-form string

	The description/name of your new
measurement.

	--target

	A domain or IP

	The target, either a domain name or
IP address. If creating a DNS
measurement, the absence of this
option will imply that you wish to
use the probe’s resolver.

	--no-report

	
	Don’t wait for a response from the
measurement, just return the URL at
which you can later get information
about the measurement.

	--go-web

	
	Don’t wait for a response from the
measurement, just immediately open the measurement URL in the default web browser.

	--resolve-on-probe

	
	Flag that indicates that a name
should be resolved (using DNS) on
the probe. Otherwise it will be
resolved on the RIPE Atlas servers.

	--interval

	An integer

	Rather than run this measurement as
a one-off (the default), create this
measurement as a recurring one, with
an interval of n seconds between
attempted measurements. This option
implies --no-report.

	--from-area

	One of: WW, West,
North-Central,
South-Central,
North-East,
South-East

	The area from which you’d like to
select your probes.

	--from-country

	A two-letter ISO
country code

	The country from which you’d like to
select your probes.

	--from-prefix

	A prefix string

	The prefix from which you’d like to
select your probes.

	--from-asn

	An ASN number

	The ASN from which you’d like to
select your probes.

	--from-probes

	A comma-separated
list of probe ids

	Probes you want to use in your
measurement.

	--from-measurement

	A measurement id

	A measurement id which you want to
use as the basis for probe selection
in your new measurement. This is a
handy way to re-create a measurement
under conditions similar to another
measurement.

	--probes

	An integer

	The number of probes you want to
use.

	--include-tag

	A tag name

	Include only probes that are marked
with this tag. Note that this
option may be repeated.

	--exclude-tag

	A tag name

	Exclude probes that are marked with
this tag. Note that this option may
be repeated.

	--measurement-tags

	A comma-separated
list of
measurement tags

	Measurement tags to be applied to
the newly created measurement.

Ping-Specific Options

	Option

	Arguments

	Explanation

	--packets

	An integer

	The number of packets sent

	--size

	An integer

	The size of packets sent

	--packet-interval

	An integer

	

Traceroute-Specific Options

	Option

	Arguments

	Explanation

	--packets

	An integer

	The number of packets sent

	--size

	An integer

	The size of packets sent

	--protocol

	One of: ICMP, UDP,
TCP

	The protocol used. For DNS
measurements, this is limited to UDP
and TCP, but traceroutes may use
ICMP as well.

	--timeout

	An integer

	The timeout per-packet

	--dont-fragment

	
	Don’t Fragment the packet

	--paris

	An integer

	Use Paris. Value must be
between 0 and 64.If 0, a
standard traceroute will be
performed.

	--first-hop

	An integer

	Value must be between 1 and
255.

	--max-hops

	An integer

	Value must be between 1 and
255.

	--port

	An integer

	Destination port, valid for
TCP only.

	--destination-option-size

	An integer

	IPv6 destination option
header.

	--hop-by-hop-option-size

	An integer

	IPv6 hop by hop option header.

DNS-Specific Options

	Option

	Arguments

	Explanation

	--query-class

	One of: IN, CHAOS

	The query class. The default
is “IN”

	--query-type

	One of: A, SOA,
TXT, SRV, SSHFP,
TLSA, NSEC, DS,
AAAA, CNAME,
DNSKEY, NSEC3,
PTR, HINFO,
NSEC3PARAM, NS,
MX, RRSIG, ANY

	The query type. The default
is “A”

	--query-argument

	A string

	The DNS label to query.

	--set-cd-bit

	
	Set the DNSSEC Checking
Disabled flag (RFC4035)

	--set-do-bit

	
	Set the DNSSEC OK flag
(RFC3225)

	--set-nsid-bit

	
	Include an EDNS name server.
ID request with the query.

	--udp-payload-size

	An integer

	May be any integer between 512
and 4096 inclusive.

	--set-rd-bit

	
	Set the Recursion Desired
flag.

	--retry

	An integer

	Number of times to retry.

