
Rell Documentation
Release v0.10.0

ChromaWay AB

Dec 16, 2019

Contents

1 Rell language 3

2 Chromia 5
2.1 Get Started with Web IDE . 5
2.2 Rell Basics . 10
2.3 Example Projects . 19
2.4 Language Features . 30
2.5 Advanced Topics . 65
2.6 Upgrading to Rell 0.10 . 93
2.7 Eclipse IDE . 96
2.8 Run.XML . 129

i

ii

Rell Documentation, Release v0.10.0

This section discuss Rell and its position within the Chromia platform.

If you are eager to get started with Rell, you can safely skip straight to the Quick Start section.

For code references, visit Language Features.

Contents 1

Rell Documentation, Release v0.10.0

2 Contents

CHAPTER 1

Rell language

Most dapp blockchain platforms use virtual machines of various kinds. But a traditional virtual machine architecture
doesn’t work very well with the Chromia relational data model, as we need a way to encode queries as well as
operations. For this reason, we are taking a more language-centric approach: a new language called Rell (Relational
language) will be used for dapp programming. This language allows programmers to describe the data model/schema,
queries, and procedural application code.

Rell code is compiled to an intermediate binary format which can be understood as code for a specialized virtual
machine. Chromia nodes will then translate queries contained in this code into SQL (while making sure this translation
is safe) and execute code as needed using an interpreter or compiler.

Rell has the following features:

• Type safety / static type checks. It’s very important to catch programming errors at the compilation stage to
prevent financial losses. Rell is much more type-safe than SQL, and it makes sure that types returned by queries
match types used in procedural code.

• Safety-optimized. Arithmetic operations are safe right out of the box, programmers do not need to worry about
overflows. Authorization checks are explicitly required.

• Concise, expressive and convenient. Many developers dislike SQL because it is highly verbose. Rell doesn’t
bother developers with details which can be derived automatically. As a data definition language, Rell is up to
7x more compact than SQL.

• Allows meta-programming. We do not want application developers to implement the basics from scratch for
every dapp. Rell will allow functionality to be bundled as templates.

Our research indicated that no existing language or environment has this feature set, and thus development of a new
language was absolutely necessary.

We designed Rell in such a way that it is easy to learn for programmers:

• Programmers can use relational programming idioms they are already familiar with. However, they don’t have
to go out of their way to express everything through relational algebra: Rell can seamlessly merge relational
constructs with procedural programming.

• The language is deliberately similar to modern programming languages like JavaScript and Kotlin. A familiar
language is easier to adapt to, and our internal tests show that programmers can become proficient in Rell in

3

Rell Documentation, Release v0.10.0

matter of days. In contrast, the ALGOL-style syntax of PL/SQL generally feels unintuitive to modern develop-
ers.

4 Chapter 1. Rell language

CHAPTER 2

Chromia

Rell is built for Chromia. Chromia is a new blockchain platform for decentralized applications, conceived in response
to the shortcomings of existing platforms and designed to enable a new generation of dapps to scale beyond what is
currently possible

While platforms such as Ethereum allow any kind of application to be implemented in theory, in practice they have
many limitations: bad user experience, high fees, frustrating developer experience, poor security. This prevents de-
centralized apps (dapps) from going mainstream.

We believe that to address these problems properly we need to seriously rethink the blockchain architecture and
programming model with the needs of decentralized applications in mind. Our priorities are to:

• Allow dapps to scale to millions of users.

• Improve the user experience of dapps to achieve parity with centralized applications.

• Allow developers to build secure applications with using familiar paradigms.

2.1 Get Started with Web IDE

Important: Rell Web IDE is available at https://rellide-staging.chromia.dev/

Upon entering, you will see an interface similar to the image below.

Click Create Module button:

5

https://chromia.com/
https://rellide-staging.chromia.dev/

Rell Documentation, Release v0.10.0

This will open a modal element where you can specify the name of the Module and the Language used (in this example:
Rell).

For convenience you can include template and test code.

Click the blue “Create” button. The screen will now be filled with code.

6 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Browser To the left bar is the Browser. You can use it to work with several examples.

Editor Inside the central element on the right the editor filled with a template of source code.

Buttons On top of the Editor there is a button to “Start Node” (the green “Play” icon), don’t press that one yet. There
is also a button “Run tests” (the gray “bug” icon).

2.1.1 Config Rell version

Warning: At current time, WebIDE use rell version 0.9.1 by default. If you Start the node now, you will see
errors printed in the console because of syntax mismatch.

We will need to config our module to use version 0.10.x.

On the top menu, click the Main Settings button:

A popup will appear to config for current module. Expand the Server -> Run URL dropdown and choose Current
Rell Cloude IDE Url:

2.1. Get Started with Web IDE 7

Rell Documentation, Release v0.10.0

Click the blue “Set” button. Our module will now use latest Rell version.

2.1.2 Hello World!

As a minimal first application, you can make a Hello World example with a focus on Ukraine.

If you checked the use template box and look at editor section on the top, you will see this code as a template:

8 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

entity city { key name; }

operation insert_city (name) {
create city (name);

}

This is a small registry of cities.

Don’t worry about the detail of this code yet, we will come to them in a bit. For now, let’s confirm that our code
template is working properly.

In order to run the code we need a test in javascript. If you switch to the Hello.js test file, you will see it’s filled
with some test written in javascript:

const tx = gtx.newTransaction([user.pubKey]);

tx.addOperation('insert_city', "Kiev");

tx.sign(user.privKey, user.pubKey);

return tx.postAndWaitConfirmation();

Click the ‘Run tests’ button, and a green message will appear.

2.1. Get Started with Web IDE 9

Rell Documentation, Release v0.10.0

Congratulations! After all this work, we suggest that you put “Relational Blockchain” on your CV.

2.1.3 Where to go next?

Next step is to learn about what those Rell code actually mean in the Rell Basics section.

But if you prefer learning by example, you can choose to start with one of our Example Projects instead.

2.2 Rell Basics

In this chapter we discuss fundamental concepts of Rell language.

10 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

• The Main Concepts section guide you through the concepts needed to create node backend with Rell.

• While Client Side discuss how to work with such backend using a Javascript client.

2.2.1 Main Concepts

Language overview

Rell is a language for relational blockchain programming. It combines the following features:

1. Relational data modeling and queries similar to SQL. People familiar with SQL should feel at home once they
learn the new syntax.

2. Normal programming constructs: variables, loops, functions, collections, etc.

3. Constructs which specifically target application backends and, in particular, blockchain-style programming in-
cluding request routing, authorization, etc.

Rell aims to make programming as ergonomic as possible. It minimizes boilerplate and repetition. At the same time,
as a static type system it can detect and prevent many kinds of defects.

Blockchain programming

There are many different styles of blockchain programming. In the context of Rell, we see blockchain as a method for
secure synchronization of databases on nodes of the system. Thus Rell is very database-centric.

Programming in Rell is pretty much identical to programming application backends: you need to handle requests to
modify the data in the database and other requests which retrieve data from a database. Handling these two types of
requests is basically all that a backend does.

But, of course, before you implement request handlers, you need to describe your data model first.

Entity definitions

In SQL, usually you define your data model using CREATE TABLE syntax. In Java, you can define data objects using
class definition.

In Rell, we define them as entity.

Rell uses persistent objects, thus a entity definition automatically creates the storage (e.g. a table) necessary to persist
objects of a entity. As you might expect, Rell’s entity definition includes a list of attributes:

entity user {
pubkey: pubkey;
name: text;
age: integer;

}

It is very common that the name of the attribute is the same as its type. For example, it makes sense to call user’s
pubkey “pubkey.” Rell allows you to shorten pubkey: pubkey; to just pubkey;. Rell also has a number of
convenient semantic types, so there is a type called name as well. Thus you can rewrite the definition above as just:

entity user { pubkey; name; }

Typically a system should not allow different users to have the same name. That is, names should be unique. If name
is unique, it can be used to identify a user. In Rell, this can be done by defining a key, i.e. key name;. Note that it’s

2.2. Rell Basics 11

Rell Documentation, Release v0.10.0

not necessary to define both key and attribute. Rell is smart enough to figure out that if you use an attribute in a key,
that attribute should exist in a entity.

It also might be useful to find a user by his pubkey. Should it also be unique? Not necessarily. A user might have
several different identities. When you want to enable fast retrieval, but do not need uniqueness, you can use index
definition:

entity user {
key name;
index pubkey;

}

However, if you want pubkey to be unique for an user, you can add a second key:

entity user {
key name;
key pubkey;

}

Typically, when you define a class in a programming language, it creates a type which can be used to refer to instances
of that class. This is exactly how it works in Rell. The definition of entity user creates a type user which is a type
of references to objects stored in a database. References can themselves be used as attributes. For example, you might
want to define something owned by a user, say, a channel. You can describe it like this:

entity channel {
index owner: user;
key name;

}

index makes it possible to efficiently find all channels owned by a user. key makes sure that channel names are
unique within the system.

