
ripe-atlas-monitor Documentation
Release 0.1.0

Pier Carlo Chiodi

December 27, 2016

Contents

1 How does it work? 3

2 Contents 5
2.1 QuickStart . 5

2.1.1 Step 1: install dependencies . 5
2.1.2 Step 2: install ripe-atlas-monitor . 5
2.1.3 Step 3: global configuration . 6
2.1.4 Step 4: create a new monitor and customize its configuration 6
2.1.5 Step 5: run the brand new monitor . 6

2.2 Requirements & Installation . 6
2.2.1 Requirements . 6
2.2.2 Installation . 7

2.3 Global configuration . 8
2.4 Commands . 8

2.4.1 Results analysis . 8
2.4.2 Monitors’ configuration management . 10
2.4.3 Execution modes . 11

2.5 Monitors: how they work . 12
2.5.1 How they work . 12
2.5.2 Kinds of monitors . 13
2.5.3 Expected results criteria . 14
2.5.4 Advanced use . 14

2.6 Monitor configuration syntax . 15
2.6.1 Monitor . 16
2.6.2 Rule . 17
2.6.3 Expected result . 18
2.6.4 Action . 25

2.7 How to contribute . 27
2.7.1 Code . 28

2.8 Changelog . 30
2.8.1 0.1.10 . 30
2.8.2 0.1.9 . 30
2.8.3 0.1.8 . 30
2.8.4 0.1.7 . 31
2.8.5 0.1.6 . 31
2.8.6 0.1.5 . 31
2.8.7 0.1.4 . 31
2.8.8 0.1.3 . 32

i

2.8.9 0.1.2 . 32
2.8.10 0.1.1 . 32
2.8.11 0.1.0 . 32

3 Status 33

4 Bug? Issues? 35

5 Author 37

ii

ripe-atlas-monitor Documentation, Release 0.1.0

A Python tool to monitor results collected by RIPE Atlas probes and verify they match against predefined expected
values.

Contents 1

https://atlas.ripe.net

ripe-atlas-monitor Documentation, Release 0.1.0

2 Contents

CHAPTER 1

How does it work?

On the basis of a RIPE Atlas measurement previously created, you define a monitor by declaring which results you
expect that probes should produce: rules are used to map probes and their expected results. Depending on whether the
collected results match the expectations, custom actions are performed: to log the result, to send an email, a syslog
message or to run an external program.

descr: Check network reachability
matching_rules:
- descr: Probes from France via AS64496

src_country: FR
expected_results: ViaAS64496
actions: EMailToNOC

- descr: RTT from AS64499 and AS64500 below 50ms
src_as:
- 64499
- 64500
expected_results: LowRTT
actions: EMailToNOC

expected_results:
ViaAS64496:
upstream_as: 64496

LowRTT:
rtt: 50

actions:
EMailToNOC:
kind: email
to_addr: noc@agreatcompany.org
subject: "ripe-atlas-monitor: unexpected results"

measurement-id: 123456789

3

https://atlas.ripe.net

ripe-atlas-monitor Documentation, Release 0.1.0

4 Chapter 1. How does it work?

CHAPTER 2

Contents

2.1 QuickStart

2.1.1 Step 1: install dependencies

Some libraries ripe-atlas-monitor depends on need to be compiled and require a compiler and Python’s dev libraries:

$ # on Debian/Ubuntu:
$ sudo apt-get install python-dev libffi-dev libssl-dev

$ # on CentOS:
$ sudo yum install gcc libffi-devel openssl-devel

Strongly suggested: install pip and setup a virtualenv:

$ # on Debian/Ubuntu:
$ sudo apt-get install python-virtualenv

$ # on CentOS:
$ sudo yum install epel-release
$ sudo yum install python-pip python-virtualenv

$ # setup a virtualenv
$ mkdir ripe-atlas-monitor
$ cd ripe-atlas-monitor
$ virtualenv venv
$ source venv/bin/activate

More: virtualenv installation and usage.

2.1.2 Step 2: install ripe-atlas-monitor

Install latest ripe-atlas-monitor version from PyPI:

$ pip install ripe-atlas-monitor

$ # to enable bash autocomplete:
$ eval "$(register-python-argcomplete ripe-atlas-monitor)"

More: installation options.

5

https://virtualenv.pypa.io/en/latest/installation.html
https://virtualenv.pypa.io/en/latest/userguide.html

ripe-atlas-monitor Documentation, Release 0.1.0

2.1.3 Step 3: global configuration

Create the var directory and let the config file to be inizialized; set (at least) the var parameter:

$ # directory where ripe-atlas-monitor can write a bunch of data
$ mkdir var
$ ripe-atlas-monitor init-config

var: /path/to/ripe-atlas-monitor/var

More: global configuration options.

2.1.4 Step 4: create a new monitor and customize its configuration

The analyze command can help you defining your rules by giving an overview of the results for a specific measure-
ment, as elaborated by ripe-atlas-monitor:

$ ripe-atlas-monitor analyze --measurement-id 1234567890

More: Results analysis.

Once you have a clear idea how your rules should look like, create and edit a new monitor:

$ ripe-atlas-monitor init-monitor -m MonitorName

More: how monitors work and syntax.

Alternatively, you can take a look at the sample monitors provided within the examples directory.

2.1.5 Step 5: run the brand new monitor

$ ripe-atlas-monitor run -m MonitorName --latest -vvv

More: execution modes and options.

2.2 Requirements & Installation

2.2.1 Requirements

This is a tool written in Python for Linux environments; currently, Python 2.7 and 3.4 are supported. Windows is not
supported at all.

It is based on two RIPE NCC packages: RIPE Atlas Sagan and RIPE Atlas Cousteau, both available on GitHub and
PyPI. It also has some other dependencies, they are reported in the setup.py file and managed by the pip installer.

Some libraries need to be compiled and they require a compiler and development libraries for Python.

• On Debian/Ubuntu the following system packages need to be installed:

$ sudo apt-get install python-dev libffi-dev libssl-dev

Since pip and virtualenv are also strongly suggested, you may need to install them too:

$ sudo apt-get install python-virtualenv python-pip

• On CentOS, the following packages are needed:

6 Chapter 2. Contents

https://github.com/pierky/ripe-atlas-monitor/tree/master/examples
https://github.com/RIPE-NCC/ripe.atlas.sagan
https://github.com/RIPE-NCC/ripe-atlas-cousteau

ripe-atlas-monitor Documentation, Release 0.1.0

$ sudo yum install gcc libffi-devel openssl-devel

$ # for pip and virtualenv:
$ sudo yum install epel-release
$ sudo yum install python-pip python-virtualenv

2.2.2 Installation

Even if you can manually install it and run it as a system package, pip installation and virtualenv use are
strongly recommended to ease installation and dependencies management and to have it running within an isolated
environment.