SSL Certificate-Specific Options

	Option

	Arguments

	Explanation

	--port

	An integer

	The port to query

HTTP-Specific Options

	Option

	Arguments

	Explanation

	--header-bytes

	An integer

	The maximum number of bytes to
retrieve from the header

	--version

	A string

	The HTTP version to use

	--method

	A string

	The HTTP method to use

	--path

	A string

	The path on the webserver

	--query-string

	A string

	An arbitrary query string

	--user-agent

	A string

	An arbitrary user agent

	--body-bytes

	An integer

	The maximum number of bytes to
retrieve from the body

	--timing-verbosity

	One of: 0, 1, 2

	The amount of timing
information you want returned.
1 returns the time to read, to
connect, and to first byte, 2
returns timing information per
read system call. 0 (default)
returns no additional timing
information.

NTP-Specific Options

	Option

	Arguments

	Explanation

	--packets

	An integer

	The number of packets sent

	--timeout

	An integer

	The timeout per-packet

Examples

The simplest of measurements. Create a ping with 50 probes to example.com:

$ ripe-atlas measure ping --target example.com

The same, but don’t actually create it, just show what would be done:

$ ripe-atlas measure ping --target example.com --dry-run

Be more specific about which address family you want to target:

$ ripe-atlas measure ping --target example.com --af 6

Ask for 20 probes from Canada:

$ ripe-atlas measure ping --target example.com --probes 20 --from-country ca

Or ask for 20 Canadian probes that definitely support IPv6:

$ ripe-atlas measure ping --target example.com --probes 20 \
 --from-country ca --include-tag system-ipv6-works

Rather than creating a one-off create a recurring measurement:

$ ripe-atlas measure ping --target example.com --interval 3600

Moving onto DNS measurements, do a lookup for example.com. Since we’re not
specifying --target here, this implies that we want to use the probe’s
resolver:

$ ripe-atlas measure dns --query-argument example.com

Getting a little more complicated, let’s set a few special bits and make a more
complex query:

$ ripe-atlas measure dns --query-type AAAA --query-argument example.com \
 --set-nsid-bit --set-rd-bit --set-do-bit --set-cd-bit

Shortcuts

If you’re creating a lot of measurements in a short time, typing out
ripe-atlas measure traceroute a whole bunch of times can be tiresome, so
we’ve added a few shortcut scripts for you:

	Where you’d typically write

	You could use this instead

	ripe-atlas measure ping

	aping

	ripe-atlas measure traceroute

	atraceroute

	ripe-atlas measure dns

	adig

	ripe-atlas measure sslcert

	asslcert

	ripe-atlas measure http

	ahttp

	ripe-atlas measure ntp

	antp

So for example, these two commands are the same:

$ ripe-atlas measure ping --target example.com
$ aping --target example.com

If you want to streamline your typing process even more than this, we recommend
the use of your shell’s alias feature, which is both powerful and
customisable for your needs.

How to Create Your Own Plugins

We built this toolkit for the community, and we knew going in that we couldn’t
possibly build every feature that every user could want, so we built this
thing to be pluggable. You can write your own renderer(s) and use them
seamlessly within your own environment, and if you think that others might
benefit from your work, you can share your renderer as easy as posting a file
online.

Ready?

So you have an idea now. You want to create a renderer called “awesomerenderer”
and you want it to do some fancy things with traceroute measurement results.
What do you have to do?

Create Your Renderer File

As we’ve already covered, Magellan will look for renderers in very specific
places, so you need to put your file(s) there. Additionally however, you have
to make sure that you conform to Python norms, or stuff just won’t work. Here’s
the basic commands to get you started:

$ mkdir -p ${HOME}/.config/ripe-atlas-tools/renderers
$ touch ${HOME}/.config/ripe-atlas-tools/renderers/__init__.py
$ touch ${HOME}/.config/ripe-atlas-tools/renderers/my_renderer.py

The mkdir step there will create the renderers directory (if it doesn’t
exist already), and the touch commands will create the mandatory init file
(for Python) and your renderer. Note that you can use whatever name you like
for your renderer, so long as it consists only of letters, numbers, and the
underscore and that it starts with a letter. Also, to be compliant with the
rest of the project, it should be entirely lowercase. For our purposes though,
my_renderer.py will suffice.

(Try to) Run It!

