

Repocket - A Redis Active-Record that fits in your pocket

Repocket is an active-record for python that is completely inspired in
the API of CQLEngine, which is seemingly inspired in the Django ORM
API.

Repocket is also a very small library and you will master it in a
second.

	Introduction

	Tutorial
	Installing

	Configuring the connection

	Declaring Models

	Persisting Data

	Retrieving an item by its id

	Manipulating in-memory data

	Deleting a record from redis

	Retrive multiple items with filter

	Serialization Rules
	How it gets stored in redis

	The guts of the data

	API Reference
	Attributes

	Redis connections

	Models

	Exceptions

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Repocket is an active record that let’s you use redis as main data
store.

Redis is commonly seen as a ephemeral, cache-purposed in-memory database.

But the reality is that redis is a data structure server.

In the same way that python has the int, float, unicode,
list, set and dict builtin types, redis has equivalent
datastructures, and some really cool functions to manipulate them in
an optimized way.

Repocket lets you declare your models in a Django-fashioned way,
automatically validate your fields, store in redis and retrieve them
in a very elegant way.

Also Repocket is ready for application needs like “foreign key”.

Nobody likes foreign keys, relational databases get slow and complex
because of relationships and constraints. In fact, the reason that all
the logic of validation, contraints and consistency checks was built
in SQL databases is that back in the day we didn’t have great
application frameworks and thousands of open source tools to help us
write great, reliable software.

But that changed, now you can use database servers just to store your
data, and all the consistency checks and validations can live in your
application code.

Repocket supports “pointers” which are references from one active
record to another, also it will automatically retrieve the
directly-related objects for you when you retrieve data from redis.

Here is a full example with all the supported field types of repocket:

from repocket import attributes
from repocket import ActiveRecord

 class Project(ActiveRecord):
 name = attributes.Unicode()
 git_uri = attributes.Bytes()
 metadata = attributes.JSON()

 class Build(ActiveRecord):
 id = attributes.AutoUUID()
 project = attributes.Pointer(Project)
 started_at = attributes.DateTime()
 ended_at = attributes.DateTime()
 stdout = attributes.ByteStream()
 stderr = attributes.ByteStream()

Tutorial

Here you will learn how to become fluent inrepocket in just a couple
of minutes.

Installing

pip install repocket

Configuring the connection

Repocket uses a global connection pool where all the connections will
be shared when possible.

In your application code you will have to configure how repocket
connects, but you will do it only once, to show you how, imagine that
this is your own application code:

>>> from repocket.connections import configure
>>> configure.connection_pool(hostname='myredis.cooldomain.com', port=6379, db=0)

at this point you're ready to use your declared models

Declaring Models

Repocket provides a model interface that looks just like Django, but
the field types are super simplified.

Here is how you declare a model:

>>> from repocket import attributes
>>> from repocket import ActiveRecord
>>>
>>>
>>> class User(ActiveRecord):
... name = attributes.Unicode()
... house_name = attributes.Unicode()
... email = attributes.Bytes()
... password = attributes.Bytes()
... metadata = attributes.JSON()

If you were in Django you would then need to run syncdb to have a
SQL table called User with the declared fields. But this ain’t
Django, ight?

At this point you are ready to start saving user data in redis.

By default the attributes of the your model are actively saved in a
hash redis datastructure.

Repocket currenty also supports another attribute called
ByteStream that will seamlessly store the value in a string, so
that you can APPEND more bytes to it with a single call.

But we will get there soon enough, for now let’s understand how to
save a new user and how it will be saved inside of redis.

Persisting Data

Let’s save a User instance in redis:

>>> import bcrypt

>>> harry = User.create(
... id='970773fa-4de1-11e5-86f4-6c4008a70392',
... name='Harry Potter',
... email='harry@hogwards.uk',
... house_name='Gryffindor',
... password=bcrypt.hashpw(b'hermione42', bcrypt.gensalt(10)),
... metadata={
... 'known_tricks': [
... "Protego",
... "Expelliarmus",
... "Wingardium Leviosa",
... "Expecto Patronum"
...]
... }
...)
>>> ron = User.create(
... id='40997aa4-71fc-4ad3-b0d7-04c0fac6d6d8',
... name='Ron Weasley',
... house_name='Gryffindor',
... email='ron@hogwards.uk',
... password=bcrypt.hashpw(b'hermione42', bcrypt.gensalt(10)),
... metadata={
... 'known_tricks': [
... "Protego",
... "Expelliarmus",
...]
... }
...)

Retrieving an item by its id

>>> harry = User.objects.get(id='970773fa-4de1-11e5-86f4-6c4008a70392')
>>> harry.metadata
{
 'known_tricks': [
 "Protego",
 "Expelliarmus",
 "Wingardium Leviosa",
 "Expecto Patronum"
]
}

Manipulating in-memory data

You can get the valus of an instance with either .attribute` notation or ["attribute"].

