

Response Builder

[image: Build Status] [https://travis-ci.org/wotek/response-builder] [image: Coverage Status] [https://coveralls.io/r/wotek/response-builder?branch=master]

Let’s say, you’re building an API for you application. You need to: *
Return responses in few formats * Want to have ability to version
reponse body schema * have ability to version reponse headers schema *
have simple Response Factory API and use predefined responses

Installation

Installation is fairly simple. We recommend using composer.

Use composer

If you don’t have Composer yet, download it following the instructions
on http://getcomposer.org/ or just run the following command:

curl -s http://getcomposer.org/installer | php

After composer is installed add package running following in root dir of
your project:

Composer will automaticaly download & install & modify your composer.json
composer require wotek/response-builder:dev-master

Clone repository

If you’re not fan of composer. You can just clone repository.

Clones repository to settings folder
git clone git@github.com:wotek/response-builder.git .

Documentation

	Installation

	Usage

	Creating Factories

	Response Prototypes

	Response Serialiers

	Complete Example

	Howto’s

License

The MIT License (MIT)

Copyright (c) 2014 Wojciech Zalewski

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the
“Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Index

Usage

Create factory and response step by step

Create an abstract factory:

/**
 * @var Wtk\Response\FactoryInterface
 */
$factory = new Factory();

Next step is to register JsonFactory within abstract factory.
Concrete Factories have to implement
Wtk\Response\Factory\FactoryInterface. See creating response
factory for more on thatn topic.

JsonFactory is an SerializerAwareFactory which has serializer
instance attached to it. This serializer is used to serialize response
content in this case return an json string.

/**
 * @var Wtk\Response\Factory\FactoryInterface
 */
$json_factory = new JsonFactory();

Next step is to set serializer for this factory.

You can create your own - it just have to implement
\Wtk\Response\Serializer\SerializerInterface or make for example
JMS/Serializer [link me] work with it or any other out there for
that matter.

For more information about creating your own serializers go to response
serializers.

/**
 * @var Wtk\Response\Serializer\SerializerInterface
 */
$serializer = new JsonSerializer();

$json_factory->setSerializer($serializer);

And finally register it:

$factory->register('json', $json_factory);

Most of the code above usally is done by Dependency Injection container.
For integration examples with few Dependency Injection containers out
there look in /example folder.

Lets create response object:

/**
 * @var ResponseInterface
 */
$response = $factory->create('json');

// Set status code, by default it is 200
$response->setStatus(200);

// Set status text
$response->setStatusText('Lets say, we found entity you have asked for');

// Set content
$response->setContent(array(
 'id' => 1,
 'title' => 'My awesome blog post',
 'timestamp' => time(),
));

// ... and finally send response back to browser
$response->send();

// or if you want to see how it would look just print it
echo $response

You should get something like:

Response headers:

HTTP/1.0 200 Lets say, we found entity you have asked for

Response body:

{"id":1,"title":"My awesome blog post","timestamp":1390935625}

This is really basic API, next step is using prototypes to save us some
time when creating responses. Go to Response
Prototypes to learn more.

Documentation

	Installation

	Usage

	Creating Factories

	Response Prototypes

	Response Serialiers

	Complete Example

	Howto’s

Response prototypes

Response prototypes are simple value objects with predefined response
values. They serve too as an proxy to body and headers fields
containers.

By default there is simple DefaultPrototype provided, it looks like:

class DefaultPrototype implements PrototypeInterface
{
 protected $headers;
 protected $body;

 public function __construct()
 {
 $this->headers = new HeaderFields();
 $this->body = new BodyFields();
 }

 public function getHeaders()
 {
 return $this->headers;
 }

 function getBody()
 {
 return $this->body;
 }
}

Default prototype is actually scaffolding, it does not define any
fields. How you can extend it? Here comes Headers and Body Fields.

