

 Note:

This project is in beta mode and under heavy development. Not all
features described in the documentation are implemented. The features
described in the documentation are in the process of being implemented.
Many of the modules, interfaces, and functions may change considerably
before the first release.

Introduction

The rhea package is a collection of HDL cores written in myhdl [http://www.myhdl.org].
The rhea package is more than just a collection of cores it is also
a framework for creating complex digital circuits. The rhea package
includes a complete test suite.

The rhea package is divided into the following subpackages:

	rhea: The top-level namespace contains a small number of components
(thin layer) use to build the subblocks (cores)

	system: The system subpackage contains the interface [http://docs.myhdl.org/en/stable/whatsnew/0.9.html#interfaces-conversion-of-attribute-accesses] classes and
other useful tools to assist in the building of complex digital designs.

	models: This subpackage contains various models used for development
and verification

	cores: The cores subpackage contains the HDL implementation of the
digital hardware cores.

	build: This subpackage automates various tool-flows (compilation).
The automation mainly supports FPGA vendor tool-flows. The
build.boards is a collection of board definitions. The build
automation is used by selecting a board and automating the build
for the board.

	vendor*: The vendor subpackage is an encapsulation of device
primitives.

	rhea common components

	System

	Cores

	Build

	Board definitions

	Examples

Indices and tables

	Index

	Module Index

	Search Page

rhea common components

The rhea top-level namespace includes a small collection of
functions and objects that are commonly used in building subblocks [http://]
(cores). This is a thin-layer in the software stack used to build
complex digital systems.

The following is the list of the functions and objects in the rhea
top-level namespace. See the information below for more details.

	rhea.Clock(init_val, frequency)

	rhea.Reset(init_val, active, isasync)

	rhea.Global()

	rhea.Constants(**named_constants)

	rhea.Signals(sigtype, num_sigs)

	rhea.syncro

	rhea.assign

	
class rhea.Clock(val, frequency=1)

	

	
class rhea.Reset(val, active, isasync)

	

	
class rhea.Global(clock=None, reset=None, frequency=1)

	

	
class rhea.Constants(**constargs)

	

	
rhea.Signals(sigtype, num_sigs)

	Create a list of signals
:param sigtype: The type to create a Signal from.
:type sigtype: bool, intbv
:param num_sigs: The number of signals to create in the list
:type num_sigs: int

	Returns

	a list of signals all of type sigtype

	Return type

	sigs

Creating multiple signals of the same type is common, this
function helps facilitate the creation of multiple signals of
the same type.

	The following example creates two signals of bool

	>>> enable, timeout = Signals(bool(0), 2)

	The following creates a list-of-signals of 8-bit types

	>>> mem = Signals(intbv(0)[8:], 256)

	
rhea.assign()

	assign a = b

	
rhea.syncro()

	signal synchronizer

	Parameters

	
	sigin – signal input.

	sigout – synchronized signal output.

	posedge – a positive edge in the sync

	negedge – a negitive edge in the sync

	num_sync_ff – the number of sync stages.

Examples

System

Note

System documentation is WIP and incomplete.

Need to take care of adding all the relevant classes and functions.

	System overview

	Memory mapped interfaces

	register_file

	reference

System overview

The rhea package provides frameworks for building complex digital
circuits. These include modular and scalable interfaces [http://docs.myhdl.org/en/stable/whatsnew/0.9.html#interfaces-conversion-of-attribute-accesses] and
blocks [http://docs.myhdl.org/en/stable/manual/structure.html#structural-modeling]. The following describes the specification for the
frameworks being developed in the rhea package.

Control and status

One of the goals of the rhea package is to simplify the assembly
of systems. In a complex digital system majority of the blocks will
have two interfaces. One being the streaming data in and out of the
module and the other a control and status interface. The control
and status provides a lower-bandwidth interface into the component
(block).

Defining a peripheral specific control-status object (CSO).

import rhea.system import ControlStatusBase

define the control and status signals for a peripheral
class ControlStatus(ControlStatusBase):
 modes = enum("counting", "walking", "strobing")
 def __init__(self)
 self.enable = Signal(bool(0))
 self.pause = Signal(bool(0))
 self.mode = Signal(self.modes.counting)

In a peripheral either the default (defined) control-status object
CSO can be used and added to the control-status interface.

@myhdl.block
def led_blinker(glbl, led, cso):
 # the cso interface provides the control and status for
 # this module
 assert isinstance(ControlStatus)
 clock, reset = glbl.clock, glbl.reset
 modes = ControlStatus.modes
 enabled = Signal(bool(0))

 @always_comb
 def beh_enabled():
 enabled.next = glbl.enable and cso.enable

 @always_seq(clock.posedge, reset=reset)
 def beh_blink():
 if enabled and not cso.pause:
 nextled = 0
 if cso.mode == modes.counting:
 # counting logic
 elif cso.mode == modes.walking:
 # walking logic
 elif cso.mode == modes.strobing
 # strobing logic

 led.next = nextled

 return beh_enable, beh_blink

led_blinker.cso = ControlStatus

The non-global control and status, i.e. the module specific
control-status is accessed via the cso. This provides
a clean encapsulation to the block (module). The cso can
also include transactors to assist testing and verification.