Let’s analyze channel entity definition from a point of view of a traditional relational database terminology. A
single user can be associated with multiple channel objects, but a single channel is always related to a single
user. Thus this represents one-to-many relationship. owner attribute of a channel refers to user object and thus
constitutes a foreign key.

If channel names should be unique only in context of a single user (e.g. alice/news and bob/news are different
channels), then a composite key can be used:

entity channel {
key owner: user, name;

}

This basically means that a pair of (owner, name) should be unique.

Finally, one might ask: what changes if we change index owner: user to key owner: user? This makes
a user reference unique per channel table, thus there can be at most one channel per user in that case. (I.e. if owner
is declared as a key, relationship between users and channels becomes a one-to-one relationship.)

Operations

Now that we defined the data model, we can finally get to handling requests. As previously mentioned, Rell works
with two types of requests:

1. Data-modifying requests. We call them operations which are applied to the database state.

2. Data-retrieving requests. We call them queries.

12 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

But for both types of requests we are going to need to refer to things in the database, so let’s consider relational
operators first.

Relational operator basics

First, let’s look how we create objects:

create user (pubkey=x
→˓"0373599a61cc6b3bc02a78c34313e1737ae9cfd56b9bb24360b437d469efdf3b15",

name="Alice");

This is essentially the same as INSERT operation in SQL, but the syntax is a bit different. Rell is smart enough to
identify the connection between arguments and attributes based on their type. x"..." notation is a hexadecimal
byte_array literal which is compatible with pubkey type. On the other hand, name is provided via text literal.
Thus we can write:

create user("Alice", x
→˓"0373599a61cc6b3bc02a78c34313e1737ae9cfd56b9bb24360b437d469efdf3b15");

The order of arguments does not matter here, they are matched with attributes based on types.

How do we find that object now?

val alice = user @ {.name=="Alice"};

@ operator retrieves a single record (or an object in this case) satisfying the search criteria you provided. If there is
no such record, or more than one exists, it raises an error. It’s recommended to use this construct when an operation
needs a single record to operate on. If this requirement is violated the operation will be aborted and all its effects will
be rolled back. Thus it is a succinct and effective way to deal with requirements.

(val defines a read-only variable which can later be used in an expression. A variable defined using var can be
reassigned later.)

If you want to retrieve a list of users, you can use the @* operator. For example:

val all_users = user @* {};

This returns a list of all users (since no filter expression was provided, all users match it). Value declarations can
include a type, for example, we can specify that all_users is of type list<user> like this:

val all_users: list<user> = user @* {};

Since the Rell compiler knows a type of every expression it does not really need a type declaration, however, if one is
provided, it will check against it. Type declarations are mostly useful as documentation for programmers reading the
code and should be omitted in cases where there is no ambiguity.

Both @ and @* correspond to SELECT in SQL.

Simple operation

Let’s make an operation which allows a user to create a new channel:

operation register_channel (user_pubkey: pubkey, channel_name: name) {
require(is_signer(user_pubkey));
create channel (

(continues on next page)

2.2. Rell Basics 13

Rell Documentation, Release v0.10.0

(continued from previous page)

owner = user@{.pubkey == user_pubkey},
name = channel_name

);
}

Let’s go through this line by line. First we declare the operation name and a list of parameters:

operation register_channel (user_pubkey: pubkey, channel_name: name) {

This is very similar to a function definitions in other languages. In fact, an operation is a function of a special kind:
it can be invoked using a blockchain transaction by its name. When invoking register_channel, the caller must
provide two arguments of specified types, otherwise it will fail.

require(is_signer(user_pubkey));

We don’t want Alice to be able to pull a prank on Bob by registering a channel with a silly name on his behalf. Thus
we need to make sure that the transaction was signed with a key corresponding to the public key specified in the first
parameter. (In other words, if Bob’s public key is passed as user_pubkey, the transaction must also be signed by
Bob, that is, Bob is a signer of this transaction.) This is a common pattern in Rell – typically you specify an actor in a
parameter of an operation and in the body of the operation you verify that the actor was actually the signer. require
fails the operation if the specified condition is not met.

create channel, obviously, creates a persistent object channel. You don’t need to explicitly store it, as all
created objects are persisted if operation succeeds.

user@{.pubkey=user_pubkey} – now we retrieve a user object by its pubkey, which should be unique. If no
such user exists operation will fail. We do not need to test for that explicitly as @ operator will do this job.

Rell can automatically find attribute names corresponding to arguments using types. As user and name are different
types, create channel can be written like this:

create channel (user@{.pubkey=user_pubkey}, channel_name);

Function

Sometimes multiple operations (or queries) need a same piece functionality, e.g. some kind of a validation code, or
code which retrieves objects in a particular way. In order to not repeat yourself you can use function. Functions
work similarly to operations: they get some input and can perform validations and work with data. Additionally, they
also have a return type which can be specified after the list of parameters. For example, if you want to allow the user
of a channel to change the name of the channel itself:

// We added mutable specifier to channel's attribute "name" to make name editable.
// Note that in case both an attribute and a key need to be declared.

entity channel {
mutable name;
key name;
index owner: user;

}

function get_channel_owned_by_user(user_pub: pubkey, channel_name: name): channel {
val user = user@{.pubkey == user_pub};
return channel@{channel_name, .owner == user};

}

(continues on next page)

14 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

(continued from previous page)

operation change_channel_name(signer: pubkey, old_channel_name: name, new_channel_
→˓name: name) {

require(is_signer(signer));
val channel_to_change = get_channel_owned_by_user(signer, old_channel_name);
update channel@{channel == channel_to_change}(.name = new_channel_name);

}

In the function get_channel_owned_by_user the code first retrieves a user with given public key and returns
a channel owned by the the retrieved user with the given channel name. Operator @ expects exactly one object to be
found (see Cardinality for more information.), thus you can be sure that in case there is no user or channel with such
a pubkey or a name the function will fail and so will the operation that is calling it. Finally, the function returns the
channel instance that was validated, saving the developer the hassle to check owner every time a channel is retrieved.

Please note that you must mark the attribute name with the keyword mutable. This is because only the fields which
are declared mutable can be changed using the update statement.

Query

Storing data without the ability to access it again would be useless. Let’s consider a simple example - retrieving
channel names for a user with a certain name:

query get_channel_names (user_name: name) {
return channel @* {

.owner == user@{.name==user_name}
} (.name);

}

Here you see a selection operator you’re already familiar with – @*. We select all the channels with a given owner
(which we first find by name).

Then we extract name attribute from retrieved objects using the (.name) construct.

Note that since we only need name from channel, is also possible to write

query get_channel_names (user_name: name) {
return channel @* {

.owner == user@{.name==user_name}
}.name;

}

Relational expressions

In general, a relational expression consists of five parts, some of which can be omitted:

FROM OPERATOR { WHERE } (WHAT) LIMIT

1. FROM describes where data is taken from. It can be a single entity, such as just user. Or, it can be combination
of multiple entities, e.g. (user, channel). In the later case, conceptually we are dealing with a Cartesian
product, which is a set of all possible combinations. But, in typically WHERE part will then provide a condition
which defines a correspondence between objects of difference entities. E.g. one can select such (user,
channel) combinations where user is an owner of the channel. This works same way as JOIN in SQL,
in fact, the optimizer will typically translate it to JOINs.

2. OPERATOR – there are different operators depending on required cardinality. They are:

2.2. Rell Basics 15

Rell Documentation, Release v0.10.0

• @ – exactly one, returns a value

• @* – any number, returns a list of values

• @+ – at least one, returns a list of values

• @? – one or zero, returns a nullable value

3. WHERE describes how to filter the FROM set. So, you would use your search criteria as well as JOINs.

4. WHAT describes how to process the set, for doing a projection, aggregation or sorting. If it is ommitted then
members of the set are returned as they are.

5. LIMIT for operators which return a list, limits the number of elements returned.

In SQL, the logical processing order does not match the order in which clauses are written, for example, FROM is
logically processed before SELECT even though SELECT comes first. (SQL logical processing order can be found
e.g. in SQL Server documentation).

The order of components of a relational expression in Rell matches the logical processing order. So, first a set is
defined, then it is filtered, and then it is post-processed. Of course, the query planner is allowed to perform operations
in a different order, but that shouldn’t affect the results. Thus a relational expression can be understood as a kind of a
pipeline.

Let’s see some examples of relational expressions. Suppose in addition to user and channel entities we provided
before, we also have:

entity message {
index channel;
index timestamp;
text;

}

We can retrieve all messages of a given user:

(channel, message) @* {
channel.owner == given_user, message.channel == channel

}(message.text);

So, basically, we join channel with message. We can shorten the expression using entity aliases:

(c: channel, m: message) @* { c.owner == given_user, m.channel == c } (m.text, m.
→˓timestamp)

We can easily read this expression left to right:

• consider all pairs (c, m) where c is channel and m is message

• find those where c.owner equals given_user and m.channel equals c

• extract text and timestamp from m

The result of this expression is a list of tuples with text and timestamp attributes.