If you run this right now:

$ ripe-atlas report --help

You should see my_renderer int he list of options for --renderer.
Pretty cool eh? However, if you try to run that, this’ll happen:

$ ripe-atlas report 1000192 --renderer my_renderer
The renderer you selected, "my_renderer" could not be found.

Which kind of makes sense really. You’ve created a file called my_renderer,
but it’s totally empty. Magellan found the file alright, but when it tried to
import Renderer from it, everything exploded.

Actually Write a Renderer

So now you know that we can see your renderer file, but you need to know what
kind of code to put in there. Don’t worry, we’ve got you covered:

Anatomy of a Renderer

A “renderer” is simply a file located in a special place that contains some
Python code defining a class called Renderer that subclasses
ripe.atlas.tools.renderers.base.BaseRenderer.

Your class need only define one method: on_result(), which is called every
time a new result comes down the pipe. Let’s look at a really simple example:

from ripe.atlas.tools.renderers.base import Renderer as BaseRenderer

class Renderer(BaseRenderer):

 # This renderer is capable of handling ping results only.
 RENDERS = [BaseRenderer.TYPE_PING]

 def on_result(self, result):
 """
 on_result() only gets one argument, a result object, which is
 actually an instance of a RIPE Atlas result parsed with Sagan:
 https://ripe-atlas-sagan.readthedocs.org/
 """

 return "Packets received: {}".format(result.packets_received)

As you can see, this renderer isn’t very useful, but we’re providing it here to
give you a rough idea of what you get to play with when defining your own
renderer.

In the case of our PingPacketRenderer, we’re doing the simplest of tasks: we’re
returning the number of packets in each result. The job of on_result() is
to take a Sagan result object as input and return a string. It should not
print anything to standard out, rather it should simply return a string that
will get printed to standard out by the surrounding framework.

Additional Options

It’s likely that you will only ever need to work with on_result(), but in
the event that you’d like to get more complicated, there are options:
header(), additional(), and footer(). Note however that these other
methods are currently only available to the report command. Streaming only
makes use of on_result().

header()

The value returned from this method is printed to standard out before any
results are captured. By default it returns an empty string.

additional()

Typically used for summary logic, this is executed after the last result is
rendered. A common pattern is to override __init__() to set some collector
properties, update them via on_result(), and then print out said properties
in a summary via this method. For an example, let’s update our Renderer
class:

from ripe.atlas.tools.renderers.base import Renderer as BaseRenderer

class Renderer(BaseRenderer):

 RENDERS = [BaseRenderer.TYPE_PING]

 def __init__(self, *args, **kwargs):
 self.packet_total = 0
 BaseRenderer.__init__(self, *args, **kwargs)

 def on_result(self, result):
 self.packet_total += result.packets_received
 return "Packets received: {}\n".format(result.packets_received)

 def additional(self, results):
 return "\nTotal packets received: {}\n".format(self.packet_total)

Note that the passed-in value of results is the list of Sagan Result objects
that were previously looped over for on_result(). You can do some interesting
things with that.

footer()

Much the same as header(), this should return a string, but unlike
header(), the output of this method is rendered after everything else.

Run It!

Now that you’ve written your renderer and the file is stored where it’s supposed
to be, it should be ready to go:

$ ripe-atlas report --help

You should see my_renderer in the list of options for --renderer just as
before, but now when you actually try to execute it…

$ ripe-atlas report 1000192 --renderer my_renderer
Packets received: 3
Packets received: 3
Packets received: 3
Packets received: 3
Packets received: 3
Packets received: 3

Total packets received: 18

It’s not very interesting, but it’s a start!

Contributing

We love it when people write stuff that talks to our stuff. If you think your
stuff is useful, it’d be awesome if you could do any of these:

	Post to the [ripe-atlas mailing list](https://www.ripe.net/mailman/listinfo/ripe-atlas)
about it. You can also solicit feedback from the RIPE Atlas developers or the
wider community on this list.

	Write a blog post about your plugin, what makes it useful, etc.

	Tweet about it. Feel free to mention [@RIPE_Atlas](https://twitter.com/ripe_atlas)
and we might even retweet it.

	Create a [pull request](https://github.com/RIPE-NCC/ripe-atlas-tools/pulls)
for this project to get your plugin added to core.