Fields are predefined values. For example lets look at header’s date
field:

class Date extends Simple
{
 public function __construct()
 {
 $this->name = 'Date';
 $this->value = (new \DateTime(null, new \DateTimeZone('UTC')))
 ->format('D, d M Y H:i:s').' GMT';
 }
}

date set. Lets build response with that field included, step by step:

// Steps from usage documentation

// Setup factory:
$factory = new Factory();
$json_factory = new JsonFactory();
$normalizer = new FieldsNormalizer();
$encoder = new JsonEncoder();
$serializer = new Serializer($normalizer, $encoder);
$json_factory->setSerializer($serializer);
$factory->register('json', $json_factory);

// Create response from json factory with default prototype
$response = $factory->create('json', new DefaultPrototype());
// Get headers container
$headers = $response->getPrototype()->getHeaders();
// Add Date field
$headers->add(new Date());
// Set example content
$response->setContent(array(
 'id' => 1,
 'title' => 'My awesome blog post',
 'timestamp' => time(),
));

// Send response
$response->send();
// or print it:
echo $response;

You shoulde get, headers like:

HTTP/1.0 200
Date : Tue, 28 Jan 2014 21:59:25 GMT

and response body:

{"id":1,"title":"My awesome blog post","timestamp":1390946365}

Lets create APIResponsePrototype which contains pre-defined headers
values for our API responses.

class APIResponsePrototype
 extends \Wtk\Response\Prototype\DefaultPrototype
 implements \Wtk\Response\Prototype\PrototypeInterface
{
 public function __construct()
 {
 parent::__construct();
 $this->getHeaders()->add(
 new \Wtk\Response\Header\Field\Date()
);
 $this->getHeaders()->add(
 new \Wtk\Response\Header\Field\Simple('API-Version', '1.0')
);
 $this->getHeaders()->add(
 new \Wtk\Response\Header\Field\Simple('Custom-Header', 'Value')
);

 }
}

Build response using above prototype:

// Assuming you've created factory like in example above
$response = $factory->create('json', new APIResponsePrototype());
$response->setContent(array(
 'id' => 1,
 'title' => 'My awesome blog post',
 'timestamp' => time(),
));

When you’ll print out created response, you shoulde get headers like:

HTTP/1.0 200
Date: Tue, 28 Jan 2014 22:27:30 GMT
API-Version: 1.0
Custom-Header: Value

and response body:

{"id":1,"title":"My awesome blog post","timestamp":1390946365}

Prototype can define up front body format. We are going to return API
responses in JSON format and we would like to define in already. Lets
skip headers definition and get to body - again lets create a prototype.
(remember - all of this can be done step by step)

class APIResponsePrototype
 extends \Wtk\Response\Prototype\DefaultPrototype
 implements \Wtk\Response\Prototype\PrototypeInterface
{
 public function __construct()
 {
 parent::__construct();

 /* we've skipped headers part */

 $this->getBody()->add(
 new \Wtk\Response\Body\Field\Code(200)
);

 $this->getBody()->add(
 new \Wtk\Response\Body\Field\Errors(array())
);

 $this->getBody()->add(
 new \Wtk\Response\Body\Field\Message(
 'Your request has completed succesfully'
)
);

 $this->getBody()->add(
 // Empty for now, will be filled in later
 new \Wtk\Response\Body\Field\Response()
);
 }

 /**
 * Proxy method to concrete field object.
 * Feel free to add more.
 *
 * @param mixed $content
 */
 public function setContent($content)
 {
 $field = $this->getBody()->get('response');
 $field->setValue($content);
 }
}

Create response using this prototype:

$response = $factory->create('json', new APIResponsePrototype());
// Set response content using proxy method from prototype
$response->getPrototype()->setContent(array(
 'id' => 1,
 'title' => 'My awesome blog post',
 'timestamp' => time(),
));

When you’ll print out created response body should contain:

{
 "code":200,
 "errors":[],
 "message":"Your request has completed succesfully",
 "response":{
 "id":1,
 "title":"My awesome blog post",
 "timestamp":1391011738
 }
}

Documentation

	Installation

	Usage

	Creating Factories

	Response Prototypes

	Response Serialiers

	Complete Example

	Howto’s

@todo: Write up base HTTPResponsePrototype -> defaults used everywhere
@todo: Show example RestAPIResponsePrototype -> the one we are going to
use

Installation

Installation is fairly simple. We recommend using composer.

Use composer

If you don’t have Composer yet, download it following the instructions
on http://getcomposer.org/ or just run the following command:

curl -s http://getcomposer.org/installer | php

After composer is installed add package running following in root dir of
your project:

Composer will automaticaly download & install & modify your composer.json
composer require wotek/response-builder:dev-master

Clone repository

If you’re not fan of composer. You can just clone repository.

Clones repository to settings folder
git clone git@github.com:wotek/response-builder.git .

Documentation

	Installation

	Usage

	Creating Factories

	Response Prototypes

	Response Serialiers

	Complete Example

	Howto’s

 nav.xhtml

 Table of Contents

 		Response Builder

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/comment-close.png