More: pip installation, virtualenv installation.

Setup a virtualenv

Virtualenv usage is documented here, but the following should be enough in most cases:

$ mkdir ripe-atlas-monitor
$ cd ripe-atlas-monitor
$ virtualenv venv
$ source venv/bin/activate

Installation from PyPI

Python pip can install packages both globally (system wide) and on a per-user basis. To avoid conflicts with other
packages, the second way is the preferred one. It can be achieved using the virtualenv tool (the preferred way) or
passing the --user argument to pip, so that the package will be installed within the $HOME/.local directory.

$ # using virtualenv
$ pip install ripe-atlas-monitor

$ # in your user's local dir
$ pip install --user ripe-atlas-monitor

Installation from GitHub

If you just want to use the latest code on the master branch on GitHub, you can install it with

$ pip install git+https://github.com/pierky/ripe-atlas-monitor.git

“Editable” installation

If you want to contribute to the code, you can clone the repository and install it using the -e argument of pip; you’ll
have it installed in a local directory where you can edit it and see the results without having to install it every time:

$ pip install -e git+https://github.com/YOUR_USERNAME/ripe-atlas-monitor.git#egg=ripe-atlas-monitor

See also: How to contribute.

2.2. Requirements & Installation 7

https://pip.pypa.io/en/stable/installing/
https://virtualenv.pypa.io/en/latest/installation.html
https://virtualenv.pypa.io/en/latest/userguide.html

ripe-atlas-monitor Documentation, Release 0.1.0

Bash autocomplete

To enable bash autocomplete, register the ripe-atlas-monitor script and update your shell preferences:

eval "$(register-python-argcomplete ripe-atlas-monitor)"

If you want it to be enabled on every access, you can it to your .bashrc file.

2.3 Global configuration

The global configuration file contains some options that are used by the program to run: the working directory path,
logging options, default values for some actions and so on.

By default, ripe-atlas-monitor looks for this file in $HOME/.config/ripe-atlas-monitor (if $HOME is not
defined, it tries with /etc/ripe-atlas-monitor/config.cfg), but this path can be set with the --cfg
command line argument.

Only one parameter is really needed, it is the var directory used by the program to store its monitors configuration
files and a bunch of other data (IP addresses cache, running status).

You can initialize the global configuration file by executing ripe-atlas-monitor init-config: this com-
mand copies the template file to the default path. Add the --cfg argument to use a custom path.

Comments within the file itself should be enough to explain the various options. If you want to take a look at it, you
can find it on GitHub.

2.4 Commands

2.4.1 Results analysis

The analyze command can be used to have an overview of results received from a measurement and how they are
elaborated by ripe-atlas-monitor:

$ ripe-atlas-monitor analyze --measurement-id 1234567890

$ ripe-atlas-monitor analyze -m MonitorName

Some heuristics provide aggregated metrics for most of the measurement’s types:

• RTTs distribution (ping, traceroute)

• target responded or not (ping, traceroute)

• destination IP addresses (ping, traceroute, ssl)

• SSL certificate fingerprints (ssl)

• destination AS numbers and upstream ASNs (traceroute)

• AS paths (traceroute)

• DNS RCODEs (dns)

• DNS responses’ flags combinations (dns)

• EDNS status and NSID option (dns)

• DNS answers (dns)

8 Chapter 2. Contents

https://github.com/pierky/ripe-atlas-monitor/blob/master/pierky/ripeatlasmonitor/templates/global_config.yaml

ripe-atlas-monitor Documentation, Release 0.1.0

Results of each metric are grouped on the basis of common patterns and sorted by the number of matching probes.

Example analysis of measurement ID 1674977, a traceroute from 50 probes all over the world toward www.ripe.net
(see it on RIPE Atlas Tracepath):

$ ripe-atlas-monitor analyze --measurement-id 1674977

Downloading and processing results... please wait
Median RTTs:

< 30 ms: 25 times, probe ID 10001 (AS3265, NL), probe ID 10012 (AS3265, NL), probe ID 10039 (AS701, US), ...

30 - 60 ms: 14 times, probe ID 10068 (AS34594, HR), probe ID 10772 (AS12552, SE), probe ID 10816 (AS12322, FR), ...

>= 180 ms: 5 times, probe ID 10509 (AS1273, HK), probe ID 10510 (AS1273, SG), probe ID 12468 (AS30844, ZW), ...

150 - 180 ms: 3 times, probe ID 10313 (US), probe ID 13631 (AS21502, FR), probe ID 14856 (AS7922, US)

(use the --show-all-rtts argument to show the full list)

Destination responded:

yes: 38 times, probe ID 10001 (AS3265, NL), probe ID 10012 (AS3265, NL), probe ID 10068 (AS34594, HR), ...

no: 11 times, probe ID 10039 (AS701, US), probe ID 10460 (AS7155, GB), probe ID 10922 (RU), ...

Unique destination IP addresses:

193.0.6.139: 49 times, probe ID 10001 (AS3265, NL), probe ID 10012 (AS3265, NL), probe ID 10039 (AS701, US), ...

Destination AS:

3333: 38 times, probe ID 10001 (AS3265, NL), probe ID 10012 (AS3265, NL), probe ID 10068 (AS34594, HR), ...

12513: 1 time, probe ID 12277 (AS12513, GB)

7922: 1 time, probe ID 16134 (AS7922, US)

7155: 1 time, probe ID 10460 (AS7155, GB)

6830: 1 time, probe ID 12224 (AS6830, NL)

5089: 1 time, probe ID 13335 (AS5089, GB)

3320: 1 time, probe ID 11059 (AS3320, DE)

3269: 1 time, probe ID 4228 (AS3269, IT)

701: 1 time, probe ID 10039 (AS701, US)

Upstream AS:

1200: 24 times, probe ID 10001 (AS3265, NL), probe ID 10012 (AS3265, NL), probe ID 10273 (AS9143, NL), ...