How To Contribute

We would love to have contributions from everyone and no contribution is too
small. Please submit as many fixes for typos and grammar bloopers as you can!

To make participation in this project as pleasant as possible for everyone,
we adhere to the Code of Conduct [https://www.python.org/psf/codeofconduct/] by the Python Software Foundation.

The following steps will help you get started:

Fork, then clone the repo:

$ git clone git@github.com:your-username/ripe-atlas-tools.git

Make sure the tests pass beforehand:

$ tox

or

$ nosetests tests/

Make your changes. Include tests for your change. Make the tests pass:

$ tox

or

$ nosetests tests/

Push to your fork and submit a pull request [https://github.com/RIPE-NCC/ripe-atlas-tools/compare/].

Here are a few guidelines that will increase the chances of a quick merge of
your pull request:

	Always try to add tests and docs for your code. If a feature is tested and
documented, it’s easier for us to merge it.

	Follow PEP 8 [https://www.python.org/dev/peps/pep-0008/].

	Write good commit messages [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html].

	If you change something that is noteworthy, don’t forget to add an entry to
the changes [https://github.com/RIPE-NCC/ripe-atlas-tools/blob/master/CHANGES.rst].

Note

	If you think you have a great contribution but aren’t sure whether it
adheres – or even can adhere – to the rules: please submit a pull
request anyway! In the best case, we can transform it into something
usable, in the worst case the pull request gets politely closed. There’s
absolutely nothing to fear.

	If you have a great idea but you don’t know how or don’t have the time to
implement it, please consider opening an issue and someone will pick it up
as soon as possible.

Thank you for considering a contribution to this project! If you have any
questions or concerns, feel free to reach out the RIPE Atlas team via the
mailing list [https://www.ripe.net/mailman/listinfo/ripe-atlas], GitHub Issue Queue [https://github.com/RIPE-NCC/ripe-atlas-tools/issues], or messenger pigeon [https://tools.ietf.org/html/rfc1149] – if you must.

Packaging

For those interested in packaging RIPE Atlas Tools for their favourite distro,
this section is for you.

Currently Supported

	OpenBSD

	FreeBSD

	Gentoo

	Debian

	Ubuntu

In Progress

	Fedora: Jan Včelák is currently building the binary packages in COPR [https://copr.fedoraproject.org/coprs/jvcelak/ripe-atlas-tools/] (which will take some time as there is a lot of other packages in the queue)

Additional Distributions

Is your distribution not listed? If you’d like to build a package for another
distro or even if you’re just someone who knows someone who can help us package
and distribute this, please get in touch.

Further Information

User Agent

When packaging, it’s good practise to manually set the user agent used within
the toolkit so that we can get a rough idea of which distros are using this
software. This is easily done by writing an arbitrary string to
<root>/ripe/atlas/tools/user-agent. Something like this is recommended::

RIPE Atlas Tools [FreeBSD 10.2] 1.2

The only limitations to this file are that it should:

	Only have one line in it (all other will be ignored)

	That line should have a maximum of 128 characters in it

If no user-agent file is included then a platform-specific string will be
automatically generated based on Python’s platform module.

Troubleshooting

Sometimes things don’t go as planned. In these cases, this page is here to
help.

InsecurePlatformWarning

On older systems (running Python versions <2.7.10), you may be presented with a
warning message that looks like this:

/path/to/lib/python2.7/site-packages/requests/packages/urllib3/util/ssl_.py:100:
InsecurePlatformWarning: A true SSLContext object is not available. This
prevents urllib3 from configuring SSL appropriately and may cause certain
SSL connections to fail. For more information, see
https://urllib3.readthedocs.org/en/latest/security.html#insecureplatformwarning.
 InsecurePlatformWarning

This is due to the insecure way older versions of Python handle secure
connections and a visit to the above URL will tell you that the fix is one of
three options:

	Upgrade to a modern version of Python

	Install three Python packages: pyopenssl, ndg-httpsclient, and
pyasn1

	Suppress the warnings [https://urllib3.readthedocs.org/en/latest/security.html#disabling-warnings]. Don’t do that though.