The above expression can be easily modified to retrieve the latest 25 messages:

(c: channel, m: message) @* {
c.owner == given_user, m.channel == c

} (m.text, -sort m.timestamp) limit 25

Here we sorted results by timestamp in a descending order using -sort (minus prefix means descending) and limited
the number of returned rows.

16 Chapter 2. Chromia

https://stackoverflow.com/questions/4596467/order-of-execution-of-the-sql-query

Rell Documentation, Release v0.10.0

Composite indices

We can also only select recent messages by adding, for example, m.timestamp >= given_timestamp con-
dition to WHERE part. But a database cannot filter messages efficiently (that is, without considering every message)
using two criteria at once unless we create a composite index, changing the message entity definition in the following
way:

entity message {
index channel, timestamp;
text;

}

Instead two separate indexes we got one composite index. The idea here is that we want to retrieve not the latest
messages overall, but the latest messages for a given channel. Thus, we need to order messages by channels first.
Paged retieval can be done using the following query:

query get_next_messages (user_name: name, upto_timestamp: timestamp) {
val given_user = user@{user_name};
return (c: channel, m: message) @* {

c.owner == given_user, m.channel == c, m.timestamp < upto_timestamp
} (m.text, -sort m.timestamp) limit 25;

}

This can be used in an app like Twitter. A visitor might first retrieve the latest 25 messages, then go further – in which
case the client will send a query with a timestamp of the oldest message retrieved.

To understand why this can work efficiently, consider that the index stores an ordered collection of pairs. For example:

1. (channel_1, 1000000) -> m1
2. (channel_1, 1000050) -> m3
3. (channel_1, 1000100) -> m5
4. (channel_2, 1000025) -> m2
5. (channel_2, 1000075) -> m4

A database can efficiently find a place which corresponds to a given timestamp in a given channel and traverse the
index through it.

Note: It’s worth noting that all SQL databases work this way, this feature is not unique to Rell. But in a decentralized
system resources are typically precious, thus it is important for Rell programmers to understand the query behavior
and use indices efficiently.

2.2.2 Client Side

This client tutorial is a continuation on the quickstart “city” example. In this section we illustrate how to send transac-
tions to and retrieve information from a blockchain node running Rell.

Try the example code

First of all, we need to add a query to Rell source file:

query is_city_registered(city_name: text): boolean {
return (city @? { city_name }) != null;

}

2.2. Rell Basics 17

Rell Documentation, Release v0.10.0

Clicking ‘Start node’ will start a Postchain node in a single-node mode which is convenient for testing.

The node builds blocks when there are transactions, or at least once every 30 seconds. It also has REST API we can
interact with to submit transactions and retrieve information.

The client code is written in JavaScript, this example uses the NodeJS environment. postchain-client-example can be
downloaded using git:

git clone https://bitbucket.org/chromawallet/postchain-client-example.git

To run it, execute:

npm install
node index.js

This will create a transaction, sign it, submit to a node. And once transaction is added to a block, client will perform a
query.

Now let’s see how this client code can be implemented:

Install the client

We assume you have nodejs installed. The client library is called postchain-client and can be installed from npm.

Create an new directory for your test. Open a terminal in the new directory, initialize npm and install the client.

npm init -y
npm install postchain-client --save

Connect to the node

To connect to a Postchain node we need to know its REST API URL and blockchain identifier. DevPreview bundle
comes with following defaults:

const pcl = require('postchain-client');

// using default postchain node REST API port
// On rellide-staging.chromia.dev, check node log for api url
const node_api_url = "http://localhost:7740";

// default blockchain identifier used for testing
const blockchainRID =
→˓"78967baa4768cbcef11c508326ffb13a956689fcb6dc3ba17f4b895cbb1577a3";

const rest = pcl.restClient.createRestClient((node_api_url, blockchainRID, 5);

Once we set up the information about the the REST Client connection, we can create the gtxClient connection. This
in particular, needs to receive the previous REST connection, the blockchainRID in Buffer format and an array the
names of the operations that you want call (at the moment this can be left empty):

const gtx = pcl.gtxClient.createClient(
rest,
Buffer.from(blockchainRID, 'hex'),
[]

);

Now that the connection is set, you can start to create transactions and queries.

18 Chapter 2. Chromia

https://bitbucket.org/chromawallet/postchain-client-example/src/master/
https://www.npmjs.com/package/postchain-client

Rell Documentation, Release v0.10.0

Make a transaction (with operations inside)

You need to create the transaction client side, sign it with one or more keypairs, send it to the node and wait for it to
be included into a block.

First, let’s create the transaction and specify the public key of the person(s) that will sign it. To create a random user
keypair on the go you can use makeKeyPair() function.

const user = pcl.util.makeKeyPair();
const tx = gtx.newTransaction([user.pubKey]);

Once it is created is possible call as many operations as you want.

tx.addOperation('insert_city', "Tel Aviv");
tx.addOperation('insert_city', "Stockholm");
/* etc */

Now, all is left is to sign and post the transaction

tx.sign(user.privKey, user.pubKey);
tx.postAndWaitConfirmation();

Note: tx.postAndWaitConfirmation() returns a promise, and thus can be await-ed.

Query

Queries also make use of gtx client.

gtx.query accepts as first parameter the name of the query as specified in the module and then an object with as
parameter name the variable name as specified in the query module.

E.g:

function is_city_registered(city_name) {
return gtx.query("is_city_registered", {city_name: city_name});

}

will work with query specified in the Rell file:

query is_city_registered(city_name: text): boolean {
return (city @? { city_name }) != null;

}

Note: gtx.query(queryName, queryObject) also returns a promise.

Examples and further exercises

For now we have covered the basics of working with Rell. In the next section, we have prepared some examples of
how to implement other functionalities in Rell and Chromia.

2.3 Example Projects

2.3.1 Chroma Chat

In this section we will write the code for a public chat.

2.3. Example Projects 19

Rell Documentation, Release v0.10.0

Requirements

The requirements we set are the following:

• There is one admin with an amount of tokens automatically assigned (say 1000000)

• The admin is the first person that registers themselves on the dapp

• Any registered user can register a new user and transfer some tokens to them, after having paid 100 tokens to
the admin as a fee.

• Users are identified by their public key

• Channels are streams of messages belonging to the same topic (which is specified in the name of the channel,
e.g. “showerthoughts”, where you can send messages with the thoughts you had under the shower).

• Registered users can create channels

• When a new channel is created, only the creator is within the group. She can add any existing users. This
operation costs 1 token.

Entity definition

The structure of it will be:

entity user {
key pubkey;
key username: text;

}

entity channel {
key name;
admin: user;

}

entity channel_member {
key channel, member: user;

}

entity message {
key channel, timestamp;
index posted_by: user;
text;

}

entity balance {
key user;
mutable amount: integer;

}

Let’s analyse it:

User As said, user is solely identified by their public key

Channel Channels are identified by the name (which ideally reflects the topic of the channel itself) and the user who
created it. Note that two channels cannot have the same name (key) and that an user can be admin of multiple
channels.

Message One message has the text and reference of the user who sent it. Additionally, the channel and timestamp
of publication is recorded. Note that key channel, timestamp means that only one message can be sent

20 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

within a channel at given timestamp (but of course several messages on different channels can be recorded at
single timestamp).

Balance This is kind of self explanatory: one user has an amount of tokens. Tokens can be spent (or more in general
transfered), for this reason the field is marked as mutable.

Operations

Init

To initialize the module, we need to have at least one registered user.

We don’t want the user to call this function once the admin is set (i.e. we don’t want users to change the admin).
To prevent such event, we create an operation called init which verified that no users are registered and, in case of
positive response, creates a new ‘admin’ user.

operation init (founder_pubkey: pubkey) {
require((user@*{} limit 1).size() == 0);
val founder = create user (founder_pubkey, "admin");
create balance (founder, 1000000);

}

The operation receives a public key as input (note that it does not verify that signer of the transaction is the same
specified in input field founder_pubkey, meaning you can specify a different public key).

The interesting point is require((user@*{} limit 1).size() == 0);. Here we retrieve a lists of
users with a limit of 1: we get the first user in the table. If there is no user, it will return an empty list. Indeed we check
its size() and if it’s 0 we can proceed in running the operation since there are no users registered.

In the third and fourth line the an user with usernam “admin” is created and 1000000 tokens are given to her.

Transfer tokens (Function)

For convenience we create a function to transfer token from one user’s balance to another’s.