Creating control status objects

The above example shows how a collections of control and status signals
are defined in a class. To help guide the the tools, some additional
information can be defined:

	driven: set the signal driven attribute to true to indicate a
read-only (status) attribute.

	Use the hardware-types Bit and Byte to
help drive the how the attributes are organized in a register-file.
The Bit and Byte are only used to give
hints to the register-file builder, if memory-mapped access
is secondary use the standard :myhdl:class:`Signal`.

	Use initial_value property to overwrite the signals initial
value, this is useful is static configurations.

Register files

When creating components for a design often a register file is included
The register file is used for the control and status access (CSR) of
the component.
A register file is simply a collection of `registers`_ that are used to
control the component and read status. The register file is accessed by
a memory-mapped bus. The register file provides dynamic control and
status of the component.

The objects to create a register file encapsulate much of the detail
required for typical register-file definition. In addition provides
a mechanism for static definition (no bus present).

The following is a short example building a simple register file.
Note the following is the manaul method to the example being used
in this document. Utilizing the ControlStatusBase is an
automated process, in majority of the cases register-files should
not be explicitly defined but rather build from a CSO.

from rhea.system import RegisterFile, Register

create a register file
regfile = RegisterFile()

create a status register and add it to the register file
reg = Register('status', width=8, access='ro', default=0)
regfile.add_register(reg)

create a control register with named bits and add
reg = Register('control', width=8, access='rw', default=1)
reg.add_named_bits('enable', bits=0, comment="enable the component")
reg.add_named_bits('pause', bits=1, comment="pause current operation")
reg.add_named_bits('mode', bits=(4, 2), comment="select mode")
regfile.add_register(reg)

Note

The current implementation requires all the register in a
register file to be the same width.

The above example defines a register file to be used. This can be
used in a new component/peripheral.

@myhdl.block
def led_blinker(glbl, membus, leds):
 clock = glbl.clock
 # instantiate the register interface module and add the
 # register file to the list of memory-spaces
 regfile.base_address = 0x8240
 regfile_inst = membus.add(glbl, regfile)

 # instantiate different LED blinking modules
 led_modules = (led_stroby, led_dance, led_count,)
 led_drivers = [Signal(leds.val) for _ in led_modules]
 mod_inst = []
 for ii, ledmod in enumerate(led_modules):
 mod_inst.append(ledmod(glbl, led_drivers[ii]))

 @always(clock.posedge)
 def beh_led_assign():
 leds.next = led_drivers[regfile.mode]

 return regfile_inst, mod_inst, beh_led_assign

The led_blinker() module demonstrates how to add the created
RegisterFile to
the memory-mapped bus and get a myhdl instance that provides the logic
to read and write the register file from the bus interface passed to the
module.

Note, in the above example a base_address was set. If the base_address
attribute is not present the :class:`MemoryMapped

Memory map interfaces

The :Register Files: section examples eluded to the memory-map (or CSR)
interfaces and how they can be connected to register file. The rhea
project contains the following memory-map interfaces:

	Barebone

	Wishbone

	AvalonMM

	AXI4Lite

Each of these implement a memory-map bus type/specification and each
can be passed as and interface to a module. Each of the specific
memory-mapped bus classes inherit the MemoryMapped class.
The MemoryMapped defines the attributes and methods the
memory-mapped buses have in common.

When interfacing to a register file, the register file is added to the
bus as shown in the previous example with the MemoryMapped.add()
function. The register file covers many use cases for adding control
and status interfaces to different components. Each interface also
contains a module to adapt the memory-map interface to a generic
interface. In this case each bus is mapped to the Barebone
bus with the MemoryMapped.map_to_generic()
function / myhdl [http://www.myhdl.org] module [http://docs.myhdl.org/en/stable/manual/structure.html#structural-modeling].

The next section outlines how the RegisterFile and the
corresponding registers is typically not used as defined above. Rather,
an automated mapping of the control-status object is mapped to the
memory-space. Software is used to encapsulate all the memory-based
accesses.

From attributes to bus cycles

When designing a complex digital system with the rhea components
we don’t want to deal with creating explict memory-maps. We want to
interface with various modules through their control-status attributes.

As defined in the above first example, for our simple LED blinker
module there are a couple control signals defined. The module can
be stimulated and controlled via this interface. We might have some
external logic, or simply tie the module controls to physical inputs.

If we want to tie the controls to a register-file accessed by a
memory-mapped this

@myhdl.block
def led_blinker(glbl, leds, membus=None, cso=None):

 if cso is None
 cso = led_blinker.cso()

 if membus is not None:
 rf = cso.get_register_file()
 membus.add(rf)

 # get any cso specific logic (if any)
 cso_inst = cso.get_generators()

 # ...

This gives a flexible mechanism to connect the module to a memory-mapped
bus or simply control the module through some other mechanism (e.g.
directly driven by the logic).

In the previous example all the explict addresses are hidden. The
control-status attributes are accessed via the attributes (in simulation
and host software) and all the memory-mapped bus accesses are hidden.
The MemoryMap has utilities to export the memory-map.

