

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

What does reminder-app use?

Reminder app uses couple of thing underneath the hood:

	Express [https://expressjs.com] - Express is used for routing,
and serving all the frontend files.

	HandleBars [https://github.com/ericf/express-handlebars] - We use handlebars
as our templating language of choice. See handlebars documentation here [https:handlebarsjs.com].

	Webpack [https://webpack.js.org] - Webpack is used for serving frontend files that are capable of
auto-reloading the webapp when files are edited during development, in production we used frontend files
built by webpack.

	LevelDB [https://github.com/level/level] - We used leveldb as our choice of db, its fast and
with the small layer code of level-uplevel or uplevel [https://github.com/priyankp10/level-uplevel] we can do
migrations and other cool stuff with it.

The app directory

The app directory holds all the backend files. The backend uses
express.

Information about some top-level files

	env.js - Just a simple module, we use to hold
data that could be accessed from anywhere in the codebase.

	handlebars-helpers.js - Helpers used when rendering templates located at
static/templates, once you add a helper function just export it and it will
be available in the templates.

	settings.js - File that sets all the required setting like view engine,
and using helmet in production.

	argparser.js - Used to parse command line arguments.

routes directory and adding a route.

If you need to add a route to an existing file in routes, there is nothing
more special to do, it should be applied.

If you need to add a new file, you will need to use express.Router to add
the routes, and export the router, then you’ll need to require it in the index.js
and add it to the routes object in the file.

models directory

The models directory holds, all the backend models for db. We use
leveldb which is super fast, no-sql db, we don’t use leveldb directly
since you can just store a key, and a pair, which could work if we set all the
reminders which is json into one key, but that not ideal. We needed something
that can store things in a more organized way, so we use a package called level-uplevel
which allows the data to be store in a more organized way.

By using the level-uplevel package we can also do migrations which are really neat
when a thing changes, the migrations are located at app/models/migrations.

errors directory

We use custom error in the backend, the main constructor is exported
in error/index.js, that class can be used to create a custom error
as shown below, and for more context, you can take a look at errors/argparser-error.js.
We use custom error because it provides more readable error msg and then a clear same trackback
as errors below. The clear error message and seeing SomeErrorType: instead of Error: SomeErrorType
really helps.

const AppErrors = require('./errors');

const InvalidFieldErrorDesc = `
The value passed into the field is invalid.
We recently changed to use a new type of this error
field so you may need to adjust your code accordingly.
`

class InvalidFieldError extends AppError {
 constructor(msg) {
 super(msg, InvalidFieldError);
 }
}

Node Tests

All the node tests are located in test directory.
We don’t use any testing frameworks like mocha, jest or jasmine.
All the tests are run by the test runner located at tools/run-tests.

Structure of tests.

The assert module and fixtures located in test/fixtures
are already available through the test are not required to be require’ed,
because we set it to global in the test runner tools/run-tests.

We use of IIFE’s named with snake case that has long descriptive names such
as for eg.test_the_function_throws_error, inspired by zulip [https://github.com/zulip/zulip]
or we also use js blocks {} to wrap the test code for a simple thing as inspired by
node’s way of testing [https://github.com/nodejs/node].

npm-scripts and dependencies

npm-scripts:

	npm run dev - starts the dev envoirment.

	npm run build - build the frontend files for production

	npm test - runs all the tests, tools/test-all

	npm run prod - runs the app in production mode.

	npm run coverage - gets the coverage report of test, will be

	npm run lint - Runs the tools/lint linter for js and ts files.

	npm run eslint-fix - runs eslint with --fix flag.
at var/nyc/lcov-report/index.html, you can access coverage report in
dev-server at /coverage.

npm dependencies

We prefer to have pinned npm dependencies in package.json, the
devDependencies are not pinned. This just makes sure we have same version
so any accidental breakage is not introduced.

static directory - frontend files

The static directory holds all the frontend files,
some of which are named in a pretty self-explantory way:

	static/js - Holds all the javascript files for the frontend,
we use commonjs syntax, which is compiled by webpack to make it run in
a browser, it is possible to use ES6 export/import syntax, most of the files
currently don’t use, simply because we want to require the code in tests
without any special syntax.

	static/scss - This directory contains all the css files, we use scss for the
css. If you are not familiar with scss take a look at this documentation [https://sass-lang.com/guide].
Couple of interesting files in that directory var.scss holds all the variables like, $font-size, $theme-color
which we can modifiy and it should update the color, of font-size across the app which is awesome.
Another note, since we use webpack any update to scss files in development are hot-reloaded in browsers,
meaning updated without reload in browser, which make development and web designing much more pleasant.