We write it because we don’t want to duplicate our checks and potentially create bugs.

function transfer_balance(from:user, to:user, amount:integer){
require(balance@{from}.amount >= amount);
update balance@{from} (amount -= amount);
update balance@{to} (amount += amount);

}

We also add a pay_fee function that is a transfer from one user to the admin account:

function pay_fee (user, deduct_amount: integer) {
if(user.username != 'admin'){
transfer_balance(user, user@{.username == 'admin'}, deduct_amount);

}
}

Register a new user

As said, registered users should be allowed to add new users:

2.3. Example Projects 21

Rell Documentation, Release v0.10.0

operation register_user (
existing_user_pubkey: pubkey,
new_user_pubkey: pubkey,
new_user_username: text,
transfer_amount: integer

) {
require(is_signer(existing_user_pubkey));
val existing_user = user@{existing_user_pubkey};

require(transfer_amount > 0);

val new_user = create user (new_user_pubkey, new_user_username);
pay_fee(existing_user, 100);

create balance (new_user, 0);
transfer_balance(existing_user, new_user, transfer_amount);

}

Here we:

• Verify that the signer exists with user@{existing_user_pubkey}, which require exactly one result for
the pubkey.

• Pay the fee of 100 tokens (transfer 100 tokens to ‘admin’ account)

• Then create the new user and transfer to them the specified positive amount of tokens.

Note: If at any point in the operation the conditions fail (for example, when the new username is already taken), the
whole operation is rolled back and the transaction is rejected.

This is why we don’t need to check if the signer’s balance has registration_cost + transfer_amount
tokens beforehand.

Create a new channel

Registered users can create new channels.

Given the public key and the name of the channel, we will verify that she is an actual registered user, transfer the fee,
create the channel, and add that user as chat member.

operation create_channel (admin_pubkey: pubkey, name) {
require(is_signer(admin_pubkey));
val admin_usr = user@{admin_pubkey};
pay_fee(admin_usr, 100);
val channel = create channel (admin_usr, name);
create channel_member (channel, admin_usr);

}

Add user to channel

The admin of a channel (the one who created the channel) can add another user after having paid a fee of 1 token.

So we check once again that the signer is the admin_pubkey specified, we have the channel admin pay 1 token, and
we add a new user to the channel via channel_member.

22 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

operation add_channel_member (admin_pubkey: pubkey, channel_name: name, member_
→˓username: text) {
require(is_signer(admin_pubkey));
val admin_usr = user@{admin_pubkey};
pay_fee(admin_usr, 1);
val channel = channel@{channel_name, .admin==user@{admin_pubkey}};
create channel_member (channel, member=user@{.username == member_username});

}

Post a new message

People in a channel will love to share their opinions. They can do so with the post_message operation. The signer
(is_signer(pubkey)) can post a message in the channel (val channel = channel@{channel_name};
) if they are a member of the channel (require(channel_member@?{channel, member});).

After the payment of 1 token fee, we add the new message to the channel:

operation post_message (channel_name: name, pubkey, message: text) {
require(is_signer(pubkey));
val channel = channel@{channel_name};
val member = user@{pubkey};
require(channel_member@?{channel, member});
pay_fee(member, 1);
create message (channel, member, text=message, op_context.last_block_time);

}

Queries

It is useful to write data into a database in a distributed fashion, although writing would be meaningless without the
ability to read.

Query all channels where a user is registered

Getting the channels one user is registered into is simple, selecting from channel_member with the given user’s
public key.

query get_channels(pubkey):list<(name:text, admin: text)> {
return channel_member@*{.member == user@{pubkey}} (name = .channel.name, admin = .

→˓channel.admin.username);
}

Other simple queries

Likewise we can get the balance from one user.

query get_balance(pubkey) {
return balance@{ user@{ pubkey } }.amount;

}

Retrieve messages sent in one channel sorted from the oldest to newest (sort .timestamp).

2.3. Example Projects 23

Rell Documentation, Release v0.10.0

query get_last_messages(channel_name: name):list<(text:text, poster:text,
→˓timestamp:timestamp)> {
return message@*{ channel@{channel_name} }
(.text, poster=.posted_by.username, sort .timestamp);

}

Run it

• Browse to https://rellide-staging.chromia.dev

• Create a new module

• Enter the above code in the code section (You can copy the full code from here).

• Click on Start Node (The green “Play” icon)

Congratulations! You should now have a running node.

Client side

At this stage we should have a running node with your freshly made module.

What about interface it with a classy JS based application?

Well to do it we need the postchain-client npm package

npm i --save postchain-client

const pcl = require('postchain-client');
const crypto = require('crypto');

Then we need to declare the address of the REST server (which is ran by the node, default is 7740) and the blockchain-
RID of the blockchain and the number of sockets (5).

We then get an instance of GTX Client, via gtxClient.createClient and giving the rest object and blockchain-
RID in input. Last parameters is an empty list of operation (this is needed if you don’t use Rell language, in fact, you
can also code a module with standard SQL or as a proper kotlin/java module).

// Check the node log on rellide-staging.chromia.dev to get node api url.
const nodeApiUrl = "https://rellide-staging.chromia.dev/node/XXXXX/";
const blockchainRID =
→˓"78967baa4768cbcef11c508326ffb13a956689fcb6dc3ba17f4b895cbb1577a3"; // default RID
→˓on rellide-staging.chromia.dev
const rest = pcl.restClient.createRestClient(nodeApiUrl, blockchainRID, 5)
const gtx = pcl.gtxClient.createClient(

rest,
Buffer.from(

blockchainRID,
'hex'

),
[]

);

Note: If you are using Eclipse IDE, the configs should be:

24 Chapter 2. Chromia

https://bitbucket.org/chromawallet/chat-sample/src/master/rell/src/main.rell

Rell Documentation, Release v0.10.0

const nodeApiUrl = "http://localhost:7740/";
const blockchainRID =
→˓"0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF";

Create and send a transaction with the init operation

First thing we probably want is to register and create the admin, we do so calling the init function.

function init(adminPubkey, adminPrivkey) {
const rq = gtx.newTransaction([adminPubkey]);
rq.addOperation('init', adminPubkey);
rq.sign(adminPrivkey, adminPubkey);
return rq.postAndWaitConfirmation();

}

The first thing we do is to declare a new transaction and that it will be signed by admin private key (we provide the
public key, so the node can verify the veracity of transaction).

We add the operation called init and we pass as input argument the admin public key. We then sign the transaction
with the private key (we specify the public key in order to correlate which private key refers to which public key in
case of multiple signatures).

Finally we send the transaction to the node via the method postAndWaitconfirmation which returns a promise
and resolves once it is confirmed.

Given the following keypair, we can create the admin.

const adminPUB = Buffer.from(
'031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f',
'hex'

);
const adminPRIV = Buffer.from(

'01',
'hex'

);

init(adminPUB, adminPRIV);

Note: In your own project, you might want to generate the keypair using pcl.util.makeKeyPair() instead:

const user = pcl.util.makeKeyPair();
const { pubKey, privKey } = user;

Create other operations

We can also create a new channel, post a message, invite a user to dapp, invite a user in a channel

function createChannel(admin, channelName) {
const pubKey = pcl.util.toBuffer(admin.pubKey);
const privKey = pcl.util.toBuffer(admin.privKey);
const rq = gtx.newTransaction([pubKey]);

(continues on next page)

2.3. Example Projects 25

Rell Documentation, Release v0.10.0

(continued from previous page)

rq.addOperation("create_channel", pubKey, channelName);
rq.sign(privKey, pubKey);
return rq.postAndWaitConfirmation();

}

function postMessage(user, channelName, message) {
const pubKey = pcl.util.toBuffer(user.pubKey);
const privKey = pcl.util.toBuffer(user.privKey);
const rq = gtx.newTransaction([pubKey]);
rq.addOperation("nop", crypto.randomBytes(32));
rq.addOperation("post_message", channelName, pubKey, message);
rq.sign(privKey, pubKey);
return rq.postAndWaitConfirmation();

}

function inviteUser(existingUser, newUserPubKey, startAmount) {
const pubKey = pcl.util.toBuffer(existingUser.pubKey);
const privKey = pcl.util.toBuffer(existingUser.privKey);
const rq = gtx.newTransaction([pubKey]);
rq.addOperation("register_user", pubKey, pcl.util.toBuffer(newUserPubKey),

→˓parseInt(startAmount));
rq.sign(privKey, pubKey);
return rq.postAndWaitConfirmation();

}

function inviteUserToChat(existingUser, channel, newUserPubKey) {
const pubKey = pcl.util.toBuffer(existingUser.pubKey);
const privKey = pcl.util.toBuffer(existingUser.privKey);
const rq = gtx.newTransaction([pubKey]);
rq.addOperation("add_channel_member", pubKey, channel, pcl.util.