Static configuration

The previous example demonstrated how the module can select to use the
external cso object, default cso

Memory mapped interfaces

Base classes

The following are the building blocks for defining a system with
memory-mapped attributes.

	
class rhea.system.MemorySpace

	

	
class rhea.system.MemoryMapped(glbl=None, data_width=8, address_width=16)

	
	
acktrans(data=None)

	Acknowledge transaction

	
add = <myhdl._block._bound_function_wrapper object>

	

	
add_csr(csr, name='')

	

	
get_generic()

	Get the generic bus interface
Return the object that map_to_generic maps to.
:return: generic bus interface

	
interconnect()

	Connect all the components

	
map_from_generic(generic)

	Map the generic bus (Barebone) to this bus
This is a bus adapter that will adapt the generic bus to this
bus. This is a module and returns myhdl generators

	Parameters

	
	generic (The generic memory-mapped bus, all the memory-mapped) –

	modules use the generic bus internally. This provides (supported) –

	agnostic bus interface to all the modules. (an) –

	Returns

	

	Return type

	myhdl generators

	
map_to_generic(generic)

	Map this bus to the generic (Barebone) bus
This is a bus adapter, it will adapt the
:return: generic bus, myhdl generators

	
peripheral_regfile(regfile, name, base_address=0)

	override

	Parameters

	
	glbl (global signals, clock and reset) –

	regfile (register file interfacing to) –

:param :
:type : param glbl: global signals, clock and reset
:param :
:type : param regfile: register file interfacing to.
:param :
:type : param name: name of this interface
:param :
:type : param base_address: base address for this register file
:param :
:type : return: myhdl generators

	
readtrans(addr)

	Read transaction

	
writetrans(addr, data)

	Write transaction

	
class rhea.system.MemoryMap

	

	
class rhea.system.RegisterFile(regdef=None)

	

Memory mapped buses

The following are the memory-mapped bus interfaces available
in rhea.

	barebone

	wishbone

	avalon

	AXI4

barebone

Note

Barebone bus needs additional documentation…

	
class rhea.system.memmap.Barebone(glbl, data_width=8, address_width=8, name=None, num_peripherals=16)

	
	
acktrans(data=None)

	Acknowledge transaction

	
get_generic()

	Get the generic bus interface
Return the object that map_to_generic maps to.
:return: generic bus interface

	
interconnect()

	
	Returns

	

	
map_from_generic(generic)

	In this case the this is the generic bus, use the signals
passed, that is the expected behavior.

	Parameters

	generic – the generic bus to map from

	
map_to_generic(generic)

	In this case this is the generic bus, there is no mapping that
needs to be done. Simply return ourself and all is good.

	
peripheral_regfile(glbl, regfile, name, base_address=0)

	(arguments == ports)
:param glbl: global signals, clock, reset, enable, etc.
:param regfile: register file
:param name:
:param base_address:

	
readtrans(addr)

	Read transaction

	
writetrans(addr, data)

	Write transaction

wishbone

Note

Wishbone bus needs additional documentation…

	
class rhea.system.memmap.Wishbone(glbl=None, data_width=8, address_width=16, name=None)

	
	
acktrans(data=None)

	acknowledge accessor for testbenches
:param data:
:return:

	
get_generic()

	Get the generic bus interface
Return the object that map_to_generic maps to.
:return: generic bus interface

	
interconnect = <myhdl._block._bound_function_wrapper object>

	

	
peripheral_regfile = <myhdl._block._bound_function_wrapper object>

	

	
readtrans(addr)

	read accessor for testbenches

	
writetrans(addr, val)

	write accessor for testbenches
Not convertible.

avalon

Note

Avalon bus needs additional documentation…

	
class rhea.system.memmap.AvalonMM(glbl=None, data_width=8, address_width=16, name=None)

	
	
acktrans(data=None)

	Acknowledge transaction

	
interconnect = <myhdl._block._bound_function_wrapper object>

	

	
peripheral_regfile = <myhdl._block._bound_function_wrapper object>

	

	
readtrans(addr)

	read accessor for testbenches
:param addr:
:return:

	
writetrans(addr, val)

	write accessor for testbenches
:param addr: address to write
:param val: value to write to the address
:return: yields

AXI4

Note

AXI4 bus needs additional documentation…

	
class rhea.system.memmap.AXI4Lite(glbl, data_width=8, address_width=16)

	
	
acktrans(data=None)

	Acknowledge transaction

	
readtrans(addr)

	Read transaction

	
writetrans(addr, val)

	Emulate a write transfer from a master
The following is a very basic write transaction, future
enhancements are needed to verify/validate of features of
the AXI4Lite bus.

@todo: add priority (not often used)
@todo: add byte strobe
@todo: add response checks
@todo: and checks for all channel acks

register_file

Note

Needs added content

reference

Note

Needs added content

Cores

The following is the user (and some developer) documentation on the
various cores available in the rhea package.

	First In, First Out (FIFO) cores
	fifo_sync

	fifo_async

	fifo_fast

	fifo_ramp

	fifo_tester

	Examples

	Serial Peripheral Interface (SPI)
	SPI controller

	SPI slave FIFO

	fpgalink

	usbp

First In, First Out (FIFO) cores

Various synchronous and asynchronous FIFO implementations.

fifo_sync

	
rhea.cores.fifo.fifo_sync()

	Synchronous FIFO
This block is a basic synchronous FIFO. In many cases it is
better to use the fifo_fast synchronous FIFO (lower resources).