>>> harry = User.objects.get(id='970773fa-4de1-11e5-86f4-6c4008a70392')
>>> harry.id
UUID('970773fa-4de1-11e5-86f4-6c4008a70392')

>>> harry['id']
UUID('970773fa-4de1-11e5-86f4-6c4008a70392')

Deleting a record from redis

The delete() method returns an integer corresponding to the number
of redis keys that were deleted as result.

>>> harry = User.objects.get(id='970773fa-4de1-11e5-86f4-6c4008a70392')
>>> harry.delete()
1

Retrive multiple items with filter

>>> results = User.objects.filter(house_name='Griffindor')
>>> len(results)
2
>>> results[0].name
'Harry Potter'
>>> results[1].name
'Ron Weasley'

Note

The order in which the elements are returned by filter()
cannot be guaranteed because the id is a uuid.
Use the .order_by() method

The filter() method returns a ResultSet object, which is a
list with superpowers. The main superpower is the ability to order the
results.

>>> results = User.objects.filter(house_name='Griffindor').order_by('-name')
>>> len(results)
2
>>> results[0].name
'Ron Weasley'
>>> results[1].name
'Harry Potter'

Serialization Rules

Repocket stores your data consistently with its original field
type. Under the hood repocket stores everything as json, in a way or
another.

Here you will the rules followed by repocket so that your data content
is pristine.

How it gets stored in redis

Later in this documentation you will learn the rules that repocket
follows to generate redis keys, for now know that the .save()
method returns a dictionary containing all the redis keys used to
store that one model instance’s data.

Because we don’t have any ByteStream fields in the User model
definition, all the data will be declared in a single hash in redis.
So lets check what its redis key looks like:

>>> harrys_keys
{
 "hash": "repocket:tests.functional.test_active_record:User:970773fa-4de1-11e5-86f4-6c4008a70392",
 "strings": {}
}

The guts of the data

Now you know that the redis key for the hash is
repocket:tests.functional.test_active_record:User:970773fa-4de1-11e5-86f4-6c4008a70392,
so now you can check what is in redis:

$ redis-cli --raw HGETALL repocket:tests.functional.test_active_record:User:970773fa-4de1-11e5-86f4-6c4008a70392
 email
 {"type": "Bytes", "value": "harry@hogwards.uk", "module": "repocket.attributes"}
 name
 {"type": "Unicode", "value": "Harry Potter", "module": "repocket.attributes"}
 password
 {"type": "Bytes", "value": "somethingsecret", "module": "repocket.attributes"}
 id
 {"type": "AutoUUID", "value": "970773fa-4de1-11e5-86f4-6c4008a70392", "module": "repocket.attributes"}
 metadata
 {"type": "JSON", "value": "{'known_tricks': ['Protego', 'Expelliarmus', 'Wingardium Leviosa', 'Expecto Patronum']}", "module": "repocket.attributes"}

Awesome! You can see your data in redis, you can notice how repocket
stores the data in a json object with metadata that describes the
stored type. You can learn more in the Serialization Rules chapter

Note

the metadata field is an attributes.JSON() field, so it
can store any builtin python type, and automatically
serializes it. It’s a great example of how flexible you can
be with repocket.

API Reference

Attributes

	
class repocket.attributes.Attribute(null=False, default=None, encoding=u'utf-8')

	Repocket treats its models and attributes as fully serializable.
Every attribute contains a to_python method that knows how to
serialize the type safely.

	
classmethod cast(value)

	Casts the attribute value as the defined __base_type__.

	
classmethod get_base_type()

	Returns the __base_type__

	
to_python(value, simple=False)

	Returns a json-safe, serialiazed version of the attribute

	
to_string(value)

	Utility method that knows how to safely convert the value into a string

	
class repocket.attributes.AutoUUID(null=False, default=None, encoding=u'utf-8')

	Automatically assigns a uuid1 as the value.
__base_type__ = uuid.UUID

	
class repocket.attributes.ByteStream(null=False, default=None, encoding=u'utf-8')

	Handles bytes that will be stored as a string in redis
__base_type__ = bytes

	
class repocket.attributes.Bytes(null=False, default=None, encoding=u'utf-8')

	Handles raw byte strings
__base_type__ = bytes

	
class repocket.attributes.DateTime(auto_now=False, null=False)

	Repocket treats its models and attributes as fully serializable.
Every attribute contains a to_python method that knows how to
serialize the type safely.

	
class repocket.attributes.Decimal(null=False, default=None, encoding=u'utf-8')

	Handles Decimal
__base_type__ = Decimal

	
class repocket.attributes.Float(null=False, default=None, encoding=u'utf-8')

	Handles float
__base_type__ = float

	
class repocket.attributes.Integer(null=False, default=None, encoding=u'utf-8')

	Handles int
__base_type__ = int

	
class repocket.attributes.JSON(null=False, default=None, encoding=u'utf-8')

	This special attribute automatically stores python data as JSON
string inside of redis. ANd automatically deserializes it when
retrieving.
__base_type__ = unicode

	
class repocket.attributes.Pointer(to_model, null=False)

	Think of it as a soft foreign key.