→˓toBuffer(newUserPubKey));
rq.sign(privKey, pubKey);
return rq.postAndWaitConfirmation();

}

Although there is really nothing critical in these functions, there are few things worth noting:

• We expect public and private keys in hex format, and we convert them to Buffer with pcl.util.
toBuffer(admin.pubKey);

• In order to protect the system from replay attacks, the blockchain does not accept transactions which hash
is equal to an already existing transaction. This means that an user is not allowed to write the same
message twice in a channel since if at day one he writes “hello” the transaction will be something like
rq.addOperation("post_message", the_channel, user_pub, "hello");, when he will
write ‘hello’ a second time the transaction will be the same and therefore rejected. To solve this prob-
lem, we add a “nop” operation with some random bytes via rq.addOperation("nop", crypto.
randomBytes(32));, and create a different transaction hash.

Important: It is very important to remember this limitation imposed upon transactions. If your transaction is rejected
with no obvious reason, chances are high that it is missing a “nop” operation.

26 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Querying the blockchain from the client side

Previously we wrote the queries on blockchain side. Now we need to query from the dapp. To do so we use the
previously mentioned postchain-client package.

// Rell query, reported here for easy look up
// query get_balance(user_pubkey: text) {
// return balance@{user@{byte_array(user_pubkey)}}.amount;
// }

function getBalance(user) {
return gtx.query("get_balance", {

user_pubkey: user.pubKey
});

}

As you can see everything is contained into gtx.query: the first argument is the query name in the rell module, and
the second argument is the name of the expected attribute in the query itself wrapped in an object. The name of the
object is the one specified in module and the value, of course, the value we want to send. Please note that buffer
values must before be converted into hexadecimal strings.

Other queries:

function getChannels(user) {
return gtx.query("get_channels", {

user_pubkey: user.pubKey
});

}

function getMessages(channel) {
return gtx.query("get_last_messages", {channel_name: channel});

}

Conclusion

At this point, we have created a Rell backend for the public chat, and a javascript client to communicate with it.

We encourage you to extends this sample in anyway you like, for example adding an user interace, or maybe add a
“transfer” operation to send tokens to another user?

Or, if you are eager to see how the application running, we have implemented a simple UI for it at https://bitbucket.
org/chromawallet/chat-sample/src/master/.

2.3.2 Account-based token system

Tokens are the bread & butter of blockchains, thus it is useful to demonstrate how a token system can be implemented
in Rell. There are roughly two different implementation strategies:

• Account-based tokens which maintain an updateable balance for each account (which can be associated with a
key or an address)

• UTXO-based ones (Bitcoin-style) deal with virtual “coins” which are minted and destroyed in transactions

This section details the account-based implementation. For an example of a UTXO based system see UTXO-based
token system.

A minimal implementation can look like this:

2.3. Example Projects 27

https://bitbucket.org/chromawallet/chat-sample/src/master/
https://bitbucket.org/chromawallet/chat-sample/src/master/

Rell Documentation, Release v0.10.0

class balance {
key pubkey;
mutable amount: integer;

}

operation transfer(from_pubkey: pubkey, to_pubkey: pubkey, xfer_amount: integer) {
require(is_signer(from_pubkey));
require(xfer_amount > 0);
require(balance@{from_pubkey}.amount >= xfer_amount);
update balance@{from_pubkey} (amount -= xfer_amount);
update balance@{to_pubkey} (amount += xfer_amount);

}

There are a few items which should be highlighted in this code. First, let’s note that balance@{from_pubkey}.
amount is simply a shorthand notation for balance@{from_pubkey} (amount).

update relational operator combines a relational expression specifying objects to update with a form which specifies
how to update their attributes. Attributes are updateable only if they are market as mutable.

Note: We don’t need to worry about concurrency issues (i.e. that the balance can change after we checked it) because
Rell applies operations within a single blockchain sequentially.

But this minimal implementation is not very useful, as there’s no mechanism for a wallet to identify payments it
receives (without somehow scanning the blockchain, or asking the payer to share the transaction with the recipient).
Other blockchains systems might resort to third-party tools and complex protocols to handle this (for example, the
Electrum Bitcoin wallet connects to Electrum Servers which perform blockchain indexing). Rell-based blockchains
can just use built-in indexing to keep track of payment history. For example, by using the additional payment class.
To make things more efficient, we also wrap pubkey into user class, thus getting:

class user { key pubkey; }

class balance {
key user;
mutable amount: integer;

}

class payment {
index from_user: user;
index to_user: user;
amount: integer;
timestamp;

}

operation transfer(from_pubkey: pubkey, to_pubkey: pubkey, xfer_amount: integer) {
require(is_signer(from_pubkey));
require(xfer_amount > 0);
val from_user = user@{from_pubkey};
val to_user = user@{to_pubkey};
require(balance@{from_user}.amount >= xfer_amount);
update balance@{from_user} (amount -= xfer_amount);
update balance@{to_user} (amount += xfer_amount);
create payment (

from_user,
to_user,
amount=xfer_amount,

(continues on next page)

28 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

(continued from previous page)

timestamp=op_context.last_block_time);
}

Note: In create payment (from_user, to_user, ...) Rell can figure out matching attributes from
names of local variables as they match exactly. It is often the case that you can use the same name for the same
concept.)

Note: In a future version of Rell it will be possible to timestamp objects automatically using the log annotation,
with the added benefit that they are then linked to the corresponding transaction and block.

The example above can be easily extended to support multiple types of tokens. For example:

class asset { key asset_code; }

class balance {
key user, asset;
mutable amount: integer;

}

Here we use a composite key to keep track of the balance for each (user, asset) pair.

2.3.3 UTXO-based token system

As an exercise, we can also implement a Bitcoin-style token system.

We first define an unspent transaction output structure:

class utxo {
pubkey;
amount: integer;

}

Then define the transfer operation that roughly follows Bitcoin transaction structure – it has a list of inputs and outputs:

operation transfer (inputs: list<utxo>, output_pubkeys: list<pubkey>, output_amounts:
→˓list<integer>) {

var input_sum = 0;
for (an_utxo in inputs) {

require(is_signer(an_utxo.pubkey));
input_sum += an_utxo.amount;
delete utxo@{utxo == an_utxo};

}
var output_sum = 0;
require(output_pubkeys.size() == output_amounts.size());
for (out_index in range(output_pubkeys.size())) {

output_sum += output_amounts[out_index];
create utxo (output_pubkeys[out_index],

output_amounts[out_index]);
}
require(output_sum <= input_sum);

}

2.3. Example Projects 29

Rell Documentation, Release v0.10.0

There are quite a lot of new constructs used in this example:

• list<...> is, obviously, a collection. Besides lists, Rell also supports set and map

• in list<utxo> utxo object references are physically implemented using integer identifiers which are used
interally

• an_utxo.pubkey accesses an attribute of an object, which is a database query identical to
utxo@{utxo==an_utxo} (pubkey)

• variable type is automatically inferred from expression used for initialization. One can also write it like var
output_sum : integer = 0;

• delete operation accepts a relational expression which identifies object(s)

• .size() method can be used get the size of a collection

• for (... in ...) works both for collections and for ranges of integer values

• [] is used to refer to an element of a collection

Note that we perform checks as we go. This is OK because Rell is transactional: if a requirement fails or an error
is generated, the whole operation (in fact, the whole transaction) is rolled back. Rell is typically used with a GTX
transaction format which supports multiple signers and multiple operations per transaction. Thus it can easily support
Bitcoin-style multi-input transactions, atomic token swaps, multi-sig etc.

Now a bit about delete operator. Isn’t it strange to enable deletion of data from a blockchain?!

Here we aren’t deleting data “from a blockchain”, we are removing entries from the current blockchain state. This is
exactly how it works in a Bitcoin node – once entries in an unspent transaction output set are spent, they are deleted.
A typical Bitcoin node doesn’t keep track of spent transaction outputs.

A system based on Rell (e.g. Postchain or Chromia) works in exactly the same way: raw information about transactions
and operations is preserved in a blockchain. The database contains both raw blockchain transactions and processed
current state. The current state is what a Rell programmer can work with: he is allowed to do destructive updates and
delete entries. These operations do not affect the raw blockchain.