This FIFO uses a “read acknowledge”, the read data is available
on the read data bus before the read strobe is active. When the
read signal is set it is acknowledging the data has been read
and the next FIFO item will be available on the bus.

	Parameters

	
	glbl (Global) – global signals, clock and reset

	fbus (FIFOBus) – FIFO bus interface

	size (int [https://docs.python.org/3/library/functions.html#int]) – the size of the FIFO, the FIFO will have hold
at maximum size elements.

Examples

Write and read timing:

clock: /-_/-_/-_/-_/-_/-_/-_/-_/-_/
fbus.write: _/---_______/-----------___________
fbus.wrtie_data: -|D1 |-------|D2 |D3 |D4 |-----------
fbus.read: _____________/---___________________
fbus.read_data: |D1 |--------------------
fbus.empty: ---------______/--_________________

Usage:

fifobus = FIFOBus(width=16)
fifo_inst = fifo_sync(glbl, fifobus, size=128)

fifo_async

	
rhea.cores.fifo.fifo_async()

	The following is a general purpose, platform independent
asynchronous FIFO (dual clock domains).

Cross-clock boundary FIFO, based on:
“Simulation and Synthesis Techniques for Asynchronous FIFO Design”

Typically in the “rhea” package the FIFOBus interface is used to
interface with the FIFOs

fifo_fast

	
rhea.cores.fifo.fifo_fast()

	Often small simple, synchronous, FIFOs can be implemented with
specialized hardware in an FPGA (e.g. vertically chaining LUTs).

This FIFO is intended to be used for small fast FIFOs. But when
used for large …

This FIFO is a small FIFO (currently fixed to 16) that is implemented
to take advantage of some hardware implementations.

Typical FPGA synthesis will infer shift-register-LUT (SRL) for small
synchronous FIFOs. This FIFO is implemented generically, consult the
synthesis and map reports.

	Arguments (ports):

	glbl: global signals, clock and reset
fbus: FIFOBus FIFO interface

	Parameters

	use_slr_prim – this parameter indicates to use the SRL primitive
(inferrable primitive). If SRL are not inferred from the generic
description this option can be used. Note, srl_prim will only
use a size (FIFO depth) of 16.

fifo_ramp

	
rhea.cores.fifo.fifo_ramp()

	FIFO Ramp module
This module provides a simple 8-bit counter that will generate
a ramp. This ramp is fed to the USB fifo. This can be used
to validate the usb connection and the device to host (IN) data
rates.

fifo_tester

WIP

Examples

Serial Peripheral Interface (SPI)

The following is a description of the SPI cores in the rhea package.

SPI controller

	
rhea.cores.spi.spi_controller()

	SPI (Serial Peripheral Interface) module
This module is an SPI controller (master) and can be used to interface
with various external SPI devices.

	Parameters

	
	glbl (Global) – clock and reset interface

	spibus (SPIBus) – external (off-chip) SPI bus

	fifobus (FIFOBus) – interface to the FIFOs, write side is to
the TX the read side from the RX.

	mmbus (MemoryMapped) – a memory-mapped bus used to access
the control-status signals.

	cso (ControlStatus) – the control-status object used to control
this peripheral

	include_fifo (bool [https://docs.python.org/3/library/functions.html#bool]) – include the FIFO … this is not fully
implemented

Note

At last check the register-file automation was not complete, only
the cso external control or cso configuration can be utilized.

SPI slave FIFO

	
rhea.cores.spi.spi_slave_fifo()

	This is an SPI slave peripheral, when the master starts clocking
any data in the TX FIFO (fifobus.write) will be sent (the next
byte) and the received byte will be copied to RX FIFO
(fifobus.read). The cso interface can be used to configure
how the SPI slave peripheral behaves.

(Arguments == Ports)
:param glbl: global clock and reset
:type glbl: Global
:param spibus: the external SPI interface
:type spibus: SPIBus
:param fifobus: the fifo interface
:type fifobus: FIFOBus
:param cso: the control status signals
:type cso: ControlStatus

fpgalink

This is a MyHDL implementation of the HDL for the fpgalink
project. The fpgalink HDL core can be instantiated into
a design:

For simulation and verification the fpgalink interface can be
stimulated using the FX2 model and high-level access functions:

The following is a pictorial of the verification environment .

For more information on the [fpgalink]() software, firmware, and
general design information see [makestuff]().

usbp

USB Peripheral, this is another Cypress FX2 controller interface,
this has two interfaces a “control” interface and a “streaming”
interface. This FX2 interface is intended to work with the
[fx2 firmware]() that configures the controller as a USB CDC/ACM
device (virtual serial port). The [fx2 firmware]() also has a
couple vendor unique commands that can be sent using the pyusb
(or other low-level USB interfaces like libusb). The Python
version of the host software (including firmware) can be retrieved
via pip

>> pip install usbp
>>> import usbp
>>> import serial

One of the tricky items with USB devices is setting the permissions
correctly. On a linux system to set the …

Build

The rhea package includes tools to automate the vendor
FPGA toolflows.

Board definitions

The rhea.build contains a large list of board definitions. The
board definitions define an FPGA and its configuration for a particular
board. The board definitions define the default port list for the
FPGA on a particular board. The following is a guideline on how to
add a new board definition.