Sagan, OpenSSL, and OSX

If you’re using Mac OSX, the installation of Sagan, (one of Magellan’s
dependencies) may give you trouble, especially in how Apple handles PyOpenSSL on
their machines. Workarounds and proper fixes for this issue can be found in the
Sagan installation documentation [https://ripe-atlas-sagan.readthedocs.org/en/latest/installation.html#troubleshooting].

Complaints from libyaml

During the installation, you may see something like this scroll by:

Don’t worry. This is just the installation script noticing that you don’t have
libyaml installed and it’s complaining because it’s good to have around for
performance reasons. However, since we’re only using YAML for configuration,
performance isn’t an issue, and the fallback option will be sufficient.

If however, you don’t like these sorts of errors, make sure that libyaml is
installed for your distribution before attempting to install this toolkit.

Release History

3.1.0 (release 2023-02-07)

	Improved probe-search and measurement-search, including “csv” and “tab” output

	–stream-timeout and –stream-limit added to measure command

	Use the latest stream API (cousteau update) and add –timeout to stream command

3.0.3 (release 2022-11-18)

	Fix issue where the measure command would continue to stream results after all probes have responded

3.0.2 (release 2022-05-23)

	Fix “measure spec” command which was broken due to cousteau issue

3.0.1 (release 2022-02-24)

	Updated cousteau dependency to the non-alpha release

3.0.0 (release 2022-02-23)

	API keys can now be passed in environment variables

	probe-search by –location now works, as long as the user specifies their own Google Geocoding API key

	Modernized tests and switched to GitHub actions

	The default renderer for ping measurements is now more consistent and more similar to other ping tools, including having a statistical summary at the end

	measure, report and stream commands now all use the same set of renderers

	“measure spec” command which takes a JSON blob to create measurements

	Allow measure –target to be specified as a positional arg (or –query-argument for DNS)

	Move to latest cousteau version (python-socketio)

	Various other fixes to code and documentation

	Official supported Python versions changed to 3.6, 3.7, 3.8, 3.9 and 3.10

2.3.0 (released 2018-11-23)

Features and changes

	Add result date and time to traceroute, NTP and SSL renderers

	Add support for specifying measurement tags on measurement creation

	Add option (–go-web) to open measurement URL in browser

	Nicer presentation of 403 errors from the API

	Official supported Python versions changed to 2.7, 3.4, 3.5, 3.6 and 3.7

Bug Fixes

	Fix cousteau/sagan dependencies

2.2.3 (released 2017-01-17)

Bug Fixes

	Fix for distribution issues that prevented the command-line scripts from working

2.2.2 (released 2017-10-12)

Features and changes

	Align various option defaults, minimums and maximums with API reality, including…

	… allow the set of options necessary for “TCP ping” measurements https://labs.ripe.net/Members/wilhelm/measuring-your-web-server-reachability-with-tcp-ping

	Add compact DNS results renderer

	Fix some unicode output issues

2.1 (released 2016-04-21)

New Features

	Add a simple NTP renderer

Changes

	Use new cousteau (1.4) & sagan(1.2) versions.

Bug Fixes

	Fix for some unicode problems when using colors

	Fix issue #177, with gdbm problem.

2.0.2 (released 2016-10-21)

New Features

	Add aliases to measurements IDs

	Add –traceroute-show-asns to traceroute renderer

Bug Fixes

	Stream command was not passing the correct API key. After API became stricter this command started failing.

	Handle missing geometry for probes.

	Fix issues for AS-paths with only 1 probe

	Various fixes for tests

2.0.1 (released 2016-04-20)

Changes

	Corrected references in the docs to obsolete command names.

	Fixed broken 2.0.0 egg.

2.0.0 (released 2016-04-20)

Changes

	Renamed and merged some commands for clarity, preserving the old names as deprecated aliases.

	Improved help text and usage output.

	Support for bash auto-completion.

1.2.3 (released 2016-03-08)

Changes

	Usage of newest Cousteau/Sagan library.

	Support of API keys for fetching results on report command.

	Default radius for probes filtering is changed to 15.

	Several changes for supporting Windows.

1.2.2 (released 2016-01-13)

New Features

	Cleaner and more consistent implementation of the renderer plugable
architecture.

	Usage of newest Cousteau library.

1.2.1 (released 2015-12-15)

Bug Fixes

	Restored some required template files.