2.4 Language Features

2.4.1 Types

Table of Contents

• Types

– Simple types

* boolean

* integer

* decimal

* text

* byte_array

* rowid

* json

30 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

* unit

* null

* Simple type aliases

– Complex types

* entity

* struct

* enum

* T? - nullable type

* tuple

* range

* gtv

– Collection types

* list<T>

* set<T>

* map<K,V>

– Virtual types

* virtual<list<T>>

* virtual<set<T>>

* virtual<map<K,V>>

* virtual<struct>

– Subtypes

– Global Functions

– Require function

Simple types

boolean

val using_rell = true;
if (using_rell) print("Awesome!");

integer

val user_age : integer = 26;

integer.MIN_VALUE = minimum value (-2^63)

integer.MAX_VALUE = maximum value (2^63-1)

2.4. Language Features 31

Rell Documentation, Release v0.10.0

integer(s: text, radix: integer = 10) - parse a signed string representation of an integer, fail if
invalid

integer(decimal): integer - converts a decimal to an integer, rounding towards 0 (5.99 becomes 5, -5.99
becomes -5), throws an exception if the resulting value is out of range

integer.from_text(s: text, radix: integer = 10): integer - same as
integer(text, integer)

integer.from_hex(text): integer - parse an unsigned HEX representation

.abs(): integer - absolute value

.max(integer): integer - maximum of two values

.max(decimal): decimal - maximum of two values (converts this integer to decimal)

.min(integer): integer - minimum of two values

.min(decimal): decimal - minimum of two values (converts this integer to decimal)

.to_text(radix: integer = 10) - convert to a signed string representation

.to_hex(): text - convert to an unsigned HEX representation

.sign(): integer - returns -1, 0 or 1 depending on the sign

decimal

Represent a real number.

val approx_pi : decimal = 3.14159;
val scientific_value : decimal = 55.77e-5;

It is not a normal floating-point type found in many other languages (like float and double in C/C++/Java):

• decimal type is accurate when working with numbers within its range. All decimal numbers (results of
decimal operations) are implicitly rounded to 20 decimal places. For instance, decimal('1E-20') returns
a non-zero, while decimal('1E-21') returns a zero value.

• Numbers are stored in a decimal form, not in a binary form, so conversions to and from a string are lossless
(except when rounding occurs if there are more than 20 digits after the point).

• Floating-point types allow to store much smaller numbers, like 1E-300; decimal can only store 1E-20, but
not a smaller nonzero number.

• Operations on decimal numbers may be considerably slower than integer operations (at least 10 times slower
for same integer numbers).

• Large decimal numbers may require a lot of space: ~0.41 bytes per decimal digit (~54KiB for 1E+131071) in
memory and ~0.5 bytes per digit in a database.

• Internally, the type java.lang.BigDecimal is used in the interpreter, and NUMERIC in SQL.

In the code one can use decimal literals:

123.456
0.123
.456
33E+10
55.77e-5

32 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Such numbers have decimal type. Simple numbers without a decimal point and exponent, like 12345, have
integer type.

decimal.PRECISION: integer = the maximum number of decimal digits in a decimal number (131072 +
20)

decimal.SCALE: integer = the maximum number of decimal digits after the decimal point (20)

decimal.INT_DIGITS: integer = the maximum number of decimal digits before the decimal point (131072)

decimal.MIN_VALUE: decimal = the smallest nonzero absolute value that can be accurately stored in a
decimal (1E-20)

decimal.MAX_VALUE: decimal = the largest value that can be stored in a decimal (1E+131072 - 1)

decimal(integer): decimal - converts integer to decimal

decimal(text): decimal - converts a text representation of a number to decimal. Exponential notation is
allowed. Rounds the number to 20 decimal places, if necessary. Throws an exception if the number is out of range or
not a valid number.

.abs(): decimal - absolute value

.ceil(): decimal - ceiling value: rounds 1.0 to 1.0, 1.00001 to 2.0, -1.99999 to -1.0, etc.

.floor(): decimal - floor value: rounds 1.0 to 1.0, 1.9999 to 1.0, -1.0001 to -2.0, etc.

.min(decimal): decimal - minimum of two values

.max(decimal): decimal - maximum of two values

.round(scale: integer = 0): decimal - rounds to a specific number of decimal places, to a closer
value. Example: round(2.49) = 2.0, round(2.50) = 3.0, round(0.12345, 3) = 0.123. Negative scales
are allowed too: round(12345, -3) = 12000.

.sign(): integer - returns -1, 0 or 1 depending on the sign

.to_integer(): integer - converts a decimal to an integer, rounding towards 0 (5.99 becomes 5, -5.99
becomes -5), throws an exception if the resulting value is out of range

.to_text(scientific: boolean = false): text

text

Textual value. Same as string type in some other languages.

val placeholder = "Lorem ipsum donor sit amet";
print(placeholder.size()); // 26
print(placeholder.empty()); // false

text.from_bytes(byte_array, ignore_invalid: boolean = false) - if ignore_invalid
is false, throws an exception when the byte array is not a valid UTF-8 encoded string, otherwise replaces invalid
characters with a placeholder.

.empty(): boolean

.size(): integer

.compare_to(text): integer - as in Java

.starts_with(text): boolean

.ends_with(text): boolean

2.4. Language Features 33

Rell Documentation, Release v0.10.0

.contains(text): boolean - true if contains the given substring

.index_of(text, start: integer = 0): integer - returns -1 if substring is not found (as in Java)

.last_index_of(text[, start: integer]): integer - returns -1 if substring is not found (as in
Java)

.sub(start: integer[, end: integer]): text - get a substring (start-inclusive, end-exclusive)

.replace(old: text, new: text)

.upper_case(): text

.lower_case(): text

.split(text): list<text> - strictly split by a separator (not a regular expression)

.trim(): text - remove leading and trailing whitespace

.matches(text): boolean - true if matches a regular expression

.to_bytes(): byte_array - convert to a UTF-8 encoded byte array

.char_at(integer): integer - get a 16-bit code of a character

.format(...) - formats a string (as in Java):

• 'My name is <%s>'.format('Bob') - returns 'My name is <Bob>'

Special operators:

• + : concatenation

• [] : character access (returns single-character text)

byte_array

val user_pubkey : byte_array = x
→˓"0373599a61cc6b3bc02a78c34313e1737ae9cfd56b9bb24360b437d469efdf3b15";
print(user_pubkey.to_base64()); //A3NZmmHMazvAKnjDQxPhc3rpz9Vrm7JDYLQ31Gnv3zsV

byte_array(text) - creates a byte_array from a HEX string, e.g. '1234abcd', throws an exception if the
string is not a valid HEX sequence

byte_array.from_hex(text): byte_array - same as byte_array(text)

byte_array.from_base64(text): byte_array - creates a byte_array from a Base64 string, throws
an exception if the string is invalid

byte_array.from_list(list<integer>): byte_array - creates a byte_array from a list; values
must be 0 - 255, otherwise an exception is thrown

.empty(): boolean

.size(): integer

.sub(start: integer[, end: integer]): byte_array - sub-array (start-inclusive, end-
exclusive)

.to_hex(): text - returns a HEX representation of the byte array, e.g. '1234abcd'

.to_base64(): text - returns a Base64 representation of the byte array

.to_list(): list<integer> - list of values 0 - 255

.sha256(): byte_array - returns the sha256 digest as a byte_array

34 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Special operators:

• + : concatenation

• [] : element access

rowid

Primary key of a database record, 64-bit integer, supports only comparison operations

json

Stored in Postgres as JSON type, and can be parsed to text;

val json_text = '{ "name": "Alice" }';
val json_value: json = json(json_text);
print(json_value);

json(text) - create a json value from a string; fails if not a valid JSON string

.to_text(): text - convert to string

unit

No value; cannot be used explicitly. Equivalent to unit type in Kotlin.

null

Type of null expression; cannot be used explicitly

Simple type aliases

• pubkey = byte_array

• name = text

• timestamp = integer

• tuid = text

Complex types

entity

entity user {
key pubkey;
index name;

}

2.4. Language Features 35

Rell Documentation, Release v0.10.0

struct

A struct is similar to an entity, but its instances exist in memory, not in a database.

struct user {
name: text;
address: text;
mutable balance: integer = 0;

}

Functions available for all struct types:

T.from_bytes(byte_array): T - decode from a binary-encoded gtv (same as T.from_gtv(gtv.
from_bytes(x)))

T.from_gtv(gtv): T - decode from a gtv

T.from_gtv_pretty(gtv): T - decode from a pretty-encoded gtv

.to_bytes(): byte_array - encode in binary format (same as .to_gtv().to_bytes())

.to_gtv(): gtv - convert to a gtv

.to_gtv_pretty(): gtv - convert to a pretty gtv

enum

enum account_type {
single_key_account,
multi_sig_account

}

entity account {
key id: byte_array;
mutable account_type;
mutable args: byte_array;

}

Assuming T is an enum type:

T.values(): list<T> - returns all values of the enum, in the order of declaration

T.value(text): T - finds a value by name, throws en exception if not found

T.value(integer): T - finds a value by index, throws an exception if not found

Enum value properties:

.name: text - the name of the enum value

.value: integer - the numeric value (index) associated with the enum value

T? - nullable type

val nonexistent_user = user @? { .name == "Nonexistent Name" };
require_not_empty(nonexistent_user); // Throws exception because user doesn't exists

• Entity attributes cannot be nullable.

36 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

• Can be used with almost any type (except nullable, unit, null).

• Nullable nullable (T?? is not allowed).

• Normal operations of the underlying type cannot be applied directly.

• Supports ?:, ?. and !! operators (like in Kotlin).