This will automatically store the unique id of the target model
and automatically retrieves it for you.

	
classmethod cast(value)

	this method uses a redis connection to retrieve the referenced item

	
class repocket.attributes.UUID(null=False, default=None, encoding=u'utf-8')

	Automatically assigns a uuid1 as the value.
__base_type__ = uuid.UUID

	
class repocket.attributes.Unicode(null=False, default=None, encoding=u'utf-8')

	Handles unicode-safe values
__base_type__ = unicode

Redis connections

	
class repocket.connections.configure

	global redis connection manager.
this class is intended to be used as a singleton:

	the connection_pool method will set a global connection pool with the given hostname, port and db

	the get_connection can be used safely at any time after connection_pool was already set.

	
classmethod connection_pool(hostname='localhost', port=6379, db=0)

	sets the global redis connection pool.

arguments

	hostname - a string pointing to a valid hostname, defaults to localhost

	port - an integer with the port to connect to, defaults to 6379

	db - a positive integer with the redis db to connect to, defaults to 0

	
classmethod get_connection()

	returns a connection from the pool.
this method should only be called after you already called connection_pool

Models

	
class repocket.model.ActiveRecord(*args, **kw)

	base model class, this is how you declare your active record.

class User(ActiveRecord):
 id = attributes.AutoUUID()
 github_access_token = attributes.Bytes()
 name = attributes.Unicode()
 email = attributes.Unicode()
 carpentry_token = attributes.Bytes()
 github_metadata = attributes.JSON()

obj1 = User(
 github_access_token=b'sometoken',
 email='foo@bar.com',
 carpentry_token=b'1234',
 github_metadata={
 'yay': 'this is json baby!'
 }
)

key = obj1.save()
connection = configure.get_connection()
raw_results = connection.hgetall(key)

	
classmethod create(**kwargs)

	Takes all the valid attributes of an active record, saves it
immediately and returns the instance, ready for further manipulation.

	
delete()

	Deletes all the redis keys used by this model

	
matches(kw)

	Takes a dictionary with keyword args and returns true if all the
args match the model field values

	
save()

	Persists the model in redis.
Automatically generates a primary key value if one was not provided

Exceptions

	
exception repocket.errors.RepocketActiveRecordDefinitionError

	Exception raised when a model has more than one AutoUUID or any
other kind of inconsistency in the model declaration.

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 repocket	

 	
 	
 repocket._cache	

 	
 	
 repocket.attributes	

 	
 	
 repocket.connections	

 	
 	
 repocket.errors	

 	
 	
 repocket.manager	

 	
 	
 repocket.model	

 	
 	
 repocket.registry	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | I
 | J
 | M
 | P
 | R
 | S
 | T
 | U

A

 	
 	ActiveRecord (class in repocket.model)

 	
 	Attribute (class in repocket.attributes)

 	AutoUUID (class in repocket.attributes)

B

 	
 	Bytes (class in repocket.attributes)

 	
 	ByteStream (class in repocket.attributes)

C

 	
 	cast() (repocket.attributes.Attribute class method)

 	(repocket.attributes.Pointer class method)

 	
 	configure (class in repocket.connections)

 	connection_pool() (repocket.connections.configure class method)

 	create() (repocket.model.ActiveRecord class method)

D

 	
 	DateTime (class in repocket.attributes)

 	
 	Decimal (class in repocket.attributes)

 	delete() (repocket.model.ActiveRecord method)

F

 	
 	Float (class in repocket.attributes)

G

 	
 	get_base_type() (repocket.attributes.Attribute class method)

 	
 	get_connection() (repocket.connections.configure class method)

I

 	
 	Integer (class in repocket.attributes)

J

 	
 	JSON (class in repocket.attributes)

M

 	
 	matches() (repocket.model.ActiveRecord method)

P

 	
 	Pointer (class in repocket.attributes)

R

 	
 	repocket._cache (module)

 	repocket.attributes (module)

 	repocket.connections (module)

 	repocket.errors (module)

 	
 	repocket.manager (module)

 	repocket.model (module)

 	repocket.registry (module)

 	RepocketActiveRecordDefinitionError

S

 	
 	save() (repocket.model.ActiveRecord method)

T

 	
 	to_python() (repocket.attributes.Attribute method)

 	
 	to_string() (repocket.attributes.Attribute method)

U

 	
 	Unicode (class in repocket.attributes)

 	
 	UUID (class in repocket.attributes)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Repocket - A Redis Active-Record that fits in your pocket

 		
 Introduction

 		
 Tutorial

 		
 Installing

 		
 Configuring the connection

 		
 Declaring Models

 		
 Persisting Data

 		
 Retrieving an item by its id

 		
 Manipulating in-memory data

 		
 Deleting a record from redis

 		
 Retrive multiple items with filter

 		
 Serialization Rules

 		
 How it gets stored in redis

 		
 The guts of the data

 		
 API Reference

 		
 Attributes

 		
 Redis connections

 		
 Models

 		
 Exceptions

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