1299: 3 times, probe ID 10068 (AS34594, HR), probe ID 11586 (AS29056, AT), probe ID 16063 (AS6830, IE)

3356: 2 times, probe ID 10313 (US), probe ID 14856 (AS7922, US)

33765: 1 time, probe ID 15282 (AS33765, TZ)

2.4. Commands 9

https://www.pierky.com/ripeatlastracepath/demo/

ripe-atlas-monitor Documentation, Release 0.1.0

31213: 1 time, probe ID 11418 (AS39087, RU)

21502: 1 time, probe ID 13631 (AS21502, FR)

12513: 1 time, probe ID 10953 (AS12513, GB)

8218: 1 time, probe ID 14175 (AS24651, LV)

4755: 1 time, probe ID 14593 (AS4755, IN)

2856: 1 time, probe ID 11610 (AS2856, GB)

Only top 10 most common shown.
(use the --show-all-upstream-asns argument to show the full list)

Most common ASs sequences:

1200 3333: 24 times

S 1200 3333: 14 times

S 1200: 14 times

S 3333: 5 times

1299 3333: 3 times

S 1299 3333: 2 times

9002 1200 3333: 2 times

3356 1200 3333: 2 times

15589 1200 3333: 2 times

S 6830: 2 times

(use the --show-all-aspaths argument to show the full list)

Unique AS paths (with IXPs networks):

S IX 2603 3333: 1 time, probe ID 11585 (AS29518, SE)

The --probes and --countries arguments can be used to restrict the analysis to results produced by a limited
set of probes by specifying their IDs or the source countries.

$ ripe-atlas-monitor analyze --measurement-id 1234567890 --probes 1,23,456

The --key argument can be used to provide a RIPE Atlas key needed to fetch the results. Other arguments may be
used to display statistics about probes distribution and to show sub-results, grouping them by country or by source AS:
the --help will show all of these options.

Data that form the analysis report can be printed in JSON format using the --use-json argument.

2.4.2 Monitors’ configuration management

Some commands can be used to manage monitors’ configuration:

10 Chapter 2. Contents

ripe-atlas-monitor Documentation, Release 0.1.0

• init-monitor: initializes a new monitor configuration by cloning the template file;

• edit-monitor: opens the monitor’s configuration file with the default text editor ($EDITOR or
misc.editor global config option);

• check-monitor: verifies that the monitor’s configuration syntax is valid and conforming to the measure-
ment’s type. The -v argument can be used to display an explanatory description of the given configuration as
interpreted by the program.

$ ripe-atlas-monitor [init-monitor | edit-monitor | check-monitor] -m MonitorName

2.4.3 Execution modes

There are some ways this tool can be executed, depending on how many concurrent monitors you want to run and
which measurement results you want to consider.

The -v argument is common to all the scenarios and allow to set the verbosity level:

• 0: only warnings and errors are produced;

• 1 (-v): messages from logging actions are produced;

• 2 (-vv): results from matching rules are produced too;

• 3 (-vvv): information messages are logged (internal decisions about rules and results processing);

• 4 (-vvvv): debug messages are logged too, useful to debug monitors’ configurations.

Single monitor: run command

The run command allows to execute a single monitor. It is mostly useful to process one-off measurements, to schedule
execution or to debug monitors’ configurations.

$ ripe-atlas-monitor run -m MonitorName -vvv

In this mode, the --start, --stop and --latest arguments allow to set the time frame for the measurement’s
results to download, unless the monitor has the stream option set to use RIPE Atlas result streaming. The --probes
and --countries arguments can be used to restrict the processing to results produced by a limited set of probes by
specifying their IDs or the source countries.

Time frame options

By default, for measurements which are still running, results are fetched continously every measurement’s interval
seconds, starting from the time of the last received result.

• The --start and --stop arguments set the lower and upper bounds for results downloading and processing.
They can be used togheter or separately.

• If the --start argument is not given, results are downloaded starting from the last processed result’s times-
tamp, or from the last 7 days (configurable in the global config) if the measurement has not been processed
yet.

• If the --stop argument is missing, results up to the last produced one are downloaded.

• The --latest argument can be used when the other two are not passed and it allows to download the latest
results only.

• For running measurements, the --dont-wait argument allows to run a monitor against up to date results then
exiting, without waiting for measurement’s interval before running it again.

2.4. Commands 11

https://atlas.ripe.net/docs/result-streaming/
https://atlas.ripe.net/docs/measurement-latest-api/
https://atlas.ripe.net/docs/measurement-latest-api/

ripe-atlas-monitor Documentation, Release 0.1.0

Scheduling monitors

Execution of ripe-atlas-monitor can be scheduled (using crontab for example) in order to periodically monitor
measurements’ results.

For continous measurements (those which are not stopped and keep producing results) the --dont-wait argument
is particularly suggested, so that at each execution the program downloads and processes the results collected since
the previous one.

Note: Since only one instance of ripe-atlas-monitor at a time can be executed, if you plan to run multiple monitors
be careful to schedule them in order to avoid overlapping running; alternatively consider using the daemonize
command (see below).

If you are using a virtualenv, you can point your cron’s job at the full python executable that is in the virtualenv’s
bin directory...

1 * * * * /home/USERNAME/ripe-atlas-monitor/venv/bin/python /home/USERNAME/ripe-atlas-monitor/venv/bin/ripe-atlas-monitor -m MonitorName --dont-wait

... or you can write a wrapper bash script that sets up the virtualenv and then runs your command...

#! /bin/bash
cd /home/USERNAME/ripe-atlas-monitor/venv/
source bin/activate
"$@"

1 * * * * /home/USERNAME/ripe-atlas-monitor/setup_venv_and_run ripe-atlas-monitor -m MonitorName --dont-wait

Multiple monitors: daemonize command

Note: This mode is highly experimental

The daemonize command allows to run multiple monitors within a single instance of ripe-atlas-monitor by forking
the main process into many subprocesses, one for each monitor. This mode does not allow to use time frame arguments,
results are downloaded starting from the last received one for each measurement. This mode is mostly suitable for
streaming monitors or continous measurements.

$ ripe-atlas-monitor daemonize -m Monitor1Name -m Monitor2Name

2.5 Monitors: how they work

Monitors are the core of the program. You can initialize their configuration with ripe-atlas-monitor
init-monitor -m monitor_name: a monitor template file will be created and opened for customization using
the preferred text editor (which can also be set within the global configuration file or via the $EDITOR environment
variable).

2.5.1 How they work

You have a RIPE Atlas measurement;

• probes involved in the measurement collect some results (ping, traceroute, ...);

12 Chapter 2. Contents

ripe-atlas-monitor Documentation, Release 0.1.0

• a ripe-atlas-monitor‘s monitor is executed;

• results for the aforementioned measurement are downloaded and elaborated;

• for each result, the probe’s information (ID, country, ASN) are matched against a set of rules;

• if a matching condition is found, the result collected by that probe is matched against a set of results you expected
from that probe;

• actions (email, syslog, external programs) are performed on the basis of this process’s output.