The information needed to create a board definition comes from the
boards datasheet and/or schematic. To make it easy to trace back
to the original documentation the port names should match the net
names in the documentation / schematic with a few exceptions. The
port names should be lowercase (this will be one difference from
the documentation / schematic).

The board definitions are a subclass of the FPGA class. The FPGA
information is captured in the class attributes.

Example: XESS CAT board

The following is a minimal example creating a board definition for
the XESS CAT board. From the CAT board schematics [https://github.com/xesscorp/CAT-Board] the port
definitions can be defined.

class CATBoard(FPGA):
 vendor = 'lattice'
 family = 'ice40'
 device = 'HX8K'
 packet = 'CT256'
 _name = 'catboard'

 default_clocks = {
 'clock': dict(freqeuncy=100e6, pins=('C8',))
 }

 default_ports = {
 'led': dict(pins=('A9', 'B8', 'A7', 'B7',)),
 'sw': dict(pins=('A16', 'B9',)),
 'dipsw': dict(pins=('C6', 'C5', 'C4', 'C3',)),
 'hdr1': dict(pins=('J1', 'K1', 'H1', 'J2',)),
 }

Extending definitions

In many situations the top-level module ports might not match the
default ports in the board definition or the user might want to
create a different board definition.

Mapping port names

There are two functions available in a specific board definition
object: add_port and add_port_name. When the pin is known
use add_port and when the default port name is known but a
different name is desired use add_port_name to add a new port
name that maps to the properties of an existing port. See the
pone example for an add_port_name use.

Creating a custom board definition

Custom board defintions can be created from the standard board
definitions contained in the rhea.build.boards collection.
For example, a board might
have many connectors or generic IO. The user could have a boards
with specific hardware attached. In these cases the user many
wish to create a new custom board definition.

class MyCustomBoard(Xula2):
 # overriding the default ports, inherit the default
 # clocks. The default ports in this cause reprsent
 # the various widgets connected to the Xula2+stickit
 default_ports = {
 'leds': dict(pins=('R7', 'R15', 'R16', 'M15',)),
 'btns': dict(pins=('F1', 'F2', 'E1', 'E2',))
 }

Examples

The following are the examples available in the examples
directory.

Xess Corp. Boards

	
	Xula(2)

	
	binary hello (blinky) [https://github.com/cfelton/rhea/blob/master/examples/build/ex_xula.py]

	VGA (TBC)

	SDRAM (TBC)

	
	CAT Board

	
	binary hello (blinky) [https://github.com/cfelton/rhea/blob/master/examples/build/ex_catboard.py]

	SDRAM (TBC)

Digilent Boards

	
	Nexys

	
	`binary hello (blinky) <>`_

	fpgalink

	usbp (TBC)

	
	Atlys

	
	`binary hello (blinky) <>`_

	fpgalink (TBC)

	usbp (TBC)

	
	Zybo

	
	binary hello (blinky) [https://github.com/cfelton/rhea/blob/master/examples/build/ex_zybo.py]

Terasic Boards

	
	DE0nano

	
	binary hello (blinky) [https://github.com/cfelton/rhea/blob/master/examples/build/ex_de0nano.py]

	LT24 LCD (colorbars) [https://github.com/cfelton/rhea/tree/master/examples/boards/de0nano/lt24lcd]

	ADC and Accelerometer [https://github.com/cfelton/rhea/tree/master/examples/boards/de0nano/converters] (WIP)

	SDRAM (TBC)

Lattice Boards

	
	ICEStick

	
	binary hello (blinky) [https://github.com/cfelton/rhea/blob/master/examples/build/ex_icestick.py]

Misc. Boards

	
	Open-Source UFO-400

	
	`binary hello (blinky) <>`_

	usbp (TBC)

	
	DSPtronics Signa-X1 (sx1)

	
	`binary hello (blinky) <>`_

	fpgalink (TBC)

	usbp (TBC)

	
	audio examples

	
	audio echo (TBC)

	audio streaming (TBC)

Index

 A
 | B
 | C
 | F
 | G
 | I
 | L
 | M
 | P
 | R
 | S
 | V
 | W

A

 	
 	acktrans() (rhea.system.memmap.AvalonMM method)

 	(rhea.system.MemoryMapped method)

 	(rhea.system.memmap.AXI4Lite method)

 	(rhea.system.memmap.Barebone method)

 	(rhea.system.memmap.Wishbone method)

 	
 	add (rhea.system.MemoryMapped attribute)

 	add_csr() (rhea.system.MemoryMapped method)

 	assign() (in module rhea)

 	(in module rhea.cores.misc)

 	AvalonMM (class in rhea.system.memmap)

 	AXI4Lite (class in rhea.system.memmap)

B

 	
 	Barebone (class in rhea.system.memmap)

C

 	
 	Clock (class in rhea)

 	(class in rhea.system)

 	
 	command_bridge() (in module rhea.cores.memmap)

 	Constants (class in rhea)

 	ControlStatusBase (class in rhea.system)

F

 	
 	fifo_async() (in module rhea.cores.fifo)

 	fifo_fast() (in module rhea.cores.fifo)

 	
 	fifo_ramp() (in module rhea.cores.fifo)

 	fifo_sync() (in module rhea.cores.fifo)