1.2.0 (released 2015-12-15)

Output Changes

	#119 [https://github.com/RIPE-NCC/ripe-atlas-tools/issues/119]: Support HTTP results.

	#122 [https://github.com/RIPE-NCC/ripe-atlas-tools/issues/122]: Allow packagers to set the user agent.

1.1.1 (released 2015-11-25)

Output Changes

	#103 [https://github.com/RIPE-NCC/ripe-atlas-tools/issues/103]: Removed header from the report command.

Bug Fixes

	#105 [https://github.com/RIPE-NCC/ripe-atlas-tools/issues/105]: Measurement report and stream broken on Python3.4.

1.1.0 (released 2015-11-12)

New features

	Support for the creation of NTP, SSLCert, and HTTP measurements.

	Additional argument in report command to filter results by probe ASN.

	Additional renderer that shows the different destination ASNs and some
additional stats about them.

Bug Fixes

	Various fixes.

Changes

	Better testing.

	Additional documentation.

1.0.0 (released 2015-11-02)

	Initial release.

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 RIPE Atlas Tools (Magellan)

 		
 Quickstart

 		
 Viewing Public Data

 		
 Creating a Measurement

 		
 Advanced Use

 		
 Requirements & Installation

 		
 System Requirements

 		
 Distribution Specific Requirements

 		
 Python Requirements

 		
 Installation

 		
 OpenBSD

 		
 FreeBSD

 		
 Gentoo

 		
 From PyPi

 		
 From GitHub

 		
 From a Tarball

 		
 Using Docker

 		
 How to Use the RIPE Atlas Toolkit

 		
 Configuration

 		
 Options

 		
 Examples

 		
 Quick Measurement Information

 		
 Measurement Querying

 		
 Options

 		
 Examples

 		
 Probe Querying

 		
 Options

 		
 Examples

 		
 Result Reporting

 		
 Options

 		
 Examples

 		
 Result Streaming

 		
 Options

 		
 Examples

 		
 Measurement Creation

 		
 Options

 		
 Examples

 		
 Shortcuts

 		
 How to Create Your Own Plugins

 		
 Create Your Renderer File

 		
 (Try to) Run It!

 		
 Actually Write a Renderer

 		
 Anatomy of a Renderer

 		
 Run It!

 		
 Contributing

 		
 How To Contribute

 		
 Packaging

 		
 Currently Supported

 		
 In Progress

 		
 Additional Distributions

 		
 Further Information

 		
 User Agent

 		
 Troubleshooting

 		
 InsecurePlatformWarning

 		
 Sagan, OpenSSL, and OSX

 		
 Complaints from libyaml

 		
 Release History

 		
 3.1.0 (release 2023-02-07)

 		
 3.0.3 (release 2022-11-18)

 		
 3.0.2 (release 2022-05-23)

 		
 3.0.1 (release 2022-02-24)

 		
 3.0.0 (release 2022-02-23)

 		
 2.3.0 (released 2018-11-23)

 		
 Features and changes

 		
 Bug Fixes

 		
 2.2.3 (released 2017-01-17)

 		
 Bug Fixes

 		
 2.2.2 (released 2017-10-12)

 		
 Features and changes

 		
 2.1 (released 2016-04-21)

 		
 New Features

 		
 Changes

 		
 Bug Fixes

 		
 2.0.2 (released 2016-10-21)

 		
 New Features

 		
 Bug Fixes

 		
 2.0.1 (released 2016-04-20)

 		
 Changes

 		
 2.0.0 (released 2016-04-20)

 		
 Changes

 		
 1.2.3 (released 2016-03-08)

 		
 Changes

 		
 1.2.2 (released 2016-01-13)

 		
 New Features

 		
 1.2.1 (released 2015-12-15)

 		
 Bug Fixes

 		
 1.2.0 (released 2015-12-15)

 		
 Output Changes

 		
 1.1.1 (released 2015-11-25)

 		
 Output Changes

 		
 Bug Fixes

 		
 1.1.0 (released 2015-11-12)

 		
 New features

 		
 Bug Fixes

 		
 Changes

 		
 1.0.0 (released 2015-11-02)

_static/up-pressed.png

_static/up.png

_static/plus.png