All this is written in YAML files, one for each monitor you want to configure:

descr: Check network reachability
matching_rules:
- descr: Probes from France via AS64496

src_country: FR
expected_results: ViaAS64496
actions: EMailToNOC

- descr: RTT from AS64499 and AS64500 below 50ms
src_as:
- 64499
- 64500
expected_results: LowRTT
actions: EMailToNOC

expected_results:
ViaAS64496:
upstream_as: 64496

LowRTT:
rtt: 50

actions:
EMailToNOC:
kind: email
to_addr: noc@agreatcompany.org
subject: "ripe-atlas-monitor: unexpected results"

measurement-id: 123456789

For the complete syntax of monitors’ configuration file please refer to Monitor configuration syntax.

2.5.2 Kinds of monitors

Depending on the measurement they are configured to use and which command is used to run them, monitors can be
grouped into 3 categories:

• one-off monitors are those used to process one-off measurements: they are executed using the --latest
argument of ripe-atlas-monitor to download only the latest results, or they can be executed using both the
--start and --stop command line argument in order to define a specific time frame within which results
are downloaded;

• continous monitors are used to continously process results for those measurements which have not been stopped
yet: results are downloaded and processed once every x seconds, where x is the interval value of the mea-
surement itself; when the --start argument of ripe-atlas-monitor is used, results are downloaded starting at
that time, otherwise results are downloaded starting from the timestamp of the last processed result;

• streaming monitors, which are those that use RIPE Atlas result streaming.

The type of monitor is not written anywhere, it’s derived from the commands used to run ripe-atlas-
monitor. For example, the same monitor can be run using ripe-atlas-monitor run -m MonitorName
--measurement-id 123456 --latest to process the latest results from the measurement ID 123456, but
also using ripe-atlas-monitor daemonize -m MonitorName to continously process results from the

2.5. Monitors: how they work 13

https://atlas.ripe.net/docs/result-streaming/

ripe-atlas-monitor Documentation, Release 0.1.0

measurement reported in the measurement-id attribute of its configuration file. It can be also run in streaming
mode, by using the --stream command line argument (provided that the measurement is still running).

2.5.3 Expected results criteria

Expected results can be of various kinds, depending on the measurement’s type, and various criteria can be used to
verify collected results.

Traceroute measurements can be used to monitor AS path toward a destination, ping measurements to test network
reachability and performance, SSL measurements to be sure that the certificates received by a probe match the ex-
pected fingerprints and that TLS connections are not hijacked on their way, DNS measurements to verify host name
resolution.

For the full list of implemented criteria please read Monitor configuration syntax.

2.5.4 Advanced use

Configuration syntax “tricks” and internal labels allow to describe complex scenarios.

Excluding probes from processing

A rule with no expected_results and the process_next attribute to its default value False (or missing) allows
to stop further processing for those probes which match the rule’s criteria:

matching_rules:
- descr: Do not process results for probe ID 123 and 456

probe_id:
- 123
- 456

Match all probes except those...

The reverse attribute of a rule, when set to True, allows to match all the probes which do not meet the given criteria:

matching_rules:
- descr: All probes except those from AS64496

src_as: 64496
reverse: True

Actions execution

The when attribute of an action can be used to set when it has to be performed:

• on_match, the action is performed when the collected result matches one of the expected values, or when the
rule has no expected results at all;

• on_mismatch, the action is performed when the collected result does not match the expected values;

• always, well, the action is always performed, independently of results.

14 Chapter 2. Contents

ripe-atlas-monitor Documentation, Release 0.1.0

Internal labels

Actions can be used to attach internal labels to probes on the basis of rules and results processing. These labels can be
subsequently used to match probes against specific rules.

matching_rules:
- descr: Set 'VIP' (Very Important Probe) label to ID 123 and 456

probe_id:
- 123
- 456
process_next: True
actions: SetVIPLabel

- descr: Set 'VIP' label to Italian probes too
src_country: IT
process_next: True
actions: SetVIPLabel

- descr: VIPs must have low RTT
internal_labels: VIP
expected_results: LowRTT

actions:
SetVIPLabel:
when: always
kind: label
op: add
label_name: VIP

Integration with ripe-atlas-tools (Magellan)

Magellan is the official command-line client for RIPE Atlas. It allows, moreover, to create new measurements from
the command line. It can be used, for example, in an action to create one-off measurements from the probes which fail
expectations.

actions:
RunRIPEAtlasTraceroute:
descr: Create new traceroute msm from the probe which missed expectations
kind: run
path: ripe-atlas
args:
- measure
- traceroute
- --target
- www.example.com
- --no-report
- --from-probes
- $ProbeID

2.6 Monitor configuration syntax

2.6. Monitor configuration syntax 15

https://github.com/RIPE-NCC/ripe-atlas-tools
https://ripe-atlas-tools.readthedocs.org/en/latest/use.html#measurement-creation

ripe-atlas-monitor Documentation, Release 0.1.0

Contents

• Monitor configuration syntax
– Monitor
– Rule
– Expected result

* Common criteria
· Criterion: rtt
· Criterion: dst_responded
· Criterion: dst_ip

* Traceroute criteria
· Criterion: dst_as
· Criterion: as_path
· Criterion: upstream_as

* SSL criteria
· Criterion: cert_fp

* DNS criteria
· Criterion: dns_rcode
· Criterion: dns_flags
· Criterion: edns
· Criterion: dns_answers
· DNS record
· A record
· AAAA record
· NS record
· CNAME record

– Action
* Action log
* Action email
* Action run
* Action syslog
* Action label

2.6.1 Monitor

A monitor allows to process results from a measurement.

Configuration fields:

• descr (optional): monitor’s brief description.

• measurement-id (optional): measurement ID used to gather results. It can be given (and/or overwritten) via
command line argument --measurement-id.

• matching_rules: list of rules to match probes against. When a probe matches one of these rules, its
expected results are processed and its actions are performed.

• expected_results (optional): list of expected results. Probe’s expected results contain references to this
list.

• actions (optional): list of actions to be executed on the basis of probe’s expected results.

• stream (optional): boolean indicating if results streaming must be used. It can be given (and/or overwritten)
via command line argument --stream.

• stream_timeout (optional): how long to wait (in seconds) before stopping a streaming monitor if no results
are received on the stream.

16 Chapter 2. Contents

ripe-atlas-monitor Documentation, Release 0.1.0

• key (optional): RIPE Atlas key to access the measurement. It can be given (and/or overwritten) via command
line argument --key.