G

 	
 	get_generic() (rhea.system.memmap.Barebone method)

 	(rhea.system.MemoryMapped method)

 	(rhea.system.memmap.Wishbone method)

 	
 	Global (class in rhea)

 	(class in rhea.system)

I

 	
 	interconnect (rhea.system.memmap.AvalonMM attribute)

 	(rhea.system.memmap.Wishbone attribute)

 	
 	interconnect() (rhea.system.memmap.Barebone method)

 	(rhea.system.MemoryMapped method)

L

 	
 	lt24lcd() (in module rhea.cores.video)

M

 	
 	map_from_generic() (rhea.system.memmap.Barebone method)

 	(rhea.system.MemoryMapped method)

 	map_to_generic() (rhea.system.memmap.Barebone method)

 	(rhea.system.MemoryMapped method)

 	
 	MemoryMap (class in rhea.system)

 	MemoryMapped (class in rhea.system)

 	MemorySpace (class in rhea.system)

P

 	
 	peripheral_regfile (rhea.system.memmap.AvalonMM attribute)

 	(rhea.system.memmap.Wishbone attribute)

 	
 	peripheral_regfile() (rhea.system.memmap.Barebone method)

 	(rhea.system.MemoryMapped method)

R

 	
 	readtrans() (rhea.system.memmap.AvalonMM method)

 	(rhea.system.MemoryMapped method)

 	(rhea.system.memmap.AXI4Lite method)

 	(rhea.system.memmap.Barebone method)

 	(rhea.system.memmap.Wishbone method)

 	
 	RegisterFile (class in rhea.system)

 	Reset (class in rhea)

 	(class in rhea.system)

S

 	
 	Signals() (in module rhea)

 	(in module rhea.system)

 	spi_controller() (in module rhea.cores.spi)

 	
 	spi_slave_fifo() (in module rhea.cores.spi)

 	syncro() (in module rhea)

 	(in module rhea.cores.misc)

V

 	
 	VGA (class in rhea.cores.video)

 	
 	vga_sync() (in module rhea.cores.video)

 	VideoMemory (class in rhea.cores.video)

W

 	
 	Wishbone (class in rhea.system.memmap)

 	writetrans() (rhea.system.memmap.AvalonMM method)

 	(rhea.system.MemoryMapped method)

 	(rhea.system.memmap.AXI4Lite method)

 	(rhea.system.memmap.Barebone method)

 	(rhea.system.memmap.Wishbone method)

 In the rhea package there are numerous functions,
~~modules~~ blocks, and objects that are used to develop a core.
The following is a list of the most commonly used.

Core development

	
class rhea.system.Global(clock=None, reset=None, frequency=1)

	

	
class rhea.system.Clock(val, frequency=1)

	

	
class rhea.system.Reset(val, active, isasync)

	

	
rhea.system.Signals(sigtype, num_sigs)

	Create a list of signals
:param sigtype: The type to create a Signal from.
:type sigtype: bool, intbv
:param num_sigs: The number of signals to create in the list
:type num_sigs: int

	Returns

	a list of signals all of type sigtype

	Return type

	sigs

Creating multiple signals of the same type is common, this
function helps facilitate the creation of multiple signals of
the same type.

	The following example creates two signals of bool

	>>> enable, timeout = Signals(bool(0), 2)

	The following creates a list-of-signals of 8-bit types

	>>> mem = Signals(intbv(0)[8:], 256)

	
class rhea.system.ControlStatusBase

	

Memory-mapped interfaces

Streaming interfaces

	
rhea.cores.misc.assign()

	assign a = b

	
rhea.cores.misc.syncro()

	signal synchronizer

	Parameters

	
	sigin – signal input.

	sigout – synchronized signal output.

	posedge – a positive edge in the sync

	negedge – a negitive edge in the sync

	num_sync_ff – the number of sync stages.

Test Development

 Note, the rhea package is under development, a first minor
release (0.1) has not been made. Significant changes and design
decision are occurring. Some of the information in these documents
is documentation on non-existing features, features that are
currently being implemented but not completed.

Introduction

The rhea package is a collection of HDL cores written in
myhdl [http://www.myhdl.org]. The rhea package is more than just a collection
of cores it is also a framework for creating complex digital
circuits. The rhea package also includes a complete test
suite.

The rhea package is divided into the following subpackages:

	system

	models

	cores

	build

	vendor

System

The system subpackage contains the [interfaces]() and other
useful tools to assist in building complex digital designs.

Models

This subpackage contains various models used for development
and verification.

Cores

This subpackage contains the core implementations.

Build

This subpackage automates various tool-flows (compilation).
The automation mainly supports FPGA vendor tool-flows. The
build.boards is a collection of board definitions. The
build automation is used by selecting a board and automating
the FPGA build for that board.

Vendor

	The vendor subpackage is an encapsulation of device primitives

	for various vendors (e.g. Altera, Xilinx, Lattice, etc.).

 Contents:

	Build

	Board definitions
	Example: XESS CAT board

	Extending definitions

Memory Map Utilities

The rhea package contains a framework for managing the
memory-mapped control, status, and data access (most often,
simply control and status). The following are various
memory-map utilities and peripherals.

