

RiotKit’s Repairman

Keeps an eye on unhealthy and exited containers. Provides Kubernetes-like functionality to non-Kubernetes environments.

Works with docker, docker-compose, in future can possibly work without an issue with any clusters or even on RKT, LXC and others.

Features:

	Automatic restart of unhealthy containers

	Configurable wait time between container restarts

	Maximum restarts in configured time, after that configured longer wait time

	Removing of duplicated services created with hash-prefixes by docker-compose (ex. after watchtower update)

	Notifications to Slack/Mattermost (with configurable levels: DEBUG, INFO, WARNING)

	Configured default settings via environment variables or console switches

	Each service can override default configuration using Docker Labels

	Lightweight and independent! Provides Kubernetes-like functionality to non-Kubernetes environments

	Can run as a docker container

	Health check endpoint

Contents:

	Quick start
	Using docker container

	Building and installing a Python package

	Building a docker image

	Installing with Python PIP

	Configuration
	Reference

	Concept of frames and timing

	Cleaning up duplicated services

	Changes between restarts

	Notifications

From authors

Project was started as a part of RiotKit initiative, for the needs of grassroot organizations such as:

	Fighting for better working conditions syndicalist (International Workers Association for example)

	Tenants rights organizations

	Various grassroot organizations that are helping people to organize themselves without authority

RiotKit Collective

Quick start

Using docker container

Official docker container is: quay.io/riotkit/repairman

Using docker-compose we can define a clean, easy to read YAML file:

version: "2"
services:
 autoheal:
 image: quay.io/riotkit/repairman
 environment:
 NAMESPACE: aarchive
 DEFAULT_SECONDS_BETWEEN_RESTARTS: 15
 DEFAULT_FRAME_SIZE: 450
 DEFAULT_MAX_RESTARTS_IN_FRAME: 3
 DEFAULT_SECONDS_BETWEEN_NEXT_FRAME: 1500
 DEFAULT_MAX_CHECKS_TO_GIVE_UP: 50
 DEFAULT_MAX_HISTORIC_ENTRIES: 50
 DEFAULT_ENABLE_DUPLICATED_SERVICES_REMOVING: "true"
 DEFAULT_ENABLE_AUTO_HEAL: "true"
 TZ: Europe/Warsaw
 DEFAULT_NOTIFY_LEVEL: debug
 DEFAULT_NOTIFY_URL: ""
 restart: always
 mem_limit: 80000000 # 80M, 30M is the average
 volumes:
 - /var/run/docker.sock:/var/run/docker.sock
 labels:
 com.centurylinklabs.watchtower.enable: true
 org.riotkit.repairman.enable_autoheal: false

running with all default values
sudo docker run -v /var/run/docker.sock:/var/run/docker.sock wolnosciowiec/repairman:latest

using environment variables to configure
sudo docker run -e DEFAULT_FRAME_SIZE=450 -v /var/run/docker.sock:/var/run/docker.sock wolnosciowiec/repairman:latest

using console switches
sudo docker run -e DEFAULT_FRAME_SIZE=450 -v /var/run/docker.sock:/var/run/docker.sock wolnosciowiec/repairman:latest --debug --enable-autoheal

Building and installing a Python package

git clone https://github.com/riotkit-org/docker-autoheal
cd docker-autoheal
make install

Building a docker image

git clone https://github.com/riotkit-org/docker-autoheal
cd docker-autoheal
make build_image

Installing with Python PIP

sudo pip install repairman
repairman --help

Configuration

Repairman has two scopes of configuration, internally it’s called a policy.
Application policy is a default policy for each container, and a Regular Policy is a per-container policy that mixes Application policy + container specific modifications.