• key_file (optional): a file containing the RIPE Atlas key to access the measurement. The file must contain
only the RIPE Atlas key, in plain text. If key is given, this field is ignored.

2.6.2 Rule

Probes which produced the results fetched from the measurement are matched against these rules to determine whether
those results must be processed or not.

Configuration fields:

• descr (optional): a brief description of the rule.

• process_next (optional): determine whether the rule following the current one has to be elaborated or nor.
More details on the description below.

• src_country (optional): list of two letters country ISO codes.

• src_as (optional): list of Autonomous System numbers.

• probe_id (optional): list of probes’ IDs.

• internal_labels (optional): list of internal labels. More details on the description below.

• reverse (optional): boolean, indicating if the aforementioned criteria identify probes which have to be
exluded from the matching.

• expected_results (optional): list of expected results’ names which have to be processed on match. Must
be one or more of the expected results defined in Monitor.‘‘expected_results‘‘. If empty or missing, the rule will
be treated as if a match occurred and its actions are performed.

• actions (optional): list of actions’ names which have to be perormed for matching probes. Must be one or
more of the actions defined in Monitor.‘‘actions‘‘.

The src_country criterion matches when probe’s source country is one of the country ISO codes given in the list.

The src_as criterion matches when probe’s source AS is one of the ASN given in the list. Since RIPE Atlas defines
two ASs for each probe (ASN_v4 and ASN_v6) the one corresponding to the measurement’s address family is taken
into account.

The probe_id criterion matches when probe’s ID is one of the IDs given in the list.

The internal_labels criterion matches when a probe has been previously tagged with a label falling in the given
list. See the label Action for more details.

A probe matches the rule when all the given criteria are satisfied or when no criteria are defined at all. If reverse is
True, a probe matches when none of the criteria is satisfied.

When a probe matches the rule, the expected results given in expected_results are processed; actions given in
the actions list are performed on the basis of expected results processing output. If no expected_results are
given, actions will be performed too.

When a probe matches the current rule’s criteria:

• if process_next is True, the rule which follows the current one is forcedly elaborated;

• if process_next if False or missing, the rules processing is stopped.

If a probe does not match the current rule’s criteria:

• if process_next is False, the rule processing is forcedly stopped;

• if process_next is True or missing, the rule which follows the current one is regularly processed.

2.6. Monitor configuration syntax 17

ripe-atlas-monitor Documentation, Release 0.1.0

Examples:

matching_rules:
- descr: Do not process results for probe ID 123 and 456

probe_id:
- 123
- 456

- descr: Check dst AS for any probe, errors to NOC; process next rule
expected_results: DstAS
actions: SendEMailToNOC
process_next: True

- descr: Italian probes must reach target via AS64496
src_country: IT
expected_results: ViaAS64496
actions: LogErrors

- descr: German and French probes must reach target with low RTT
src_country:
- DE
- FR
expected_results: LowRTT
actions: LogErrors

matching_rules:
- descr: Set 'VIP' (Very Important Probe) label to ID 123 and 456

probe_id:
- 123
- 456
process_next: True
actions: SetVIPLabel

- descr: Set 'VIP' label to Italian probes too
src_country: IT
process_next: True
actions: SetVIPLabel

- descr: VIPs must have low RTT
internal_labels: VIP
expected_results: LowRTT

2.6.3 Expected result

A group of criteria used to match probes’ results.

Configuration fields:

• descr (optional): a brief description of this group of criteria.

Matching rules reference this on their expected_results list.

When a probe matches a rule, the keys in the expected_results list of that rule are used to obtain the group of
criteria to be used to process the result.

Example:

matching_rules:
- descr: Probes from France via AS64496

src_country: FR
expected_results: ViaAS64496

expected_results:
ViaAS64496:
upstream_as: 64496

18 Chapter 2. Contents

ripe-atlas-monitor Documentation, Release 0.1.0

Common criteria

Criterion: rtt

Test the median round trip time toward destination.

Available for:

• ping

• traceroute

Configuration fields:

• rtt: maximum RTT (in ms).

• rtt_tolerance (optional): tolerance (in %) on rtt.

If rtt_tolerance is not given, match when measured RTT is less than rtt, otherwise match when measured RTT
is within rtt +/- rtt_tolerance %.

Examples:

expected_results:
LowRTT:
rtt: 50

Near150:
rtt: 150
rtt_tolerance: 30

Criterion: dst_responded

Verify if destination responded.

Available for:

• traceroute

• ping

• sslcert

Configuration fields:

• dst_responded: boolean indicating if the destination is expected to be responding or not.

For ping, a destination is responding if a probe received at least one reply packet. For sslcert, a destination is respond-
ing if at least one certificate is received by the probe.

If dst_responded is True, match when a destination is responding. If dst_responded is False, match when a
destination is not responding.

Example:

expected_results:
DestinationReachable:
dst_responded: True

2.6. Monitor configuration syntax 19

ripe-atlas-monitor Documentation, Release 0.1.0

Criterion: dst_ip

Verify that the destination IP used by the probe for the measurement is the expected one.

Available for:

• traceroute

• ping

• sslcert

Configuration fields:

• dst_ip: list of expected IP addresses (or prefixes).

Match when the probe destination IP is one of the expected ones (or falls within one of the expected prefixes).

Examples:

dst_ip: 192.168.0.1

dst_ip:
- 192.168.0.1
- 2001:DB8::1

dst_ip:
- 192.168.0.1
- 10.0.0.0/8
- 2001:DB8::/32

Traceroute criteria

Criterion: dst_as

Verify the traceroute destination’s AS number.

Available for:

• traceroute

Configuration fields:

• dst_as: list of Autonomous System numbers.

It builds the path of ASs traversed by the traceroute. Match when the last AS in the path is one of the expected ones.

Examples:

dst_as:
- 64496

dst_as:
- 64496
- 65551

Criterion: as_path

Verify the path of ASs traversed by a traceroute.

Available for:

20 Chapter 2. Contents

ripe-atlas-monitor Documentation, Release 0.1.0

• traceroute

Configuration fields:

• as_path: list of Autonomous System path.

An AS path is made of AS numbers separated by white spaces. It can contain two special tokens:

• “S”, that is expanded with the probe’s source AS number;

• “IX”, that represents an Internet Exchange Point peering network for those IXPs which don’t announce their
peering prefixes via BGP.

The “IX” token is meagniful only if the ip_cache.use_ixps_info global configuration parameter is True.

It builds the path of ASs traversed by the traceroute. Match when the AS path or a contiguous part of it is one of the
expected ones.