Command bridge

The command_bridge provides a mechanism to generate memory-mapped
bus cycles from a received packet. This provides a low-level
external access to the internal memory-space.

The command_bridge uses FIFOBus interface to receive
command packets and a FIFOBus to send response packets.
The comand_briged sends a response packet for every command
packet received.

The command_bridge can be used with any external interface that
can source packets to the FIFIBus interface and sink packets
from a FIFOBus interface.

	
rhea.cores.memmap.command_bridge()

	Convert a command packet to a memory-mapped bus transaction

This module will decode the incomming packet and start a bus
transaction, the memmap_controller_basic is used to generate
the bus transactions, it convertes the Barebone interface to
the MemoryMapped interface being used.

	The variable length command packet is:

	00: 0xDE
01: command byte (response msb indicates error)
02: address high byte
03: address byte
04: address byte
05: address low byte
06: length of data (max length 256 bytes)
07: 0xCA # sequence number, fixed for now
08: data high byte
09: data byte
10: data byte
11: data low byte
Fixed 12 byte packet currently supported, future
to support block write/reads up to 256-8-4
12 - 253: write / read (big-endian)
@todo: last 2 bytes crc

The total packet length is 16 + data_length

	Ports:

	glbl: global signals and control
fifobus: FIFOBus interface, read and write path
mmbus: memory-mapped bus (interface)

this module is convertible

Note, most of the memory-map peripherals in the rhea package are
not designed to specific memory-space addresses. The cores are
designed with a ControlStatus (control-status-object: cso)
interface that contains attributes
which are the control and status signals to the module. These
signals are automatically assigned a location in the memory-space.
When working in Python the
addresses are completely abstracted away when not using the
cso the addresses need to be exported from the system and
used explicitly.

Example

The following is an example that connects a command_bridge to a
UART.

Cores

The following is a list of currently implemented cores.

FIFO

Various synchronous and asynchronous FIFO implementations.

fpgalink

This is a MyHDL implementation of the HDL for the fpgalink
project. The fpgalink HDL core can be instantiated into
a design:

from rhea.cores.usbext import m_fpgalink_fx2

...
fpgalink interface
g_fli = m_fpgalink_fx2(clock,reset,fx2bus,flbus)

...

For simulation and verification the fpgalink interface can be
stimulated using the FX2 model and high-level access functions:

from rhea.models.usbext import fpgalink_host
from rhea.cores.usbext import fpgalink
from rhea.cores.usbext import m_fpgalink_fx2

instantiate the components, etc (see examples in example dir)
...
use high-level accessors to
fh.WriteAddress(1, [0xC3]) # write 0xCE to address 1
fh.WriteAddress(0, [1,2,3,4]) # write 1,2,3,4 to address 0
rb = fh.ReadAddress(1) # read address 1

The following is a pictorial of the verification environment .

For more information on the [fpgalink]() software, firmware, and
general design information see [makestuff]().

uart

The myHDL implementation of the Universal Asynchronous
Receiver/ Transmitter module
, which is a standard serial communication module between
devices. It uses a FIFOBus interface to communicate with other modules
externally and also to communicate with other devices. The baudwith
of the module can be set by setting the baudwidth parameter. UART
reads bit-wise starting on a low signal after which a fixed length
(baudwidth) no of bits can be read, after which the stop high
signal is received(transmitted).

usbp

USB Peripheral, this is another Cypress FX2 controller interface,
this has two interfaces a “control” interface and a “streaming”
interface. This FX2 interface is intended to work with the
[fx2 firmware]() that configures the controller as a USB CDC/ACM
device (virtual serial port). The [fx2 firmware]() also has a
couple vendor unique commands that can be sent using the pyusb
(or other low-level USB interfaces like libusb). The Python
version of the host software (including firmware) can be retrieved
via pip

>> pip install usbp
>>> import usbp
>>> import serial

One of the tricky items with USB devices is setting the permissions
correctly. On a linux system to set the …

spi

This is a generic SPI controller.

vga

VGA controller.

uart

The myHDL implementation of the Universal Asynchronous
Receiver/ Transmitter module
, which is a standard serial communication module between
devices. Uses a FIFOBus interface to communicate with other modules
externally and also to communicate with other devices. The baudwith
of the module can be set by setting the baudwidth parameter. UART
reads bit-wise starting on a low signal after which a fixed length
(baudwidth) no of bits can be read, after which the stop high
signal is received(transmitted).

from rhea.cores.uart import uartlite
from rhea.system import FIFOBus

...
fpgalink interface
si - serial in, so - serial out line
fifobu = FIFOBus()
uart_inst = uartlite(glbl, fifobus, si, so)

#comp is another core component or module
comp = comp_inst(...)
@always_comb
def sync_read()
 comp.read_line.next = fifobus.read_data
 comp.read_strobe.next = not fifobus_empty
 comp.validity_check = fifobus.read_valid

@always_comb
def sync_write()
 fifobus.write_data.next = comp.write_line
 fifobus.write.next = comp.write_strobe

...

and so on(look into the examples for more). Note
that the serial in/out lines are those from the UART’s
perspective.