Compatibility with other types:

• Can assign a value of type T to a variable of type T?, but not the other way round.

• Can assign null to a variable of type T?, but not to a variable of type T.

• Can assign a value of type (T) (tuple) to a variable of type (T?).

• Cannot assign a value of type list<T> to a variable of type list<T?>.

Allowed operations:

• Null comparison: x == null, x != null.

• ?? - null check operator: x?? is equivalent to x != null

• !! - null assertion operator: x!! returns value of x if x is not null, otherwise throws an exception

• ?: - Elvis operator: x ?: y means x if x is not null, otherwise y

• ?. - safe access: x?.y results in x.y if x is not null and null otherwise; similarly, x?.y() either evaluates
and returns x.y() or returns null

• require(x), require_not_empty(x): throws an exception if x is null, otherwise returns value of x

Examples:

function f(): integer? { ... }

val x: integer? = f(); // type of "x" is "integer?"
val y = x; // type of "y" is "integer?"

val i = y!!; // type of "i" is "integer"
val j = require(y); // type of "j" is "integer"

val a = y ?: 456; // type of "a" is "integer"
val b = y ?: null; // type of "b" is "integer?"

val p = y!!; // type of "p" is "integer"
val q = y?.to_hex(); // type of "q" is "text?"

if (x != null) {
val u = x; // type of "u" is "integer" - smart cast is applied to "x"

} else {
val v = x; // type of "v" is "integer?"

}

tuple

Examples:

• val single_number : (integer) = (16,) - one value

• val invalid_tuple = (789) - not a tuple (no comma)

• val user_tuple: (integer, text) = (26, "Bob") - two values

2.4. Language Features 37

Rell Documentation, Release v0.10.0

• val named_tuple : (x: integer, y: integer) = (32, 26) - named fields (can be ac-
cessed as named_tuple.x, named_tuple.y)

• (integer, (text, boolean)) - nested tuple

Tuple types are compatible only if names and types of fields are the same:

• (x:integer, y:integer) and (a:integer,b:integer) are not compatible.

• (x:integer, y:integer) and (integer,integer) are not compatible.

Reading tuple fields:

• t[0], t[1] - by index

• t.a, t.b - by name (for named fields)

Unpacking tuples:

val t = (123, 'Hello');
val (n, s) = t; // n = 123, s = 'Hello'

Works for arbitrarily nested tuples:

val (n, (p, (x, y), q)) = calculate();

Special symbol _ is used to ignore a tuple element:

val (_, s) = (123, 'Hello'); // s = 'Hello'

Variable types can be specified explicitly:

val (n: integer, s: text) = (123, 'Hello');

Unpacking can be used in a loop:

val l: list<(integer, text)> = get_tuples();
for ((x, y) in l) {

print(x, y);
}

range

Can be used in for statement:

for(count in range(10)){
print(count); // prints out 0 to 9

}

range(start: integer = 0, end: integer, step: integer = 1) - start-inclusive, end-
exclusive (as in Python):

• range(10) - a range from 0 (inclusive) to 10 (exclusive)

• range(5, 10) - from 5 to 10

• range(5, 15, 4) - from 5 to 15 with step 4, i. e. [5, 9, 13]

• range(10, 5, -1) - produces [10, 9, 8, 7, 6]

• range(10, 5, -3) - produces [10, 7]

38 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Special operators:

• in - returns true if the value is in the range (taking step into account)

gtv

A type used to repsesent encoded arguments and results of remote operation and query calls. It may be a simple value
(integer, string, byte array), an array of values or a string-keyed dictionary.

Some Rell types are not Gtv-compatible. Values of such types cannot be converted to/from gtv, and the types cannot
be used as types of operation/query parameters or result.

Rules of Gtv-compatibility:

• range is not Gtv-compatible

• a complex type is not Gtv-compatible if a type of its component is not Gtv-compatible

gtv.from_json(text): gtv - decode a gtv from a JSON string

gtv.from_json(json): gtv - decode a gtv from a json value

gtv.from_bytes(byte_array): gtv - decode a gtv from a binary-encoded form

.to_json(): json - convert to JSON

.to_bytes(): byte_array - convert to bytes

.hash(): byte_array - returns a cryptographic hash of the value

gtv-related functions:

Functions available for all Gtv-compatible types:

T.from_gtv(gtv): T - decode from a gtv

T.from_gtv_pretty(gtv): T - decode from a pretty-encoded gtv

.to_gtv(): gtv - convert to a gtv

.to_gtv_pretty(): gtv - convert to a pretty gtv

.hash(): byte_array - returns a cryptographic hash of the value (same as .to_gtv().hash())

Examples:

val g = [1, 2, 3].to_gtv();
val l = list<integer>.from_gtv(g); // Returns [1, 2, 3]
print(g.hash());

Collection types

Collection types are:

• list<T> - an ordered list

• set<T> - an unordered set, contains no duplicates

• map<K,V> - a key-value map

2.4. Language Features 39

Rell Documentation, Release v0.10.0

Collection types are mutable, elements can be added or removed dynamically.

Only a non-mutable type can be used as a map key or a set element.

Following types are mutable:

• Collection types (list, set, map) - always.

• Nullable type - only if the underlying type is mutable.

• Struct type - if the struct has a mutable field, or a field of a mutable type.

• Tuple - if a type of an element is mutable.

Creating collections:

// list
val l1 = [1, 2, 3, 4, 5];
val l2 = list<integer>();

// set
val s = set<integer>();

// map
val m1 = ['Bob' : 123, 'Alice' : 456];
val m2 = map<text, integer>();

list<T>

Ordered collection type. Accept duplication.

var messages = message @* { } (sort timestamp = .timestamp);
messages.add(new_message);

Constructors:

list<T>() - a new empty list

list<T>(list<T>) - a copy of the given list (list of subtype is accepted as well)

list<T>(set<T>) - a copy of the given set (set of subtype is accepted)

Methods:

.add(T): boolean - adds an element to the end, always returns true

.add(pos: integer, T): boolean - inserts an element at a position, always returns true

.add_all(list<T>): boolean

.add_all(set<T>): boolean

.add_all(pos: integer, list<T>): boolean

.add_all(pos: integer, set<T>): boolean

.clear()

.contains(T): boolean

.contains_all(list<T>): boolean

.contains_all(set<T>): boolean

.empty(): boolean

40 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

.index_of(T): integer - returns -1 if element is not found

.remove(T): boolean - removes the first occurrence of the value, return true if found

.remove_all(list<T>): boolean

.remove_all(set<T>): boolean

.remove_at(pos: integer): T - removes an element at a given position

.size(): integer

._sort() - sorts this list, returns nothing (name is _sort, because sort is a keyword in Rell)

.sorted(): list<T> - returns a sorted copy of this list

.to_text(): text - returns e. g. '[1, 2, 3, 4, 5]'

.sub(start: integer[, end: integer]): list<T> - returns a sub-list (start-inclusive, end-
exclusive)

Special operators:

• [] - element access (read/modify)

• in - returns true if the value is in the list

set<T>

Unordered collection type. Does not accept duplication.

var my_classmates = set<user>();
my_classmates.add(alice); // return true
my_classmates.add(alice); // return false

Constructors:

set<T>() - a new empty set

set<T>(set<T>) - a copy of the given set (set of subtype is accepted as well)

set<T>(list<T>) - a copy of the given list (with duplicates removed)

Methods:

.add(T): boolean - if the element is not in the set, adds it and returns true

.add_all(list<T>): boolean - adds all elements, returns true if at least one added

.add_all(set<T>): boolean - adds all elements, returns true if at least one added

.clear()

.contains(T): boolean

.contains_all(list<T>): boolean

.contains_all(set<T>): boolean

.empty(): boolean

.remove(T): boolean - removes the element, returns true if found

.remove_all(list<T>): boolean - returns true if at least one removed

.remove_all(set<T>): boolean - returns true if at least one removed

2.4. Language Features 41

Rell Documentation, Release v0.10.0

.size(): integer

.sorted(): list<T> - returns a sorted copy of this set (as a list)

.to_text(): text - returns e. g. '[1, 2, 3, 4, 5]'

Special operators:

• in - returns true if the value is in the set

map<K,V>

A key/value pair collection type.

var dictionary = map<text, text>();
dictionary["Mordor"] = "A place where one does not simply walk into";

Constructors:

map<K,V>() - a new empty map

map<K,V>(map<K,V>) - a copy of the given map (map of subtypes is accepted as well)

Methods:

.clear()

.contains(K): boolean

.empty(): boolean

.get(K): V - get value by key (same as [])

.put(K, V) - adds/replaces a key-value pair

.keys(): set<K> - returns a copy of keys

.put_all(map<K, V>) - adds/replaces all key-value pairs from the given map

.remove(K): V - removes a key-value pair (fails if the key is not in the map)

.size(): integer

.to_text(): text - returns e. g. '{x=123, y=456}'

.values(): list<V> - returns a copy of values

Special operators:

• [] - get/set value by key

• in - returns true if a key is in the map

Virtual types

A reduced data structure with Merkle tree. Type virtual<T> can be used only with following types T:

• list<*>

• set<*>

• map<text, *>

42 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

• struct

• tuple

Additionally, types of all internal elements of T must satisfy following constraints:

• must be Gtv-compatible

• for a map type, the key type must be text (i. e. map<text, *>)

Operations available for all virtual types:

• member access: [] for list and map, .name for struct and tuple

• .to_full(): T - converts the virtual value to the original value, if the value is full (all internal elements
are present), otherwise throws an exception

• .hash(): byte_array - returns the hash of the value, which is the same as the hash of the original value.