Examples:

as_path: 64496 64497

as_path:
- 64496 64497
- 64498 64499 64500

as_path:
- S 64496 64497

as_path:
- S IX 64500

Criterion: upstream_as

Verify the traceroute destination upstream’s AS number.

Available for:

• traceroute

Configuration fields:

• upstream_as: list of Autonomous System numbers.

It builds the path of ASs traversed by the traceroute. Match when the penultimate AS in the path is one of the expected
ones.

Examples:

upstream_as:
- 64496

upstream_as:
- 64496
- 64497

SSL criteria

Criterion: cert_fp

Verify SSL certificates’ fingerprints.

2.6. Monitor configuration syntax 21

ripe-atlas-monitor Documentation, Release 0.1.0

Available for:

• sslcert

Configuration fields:

• cert_fp: list of certificates’ SHA256 fingerprints or SHA256 fingerprints of the chain.

A fingerprint must be in the format 12:34:AB:CD:EF:... 32 blocks of 2 characters hex values separated by colon (”:”).

The cert_fp parameter can contain stand-alone fingerprints or bundle of fingerprints in the format “finger-
print1,fingerprint2,fingerprintN”.

A result matches if any of its certificates’ fingerprint is in the list of stand-alone expected fingerprints or if the full
chain fingerprints is in the list of bundle fingerprints.

Examples:

expected_results:
MatchLeafCertificate:
cert_fp: 01:02:[...]:31:32

MatchLeacCertificates:
cert_fp:
- 01:02:[...]:31:32
- 12:34:[...]:CD:EF

MatchLeafOrChain:
cert_fp:
- 01:02:[...]:31:32
- 12:34:[...]:CD:EF,56:78:[...]:AB:CD

DNS criteria

Criterion: dns_rcode

Verify if DNS responses received by a probe have the expected rcode.

Available for:

• dns

Configuration fields:

• dns_rcode: list of expected DNS rcodes (“NOERROR”, “FORMERR”, “SERVFAIL”, “NXDOMAIN”,
“NOTIMP”, “REFUSED”, “YXDOMAIN”, “YXRRSET”, “NXRRSET”, “NOTAUTH”, “NOTZONE”, “BAD-
VERS”).

Match when all the responses received by a probe have one of the expected rcodes listed in dns_rcode.

Example:

expected_results:
DNS_NoError_or_NXDomain:
dns_rcode:
- "NOERROR"
- "NXDOMAIN"

Criterion: dns_flags

Verify if DNS responses received by a probe have the expected headers flags on.

Available for:

22 Chapter 2. Contents

ripe-atlas-monitor Documentation, Release 0.1.0

• dns

Configuration fields:

• dns_flags: list of expected DNS flag (“aa”, “ad”, “cd”, “qr”, “ra”, “rd”).

Match when all the responses received by a probe have all the expected flags on.

Example:

expected_results:
AA_and_AD:
dns_flags:
- aa
- ad

Criterion: edns

Verify EDNS extension of DNS responses received by probes.

Available for:

• dns

Configuration fields:

• edns: boolean indicating whether EDNS support is expected or not.

• edns_size (optional): minimum expected size.

• edns_do (optional): boolean indicating the expected presence of DO flag.

• edns_nsid (optional): list of expected NSID values.

The optional parameters are taken into account only when edns is True.

If edns is True, match when all the responses contain EDNS extension, otherwise when all the responses do not
contain it. If edns_size is given, the size reported must be >= than the expected one. If edns_do is given, all the
responses must have (or have not) the DO flag on. If edns_nsid is given, all the responses must contain and EDNS
NSID option which falls within the list of values herein specified.

Examples:

edns: true

edns: true
edns_do: true

edns: true
edns_nsid:
- "ods01.l.root-servers.org"
- "kbp01.l.root-servers.org"

Criterion: dns_answers

Verify if the responses received by a probe contain the expected records.

Available for:

• dns

Configuration fields:

2.6. Monitor configuration syntax 23

ripe-atlas-monitor Documentation, Release 0.1.0

• dns_answers: one or more sections where records are searched on. Must be one of “answers”, “authorities”,
“additionals”.

Each section must contain a list of records.

Match when all the responses received by a probe contain at least one record matching the expected ones in each of
the given sections.

Example:

dns_answers:
answers:

- <record1>
- <record2>

authorities:
- <record3>
- <record4>

DNS record Test properties which are common to all DNS record types.

Configuration fields:

• type: record’s type. Must be one of the DNS record types implemented and described below.

• name (optional): list of expected names.

• ttl_min (optional): minimum TTL that is expected for the record.

• ttl_max (optional): maximum TTL that is expected for the record.

• class (optional): expected class for the record.

Match when all the defined criteria are met:

• record name must be within the list of given names (name);

• record TTL must be >= ttl_min and <= ttl_max;

• record class must be equal to class.

On the basis of record’s type, further parameters may be needed.

Example:

dns_answers:
answers:

- type: A
name: www.ripe.net.
address: 193.0.6.139

- type: AAAA
name:
- www.ripe.net.
- ripe.net.
ttl_min: 604800
address: 2001:67c:2e8:22::c100:0/64

A record Verify if record’s type is A and if received address match the expectations.

Configuration fields:

• address: list of IPv4 addresses (or IPv4 prefixes).

Match when record’s type is A and resolved address is one of the given addresses (or falls within one of the given
prefixes).

24 Chapter 2. Contents

ripe-atlas-monitor Documentation, Release 0.1.0

AAAA record Verify if record’s type is AAAA and if received address match the expectations.

Configuration fields:

• address: list of IPv6 addresses (or IPv6 prefixes).

Match when record’s type is AAAA and resolved address is one of the given addresses (or falls within one of the given
prefixes).

NS record Verify if record’s type is NS and if target is one of the expected ones.

Configuration fields:

• target: list of expected targets.

Match when record’s type is NS and received target is one of those given in target.

CNAME record Verify if record’s type is CNAME and if target is one of the expected ones.

Configuration fields:

• target: list of expected targets.

Match when record’s type is CNAME and received target is one of those given in target.

2.6.4 Action

Action performed on the basis of expected results processing for probes which match the matching_rules rules.

Configuration fields:

• kind: type of action.

• descr (optional): brief description of the action.

• when (optional): when the action must be performed (with regards of expected results processing output); one
of “on_match”, “on_mismatch”, “always”. Default: “on_mismatch”.

When a probe matches a rule, it’s expected results are processed; on the basis of the output, actions given in the rule’s
actions list are performed. For each expected result, if the probe’s collected result matches the expectation actions
whose when = “on_match” or “always” are performed. If the collected result does not match the expected result,
actions whose when = “on_mismatch” or “always” are performed.