Internally, the UART uses two FIFOBus interfaces for communication
between the the UART and the actual RX/TX fifos from which the data
is read.The UART has a uartlite module which instantiates the respective
FIFOs and synchronises between the external FIFOBus interface and
the interface to the two fifos.

Video interfaces

	
class rhea.cores.video.VideoMemory(resolution=(640, 480), color_depth=(8, 8, 8))

	

	
class rhea.cores.video.VGA(color_depth=(10, 10, 10))

	

LT24 LCD display driver

	
rhea.cores.video.lt24lcd()

	A video display driver for the terasic LT24 LCD display.

This driver reads pixels from the VideoMemory interface and transfers
them to the LT24 display. This hardware module (component) will also
perform the initial display configuration.

(arguments == ports)
:param glbl: global signals, clock, reset, enable, etc.
:type glbl: Global
:param vmem: video memory interface, the driver will read

pixels from this interface.

	Parameters

	
	lcd (LT24Interface) – The external LT24 interface.

	None –

RGB 5-6-5 (8080-system 16bit parallel bus)

VGA driver

In rhea.cores.video is a basic VGA driver vga_sync. This
driver will read from an VideoMemory interface and generate
the VGA signals to the VGA. The VGA controller is a simple
circuit that generates the required VGA signals from a small number of
parameters. These parameters in turn generate the video region map
that defines the monitor.

The VGA driver generates a bunch of timing parameters based on the
monitor attributes previously defined. The following is an example
of the timing parameters generated given the parameters:

resolution: 800 x 600
refresh_rate: 60 Hz
line_rate: 31250

	Video parameters in ticks

	period …………………… 125000000.000, 8e-09
hticks …………………… 4000.000000
vticks …………………… 2083333.333333
A: full line: …………….. 3999, (31250.00 Hz)
B: horizontal pulse width: …. 500
C: horizontal back porch:…… 250
D: horizontal active: ……… 3124
E: horizontal front porch: …. 125
F: full screen ……………. 2083333, (60.00 Hz)
P: vertical pulse width ……. 8000
Q: vertical back porch …….. 112833
R: all lines ……………… 1919999
S: vertical front porch ……. 42500
X: pixel clock count ………. 5.000
Z: pixel count: …………… 307200

The timing parameters are defined in clock ticks unless otherwise
specified. The above has a system clock of 125MHz, the full screen
(including porches) is 2083333 clock ticks @ 60 Hz. From these
timing parameters the vertical sync and horizontal sync signals
are generated.

	
rhea.cores.video.vga_sync()

	The following is the generation of the signals required
to drive a VGA display. This implementation is derived
from the pseudo code provide here:
http://hamsterworks.co.nz/mediawiki/index.php/Module_11

Well isn’t that nice - the Python/MyHDL implementation is
very close to the “pseudo code”!

Also, this module is intended to be parameterizable and
modular based on the desired video settings

	clock.frequency - the clock used to generate the pixel

	clock

video_resolution - in pixels, tVGA resolution
refresh_rate - in Hz, default 60
line_rate - in Hz, default is 31,250

These parameters are attributes of the VGA monitor being
driven. These can be extracted from the monitor. This
driver is intended to drive a single monitor setting, i.e.
it cannot be dynamically changed. The driver can be setup
to drive various monitor settings during elaboration/creation.

(arguments == ports)
:param glbl.clock: system synchronous clock
:param glbl.reset: system reset
:param vga.hsync: horizontal sync
:param vga.vsync: vertical sync
:param vga.red:
:param vga.green:
:param vga.blue:
:param vmem.hpxl: horizontal pixel address
:param vmem.vpxl: vertical pixel address
:param vmem.red: red pixel value
:param vmem.green: green pixel value
:param vmem.blue: blue pixel value

	Parameters

	
	resolution – video resolution

	refresh_rate – vertical rate in Hz

	line_rate – horizontal rate in Hz

@todo: compute the line rate based on 5% overhead and the refresh rate
@todo: add optional argument where the minimum subset of the timing

parameters can be provided (in a dictionary).

VGA Timing

Examples

@todo: add examples

 Contents:

	Examples
	Xess Corp. Boards

	Digilent Boards

	Terasic Boards

	Lattice Boards

	Misc. Boards

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 rhea common components

 		
 Examples

 		
 System

 		
 System overview

 		
 Control and status

 		
 Register files

 		
 Memory map interfaces

 		
 From attributes to bus cycles

 		
 Memory mapped interfaces

 		
 Base classes

 		
 Memory mapped buses

 		
 register_file

 		
 reference

 		
 Cores

 		
 First In, First Out (FIFO) cores

 		
 fifo_sync

 		
 fifo_async

 		
 fifo_fast

 		
 fifo_ramp

 		
 fifo_tester

 		
 Examples

 		
 Serial Peripheral Interface (SPI)

 		
 SPI controller

 		
 SPI slave FIFO

 		
 fpgalink

 		
 usbp

 		
 Build

 		
 Board definitions

 		
 Example: XESS CAT board

 		
 Extending definitions

 		
 Mapping port names

 		
 Creating a custom board definition

 		
 Examples

 		
 Xess Corp. Boards

 		
 Digilent Boards

 		
 Terasic Boards

 		
 Lattice Boards

 		
 Misc. Boards