	static/templates - All the frontend html templates lives here, all the main page files should
go on top level here, but there is one more directory called partials which holds, handlebars templates
which we can require anywhere in templates, like {{> partial-name-without-.hbs.extension }}. Its possible
to use handlebars helpers here, all the helpers are currently located at app/handlebars-helpers.js files,
if you want to add one you will need to create the helper there and export it.

	static/webpack-bundles - created when you run npm run build, holds all the created
frontend files by webpack, all the files will have sourcemaps, and hashes in files names. The file name are updated
across templates using the render_bundle handlebars helpers.

Webpack Process

When the dev server runs, using tools/dev-server, we start the webpack-dev-server
alongside with the express/node server. Then we create a proxy, which routes all the request
from /webpack to webpack-dev-server. The whole proxy thing is done using http-proxy-middleware
in the app/index.js file.

The webpack config webpack.config.js unlike most project, is not actually on
the top-level but is located in tools/webpack.config.js to avoid clutter in the root
directory of the project. We organized the webpack entry point in tools/webpack.entry.js
file.

The webpack process handles all the frontend files.

Rendering webpack bundles

To render new webpack bundles, you will need to use a handlebars helper called
render_bundle this accepts two arguments, the first one is webpack bundle name
from tools/webpack.entries.js and the other argument which is optional the html
attributes to add. And the call must be inside handlebars triple braces {{{ since
it addes html, so we will want it to be unescaped.

The render_bundle helpers handles couple of things, it can render js, css webpack bundles
as <script> and <link>. It also supports multiple files in one entry so its possible
to render both css, js mixed bundle. It will adjust the link to have the file hash
for the file name in production.

// to render a webpack bundle called "main"
{{{ render_bundle 'main' 'async' }}}

// would lead to this output
<script src="{{link}}" async></script>

Tools Documentation

If you are on a Unix system, you can run all the tools with
./tools/<tool-name>, but if you are on the window, you will need
to use node to run them, like node tools/<tool-name>.

Most of our tools, that run npm executables such as nodemon or webpack
expects npx to be installed, it comes bundled with npm since v5.2.x+ if
you don’t have npx, install it using npm i -g npx.

	tools/check-migration-version: checks if MIGRATION_VERSION version was bumped
when the migration files were changed.
The tools/version.js file needs to be updated if this tools throws error.

	tools/dev-server: runs the dev-server.

	tools/dev-server.js: the script that actually spawns the dev-server, and webpack-dev-server.

	tools/migration-status.js: exports a Boolean that indicated
weather migrations are needed to be performed or not.

	tools/run-migrations: performs migrations on database for development db.

	tools/run-tests: runs tests

	tools/run.js: provides a function that emulates set -x in bash, and handles cross-platfrom
spawining issues like for windows npx needs to run as npx.cmd.

	tools/sw-loader.js: Its a custom webpack plugin that adds
the version hash if the frontend files are changed so cached files
could be updated. Also emits sw-dev.js file in development.

	tools/test-all: runs all the tests

	tools/test-frontend: runs frontend end to end test using puppetter.

	tools/test-migration-helpers.js: Has helper function needed for migration tests.

	tools/test-migrations: Run tests for migrations.

	tools/test-npm-dependencies: checks weather npm dependencies are pinned to a
specific version.

	tools/tslint-config.json: config rules for typescript linting.

	tools/webpack: Build frontend files using webpack only if needed.

	tools/webpack-entries.js: This files has all the webpack entries.

	tools/version.js: Tracks MIGRATION_VERSION.

	tools/nodemon.json: nodemon related config.

	tools/webpack-info.js: Holds, hash info and provides caching support.

	tools/webpack.config.js and tools/webpack.entries.js: webpack related config.

var directory

This directory is ignored by git. It holds all the development
and app data, such as database and webpack bundle files.

Some of the things stored in var/ directory:

	nyc temp files in nyc and .nyc_output directory.

	reminder-app and/or reminder-app-{development|test} databases

	webpack-bundles.json and/or webpack-dev-bundles.json to track
webpack bundles, used by render_bundle, handlebars helper.

	Lastly, version.js file use to keep track of migration or other versions.

	.eslintcache is also stored in var, which makes linting a lot faster.

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