Action log

Log the match/mismatch along with the collected result.

No parameters required.

Action email

Send an email with the expected result processing output.

Configuration fields:

• from_addr (optional): email address used in the From field.

• to_addr (optional): email address used in the To field.

• subject (optional): subject of the email message.

2.6. Monitor configuration syntax 25

ripe-atlas-monitor Documentation, Release 0.1.0

• smtp_host (optional): SMTP server’s host.

• smtp_port (optional): SMTP server’s port.

• use_ssl (optional): boolean indicating whether the connection toward SMTP server must use encryption.

• username (optional): username for SMTP authentication.

• password (optional): password for SMTP authentication.

• timeout (optional): timeout, in seconds.

Parameters which are not given are read from the global configuration file default_smtp section.

Action run

Run an external program.

Configuration fields:

• path: path of the program to run.

• env_prefix (optional): prefix used to build environment variables.

• args (optional): list of arguments which have to be passed to the program. If the argument starts with “$” it is
replaced with the value of the variable with the same name.

If env_prefix is not given, it’s value is taken from the global configuration file misc.env_prefix parameter.

Variables are:

• ResultMatches: True, False or None

• MsmID: measurement’s ID

• MsmType: measurement’s type (ping, traceroute, sslcert, dns)

• MsmAF: measurement’s address family (4, 6)

• MsmStatus: measurement’s status (Running, Stopped) [https://atlas.ripe.net/docs/rest/]

• MsmStatusID: measurement’s status ID [https://atlas.ripe.net/docs/rest/]

• Stream: True or False

• ProbeID: probe’s ID

• ProbeCC: probe’s ISO Country Code

• ProbeASNv4: probe’s ASN (IPv4)

• ProbeASNv6: probe’s ASN (IPv6)

• ProbeASN: probe’s ASN related to measurement’s address family

• ResultCreated: timestamp of result’s creation date/time

Example:

actions:
RunMyProgram:
kind: run
path: /path/to/my-program
args:
- command
- -o
- --msm

26 Chapter 2. Contents

https://atlas.ripe.net/docs/rest/
https://atlas.ripe.net/docs/rest/

ripe-atlas-monitor Documentation, Release 0.1.0

- $MsmID
- --probe
- $ProbeID

Action syslog

Log the match/mismatch along with the collected result using syslog.

Configuration fields:

• socket (optional): where the syslog message has to be logged. One of “file”, “udp”, “tcp”.

• host (optional): meaningful only when socket is “udp” or “tcp”. Host where send the syslog message to.

• port (optional): meaningful only when socket is “udp” or “tcp”. UDP/TCP port where send the syslog
message to.

• file (optional): meaningful only when socket is “file”. File where the syslog message has to be written to.

• facility (optional): syslog facility that must be used to log the message.

• priority (optional): syslog priority that must be used to log the message.

Parameters which are not given are read from the global configuration file default_syslog section.

Action label

Add or remove custom labels to/from probes.

Configuration fields:

• op: operation; one of “add” or “del”.

• label_name: label to be added/removed.

• scope (optional): scope of the label; one of “result” or “probe”. Default: “result”.

Labels can be added to probes and subsequently used to match those probes in other rules (internal_labels
criterion).

If scope is “result”, the operation is significative only within the current result processing (that is, within the current
matching_rules processing for the current result). Labels added to probe are removed when the current result
processing is completed.

If scope is “probe”, the operation is persistent across results processing.

2.7 How to contribute

Here a brief guide to contributing to this tool:

• fork it on GitHub and create your own repository;

• install it using the “editable” installation or clone it locally on your machine (virtualenv usage is strongly sug-
gested);

$ # pip "editable" installation
$ pip install -e git+https://github.com/YOUR_USERNAME/ripe-atlas-monitor.git#egg=ripe-atlas-monitor

$ # manual cloning from GitHub (you have to care about dependencies)

2.7. How to contribute 27

https://virtualenv.pypa.io/en/latest/installation.html

ripe-atlas-monitor Documentation, Release 0.1.0

$ git clone https://github.com/YOUR_USERNAME/ripe-atlas-monitor.git
$ export PYTHONPATH="/path/to/your/ripe-atlas-monitor"

• run the tests in order to be sure that everything is fine;

$ nosetests -vs

• finally, start making your changes and, possibly, add test units and docs to make the merging process easier.

Once you have done, please run tests again:

$ tox

If everything is fine, push to your fork and create a pull request.

2.7.1 Code

Adding a new check

• ParsedResults.py: a new property must be handled by a ParsedResult class in order to parse and prepare
the new result to be checked. Create a new class (if needed) and add a new property (PROPERTIES and
@property). The prepare() method must call self.set_attr_to_cache() to store the parsed
values; the @property must read the value using self.get_attr_from_cache() and return it. More
info on the ParsedResult class docstring.

• ExpResCriteriaXXX.py: an ExpResCriterion-derived class must implement the __init__() method
to read the expected result attributes from the monitor’s configuration and validate them. The prepare()
method must parse the result received from probes and store its value in a local attribute (something like
self.response_xxx); the result_matches() method must compare the parsed result received from
the probe with the expected result. The new class must be added to the appropriate list in ExpResCriteria.py.
More info on the ExpResCriterion class docstring (ExpResCriteriaBase.py). See also ExpResCriterion-
derived classes docstring.

• tests/monitor_cfg_test.py:

– Add the new criterion to self.criteria in TestMonitorCfg.setUp() (at least the
CRITERION_NAME with a correct value).

– Add a call to self.add_criterion("<criterion_name>") to the test_expres_XXX()
methods, where XXX is the measurements’ type this expected result applies to.

– Add some tests for the new expected result configuration syntax.

• tests/doc_test.py: if the new expected result contains lists attributes, add the configuration field name to the
appropriate exp_list_fields variables.

• tests/results_XXX_test.py: add some tests to validate how the new criterion processes results from real mea-
surements.

Adding a new report to the analyzer

• ParsedResults.py: a new class must be created (or a new property added to an existing ParsedResult-
derived class). See the previous section.

• Analyzer.py:

– This step can be avoided if the new ParsedResult property to analyze is handled by an already existing
ParsedResult class.

28 Chapter 2. Contents

https://help.github.com/articles/using-pull-requests/

ripe-atlas-monitor Documentation, Release 0.1.0

Create a new BaseResultsAnalyzer-derived class; its get_parsed_results() method
must yield each ParsedResult element that need to be analyzed (for example, the result it-
self or each DNS response for DNS measurements’ results). The BaseResultsAnalyzer and
ResultsAnalyzer_DNSBased classes should already do most of the work. Add the new class to
the Analyzer.RESULTS_ANALYZERS list.