Example:

	Application global policy has time between restarts equal to 180 and 3 maximum restarts

	The container can modify some values, ex. will want to have 2 maximum restarts instead of 3 restarts

Reference

	Parameters

	in shell

	as docker env variable

	as a docker label

	description

	–debug

	NONE

	NONE

	Console debugging mode

	–interval

	CHECK_INTERVAL

	NONE

	How often in seconds to check all containers

	–namespace

	NAMESPACE

	NONE

	Containers prefix (ex. compose env name)

	–seconds-between-restarts

	DEFAULT_SECONDS_BETWEEN_RESTARTS

	org.riotkit.repairman.seconds_between_restarts

	Seconds to wait until next try

	–frame-size-in-seconds

	DEFAULT_FRAME_SIZE

	org.riotkit.repairman.frame_size_in_seconds

	Frame size (time frame in which max restarts can occur)

	–max-restarts-in-frame

	DEFAULT_MAX_RESTARTS_IN_FRAME

	org.riotkit.repairman.max_restarts_in_frame

	Maximum restarts in given time (frame)

	–seconds-between-next-frame

	DEFAULT_SECONDS_BETWEEN_NEXT_FRAME

	org.riotkit.repairman.seconds_between_next_frame

	Time between frames (for longer wait)

	–max-checks-to-give-up

	DEFAULT_MAX_CHECKS_TO_GIVE_UP

	org.riotkit.repairman.max_checks_to_give_up

	After this number, the service will not be monitored

	–max-historic-entries

	DEFAULT_MAX_HISTORIC_ENTRIES

	org.riotkit.repairman.max_historic_entries

	Technically, how many events to remember

	–enable-cleaning-duplicated-services

	ENABLE_CLEANING_DUPLICATED_SERVICES

	org.riotkit.repairman.enable_cleaning_duplicated_services

	Remove services with hash prefix created by compose

	–enable-autoheal

	DEFAULT_ENABLE_AUTO_HEAL

	org.riotkit.repairman.enable_autoheal

	Enable healing of unhealthy and exited containers

	–http-address

	HTTP_ADDRESS

	NONE

	Web server address ex. 0.0.0.0 or 127.0.0.1

	–http-port

	HTTP_PORT

	NONE

	Web server port ex. 80 or 8080

	–http-prefix

	HTTP_PREFIX

	NONE

	Web server path prefix ex. /something or /SgbaCaVyewq

	–notify-url

	DEFAULT_NOTIFY_URL

	org.riotkit.repairman.notify_url

	Slack/Mattermost notification url

	–notify-level

	DEFAULT_NOTIFY_LEVEL

	org.riotkit.repairman.notify_level

	Notify level ex. DEBUG, INFO, WARNING

	–db-path

	DB_PATH

	NONE

	Path to sqlite3 database or “:memory:”

	NONE

	TZ

	NONE

	Docker container timezone ex. Europe/Warsaw

	NONE

	DOCKER_HOST

	NONE

	Docker host address or socket

	NONE

	DOCKER_TLS_VERIFY

	NONE

	Verify the host against a CA certificate.

	NONE

	DOCKER_CERT_PATH

	NONE

	Path to directory with certificates

Concept of frames and timing

Frame is a time defined by –frame-size-in-seconds, ex. 5 minutes. In this time given service can be restarted only –max-restarts-in-frame, if it still fails, then it needs to wait –seconds-between-next-frame to next restart try.

Cleaning up duplicated services

When a v2tec/watchtower container is updating a service its starting a container with new image version. After compose up, the container is created twice.
The –enable-cleaning-duplicated-services resolves this problem by stopping and removing a container with hash prefix.

Changes between restarts

Repairman uses SQLite3, by default a in-memory database is used - :memory:, but it is not a problem to use a persistent database by changing the –db-path

Notifications

Notifications can be sent to Slack/Mattermost. There are three levels of verbosity. Do not confuse with –debug

Verbosity levels:

	DEBUG: Each container restart info, maximum restarts limit reached in frame, multiple restart failure info, configuration error

	INFO: Multiple restart failure info, configuration error, maximum restarts limit reached in frame

	WARNING: Configuration error, maximum restarts limit reached in frame

Index

 nav.xhtml

 Table of Contents

 		
 RiotKit’s Repairman

 		
 Quick start

 		
 Using docker container

 		
 Building and installing a Python package

 		
 Building a docker image

 		
 Installing with Python PIP

 		
 Configuration

 		
 Reference

 		
 Concept of frames and timing

 		
 Cleaning up duplicated services

 		
 Changes between restarts

 		
 Notifications

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