– The BaseResultsAnalyzer.PROPERTIES_ANALYZERS_CLASSES and
BaseResultsAnalyzer.PROPERTIES_ORDER lists must contain the new property defined in
the ParsedResult-derived class.

– A BasePropertyAnalyzer-derived class must be created in order to implement the aggregation
mechanism and the output formatting for the new property. More info on the BasePropertyAnalyzer
and BaseResultsAnalyzer classes docstring.

• docs/COMMANDS.rst: add the new property to the list of those supported by the analyze command.

Data for unit testing

The tests/data/download_msm.py script can be used to download and store data used for tests. It downloads measure-
ment’s metadata, results and probes’ information and stores them in a measurement_id.json file. The tests/data.py
module loads the JSON files that can subsequently be used for unit testing purposes.

ExpResCriterion-derived classes docstring

These classes must use a special syntax in their docstrings which allows to automatically build documentation and
config example (doc.py build_doc and build_monitor_cfg_tpl functions).

Example:

Criterion: rtt

Test the median round trip time toward destination.

Available for: ping, traceroute.

`rtt`: maximum RTT (in ms).

`rtt_tolerance` (optional): tolerance (in %) on `rtt`.

If `rtt_tolerance` is not given, match when measured RTT is less
than `rtt`, otherwise match when measured RTT is within `rtt`
+/- `rtt_tolerance` %.

Examples:

expected_results:
LowRTT:

rtt: 50
Near150:

rtt: 150
rtt_tolerance: 30

• The first line must include only the “Criterion: xxx” string, where xxx is the class CRITERION_NAME attribute.

Example: Criterion: rtt

• A brief description of the expected result must follow.

Example: Test the median round trip time toward destination.

2.7. How to contribute 29

ripe-atlas-monitor Documentation, Release 0.1.0

• The list of measurements’ types for which this expected result can be used must follow, in the format
Available for: x[, y[, z]]., where values are valid measurements’ types (ping, traceroute,
...).

Example: Available for: ping, traceroute.

• A list of configuration fields must follow. Every docstring line starting with a backquote is considered to be a
field name.

The format must be the following:

‘field_name‘ ["(optional)"]: ["list"] "description..."

The “(optional)” string is used to declare this field as optional, otherwise it’s considered mandatory.

The “list” string is used to declare that this field contains a list of values.

Example: ‘rtt‘: maximum RTT (in ms)., ‘rtt_tolerance‘ (optional): tolerance
(in %) on ‘rtt‘., ‘dst_ip‘: list of expected IP addresses (or prefixes).

• A (long) description of how this expected result’s fields are used can follow. Here, be careful to avoid lines
starting with the backquote, otherwise they will be interpreted as a field declaration.

• Finally, a line starting with the “Example” or “Examples” strings can be used to show some examples. They
will be formatted using code blocks.

2.8 Changelog

2.8.1 0.1.10

• fix packaging issue

2.8.2 0.1.9

improvements

• analyze command, add the --show-all-dns-answers argument

2.8.3 0.1.8

improvements

• dst_responded criterion can be used for SSL measurements too (and is considered in analysis reports too)

fixes

• cosmetic

30 Chapter 2. Contents

ripe-atlas-monitor Documentation, Release 0.1.0

2.8.4 0.1.7

improvements

• analyze command:

– JSON output

– show unique probes count for DNS measurements

• new check and analysis of DNS RCODEs

fixes

• analyze command, DNS answers analysis for records with no name and no type

• bug in IP addresses cache

2.8.5 0.1.6

improvements

• new checks and analysis for EDNS NSID option

• DNS answers analysis

• probes filter for run and analyze commands now accepts probe IDs and country codes

2.8.6 0.1.5

improvements

• more options for the analyze command:

– show probes (up to 3) beside results

– destination AS and upstream AS results

– show common sequences/patterns among results

• add --probes argument to run and analyze commands to filter results

• email logging of error messages

fixes

• fix empty resultset handling in analyze cmd

2.8.7 0.1.4

new features

• Python 3.4 support

2.8. Changelog 31

ripe-atlas-monitor Documentation, Release 0.1.0

improvements

• -m argument for analyze command, to gather msm id and auth key from the monitor itself

• --dont-wait argument for run command

fixes

• error handling for null RTT results in analyze command

2.8.8 0.1.3

improvements

• better RTT results formatting in analyze command

• no stdout logging when used in daemonize mode

fixes

• error handling for IXPs networks info unavailability

2.8.9 0.1.2

new features

• analyze command to show elaborated results from a measurement

• bash autocomplete

fixes

• continous monitors didn’t run continously

2.8.10 0.1.1

improvements

• better results and actions logging

2.8.11 0.1.0

First release (beta)

32 Chapter 2. Contents

CHAPTER 3

Status

This tool is currently in beta: some field tests have been done but it needs to be tested deeply and on more scenarios.

Moreover, contributions (fixes to code and to grammatical errors, typos, new features) are very much appreciated.
More details on the contributing guide.

33

ripe-atlas-monitor Documentation, Release 0.1.0

34 Chapter 3. Status

CHAPTER 4

Bug? Issues?

But also suggestions? New ideas?

Please create an issue on GitHub at https://github.com/pierky/ripe-atlas-monitor/issues

35

https://github.com/pierky/ripe-atlas-monitor/issues

ripe-atlas-monitor Documentation, Release 0.1.0

36 Chapter 4. Bug? Issues?

CHAPTER 5

Author

Pier Carlo Chiodi - https://pierky.com

Blog: https://blog.pierky.com Twitter: @pierky

37

https://pierky.com
https://blog.pierky.com
https://twitter.com/pierky

	How does it work?
	Contents
	QuickStart
	Step 1: install dependencies
	Step 2: install ripe-atlas-monitor
	Step 3: global configuration
	Step 4: create a new monitor and customize its configuration
	Step 5: run the brand new monitor

	Requirements & Installation
	Requirements
	Installation

	Global configuration
	Commands
	Results analysis
	Monitors' configuration management
	Execution modes

	Monitors: how they work
	How they work
	Kinds of monitors
	Expected results criteria
	Advanced use

	Monitor configuration syntax
	Monitor
	Rule
	Expected result
	Action

	How to contribute
	Code

	Changelog
	0.1.10
	0.1.9
	0.1.8
	0.1.7
	0.1.6
	0.1.5
	0.1.4
	0.1.3
	0.1.2
	0.1.1
	0.1.0

	Status
	Bug? Issues?
	Author