• virtual<T>.from_gtv(gtv): virtual<T> - decodes a virtual value from a Gtv.

Features of virtual<T>:

• it is immutable

• reading a member of type list<*>, map<*,*>, struct or tuple returns a value of the corresponding virtual
type, not of the actual member type

• cannot be converted to Gtv, so cannot be used as a return type of a query

Example:

struct rec { t: text; s: integer; }

operation op(recs: virtual<list<rec>>) {
for (rec in recs) { // type of "rec" is "virtual<rec>", not "rec"

val full = rec.to_full(); // type of "full" is "rec", fails if the
→˓value is not full

print(full.t);
}

}

virtual<list<T>>

virtual<list<T>>.from_gtv(gtv): virtual<list<T>> - decodes a Gtv

.empty(): boolean

.get(integer): virtual<T> - returns an element, same as []

.hash(): byte_array

.size(): integer

.to_full(): list<T> - converts to the original value, fails if the value is not full

.to_text(): text - returns a text representation

Special operators:

• [] - element read, returns virtual<T> (or just T for simple types)

• in - returns true if the given integer index is present in the virtual list

2.4. Language Features 43

Rell Documentation, Release v0.10.0

virtual<set<T>>

virtual<set<T>>.from_gtv(gtv): virtual<set<T>> - decodes a Gtv

.empty(): boolean

.hash(): byte_array

.size(): integer

.to_full(): set<T> - converts to the original value, fails if the value is not full

.to_text(): text - returns a text representation

Special operators:

• in - returns true if the given value is present in the virtual set; the type of the operand is virtual<T>> (or
just T for simple types)

virtual<map<K,V>>

virtual<map<K,V>>.from_gtv(gtv): virtual<map<K,V>> - decodes a Gtv

.contains(K): boolean - same as operator in

.empty(): boolean

.get(K): virtual<V> - same as operator []

.hash(): byte_array

.keys(): set<K> - returns a copy of keys

.size(): integer

.to_full(): map<K,V> - converts to the original value, fails if the value is not full

.to_text(): text - returns a text representation

.values(): list<virtual<V>> - returns a copy of values (if V is a simple type, returns list<V>)

Special operators:

• [] - get value by key, fails if not found, returns virtual<V> (or just V for simple types)

• in - returns true if a key is in the map

virtual<struct>

virtual<R>.from_gtv(gtv): R - decodes a Gtv

.hash(): byte_array

.to_full(): R - converts to the original value, fails if the value is not full

44 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Subtypes

If type B is a subtype of type A, a value of type B can be assigned to a variable of type A (or passed as a parameter of
type A).

• T is a subtype of T?.

• null is a subtype of T?.

• (T,P) is a subtype of (T?,P?), (T?,P) and (T,P?).

Global Functions

abs(integer): integer - absolute value
abs(decimal): decimal

exists(T?): boolean - returns true if the argument is null and false otherwise

is_signer(byte_array): boolean - returns true if a byte array is in the list of signers of current opera-
tion

log(...) - print a message to the log (same usage as print)

max(integer, integer): integer - maximum of two values
max(decimal, decimal): decimal

min(integer, integer): integer - minimum of two values
min(decimal, decimal): decimal

print(...) - print a message to STDOUT:

• print() - prints an empty line

• print('Hello', 123) - prints "Hello 123"

verify_signature(message: byte_array, pubkey: pubkey, signature:
byte_array): boolean - returns true if the given signature is a result of signing the message with a
private key corresponding to the given public key

Require function

For checking a boolean condition:

require(boolean[, text]) - throws an exception if the argument is false

For checking for null:

require(T?[, text]): T - throws an exception if the argument is null, otherwise returns the argument

require_not_empty(T?[, text]): T - same as the previous one

2.4. Language Features 45

Rell Documentation, Release v0.10.0

For checking for an empty collection:

require_not_empty(list<T>[, text]): list<T> - throws an exception if the argument is an empty
collection, otherwise returns the argument

require_not_empty(set<T>[, text]): set<T> - same as the previous

require_not_empty(map<K,V>[, text]): map<K,V> - same as the previous

When passing a nullable collection to require_not_empty, it throws an exception if the argument is either null
or an empty collection.

Examples:

val x: integer? = calculate();
val y = require(x, "x is null"); // type of "y" is "integer", not "integer?"

val p: list<integer> = get_list();
require_not_empty(p, "List is empty");

val q: list<integer>? = try_to_get_list();
require(q); // fails if q is null
require_not_empty(q); // fails if q is null or an empty list

2.4.2 Module definitions

Table of Contents

• Module definitions

– Entity

* Keys and Indices

* Entity annotations

– Object

– Struct

– Enum

– Query

– Operation

– Function

– Namespace

– External

* Transactions and blocks

– Mount names

46 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Entity

Values (instances) of an entity in Rell are stored in a database, not in memory. They have to be created and deleted
explicitly using Rell create and delete expressions. An in-memory equivalent of an entity in Rell is a struct.

A variable of an entity type holds an ID (primary key) of the corresponding database record, but not its attribute values.

entity company {
name: text;
address: text;

}

entity user {
first_name: text;
last_name: text;
year_of_birth: integer;
mutable salary: integer;

}

If attribute type is not specified, it will be the same as attribute name:

entity user {
name; // built-in type "name"
company; // user-defined type "company" (error if no such type)

}

Attributes may have default values:

entity user {
home_city: text = 'New York';

}

An ID (database primary key) of an entity value can be accessed via the rowid implicit attribute (of type rowid):

val u = user @ { .name == 'Bob' };
print(u.rowid);

val alice_id = user @ { .name == 'Alice' } (.rowid);
print(alice_id);

Keys and Indices

Entities can have key and index clauses:

entity user {
name: text;
address: text;
key name;
index address;

}

Keys and indices may have multiple attributes:

entity user {
first_name: text;
last_name: text;

(continues on next page)

2.4. Language Features 47

Rell Documentation, Release v0.10.0

(continued from previous page)

key first_name, last_name;
}

Attribute definitions can be combined with key or index clauses, but such definition has restrictions (e. g. cannot
specify mutable):

entity user {
key first_name: text, last_name: text;
index address: text;

}

Entity annotations

@log entity user {
name: text;

}

The @log annotation has following effects:

• Special attribute transaction of type transaction is added to the entity.

• When an entity value is created, transaction is set to the result of op_context.transaction (current
transaction).

• Entity cannot have mutable attributes.

• Values cannot be deleted.

Object

Object is similar to entity, but there can be only one instance of an object:

object event_stats {
mutable event_count: integer = 0;
mutable last_event: text = 'n/a';

}

Reading object attributes:

query get_event_count() = event_stats.event_count;

Modifying an object:

operation process_event(event: text) {
update event_stats (event_count += 1, last_event = event);

}

Features of objects:

• Like entities, objects are stored in a database.

• Objects are initialized automatically during blockchain initialization.

• Cannot create or delete an object from code.

• Attributes of an object must have default values.

48 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Struct

Struct is similar to entity, but its values exist in memory, not in a database.

struct user {
name: text;
address: text;
mutable balance: integer = 0;

}

Features of structs:

• Attributes are immutable by default, and only mutable when declared with mutable keyword.

• Attributes can have

• An attribute may have a default value, which is used if the attribute is not specified during construction.

• Structs are deleted from memory implicitly by a garbage collector.

Creating struct values:

val u = user(name = 'Bob', address = 'New York');

Same rules as for the create expression apply: no need to specify attribute name if it can be resolved implicitly by
name or type:

val name = 'Bob';
val address = 'New York';
val u = user(name, address);
val u2 = user(address, name); // Order does not matter - same struct value is created.

Struct attributes can be accessed using operator .:

print(u.name, u.address);

Safe-access operator ?. can be used to read or modify attributes of a nullable struct:

val u: user? = find_user('Bob');
u?.balance += 100; // no-op if 'u' is null

Enum

Enum declaration:

enum currency {
USD,
EUR,
GBP

}

Values are stored in a database as integers. Each constant has a numeric value equal to its position in the enum (the
first value is 0).

Usage:

var c: currency;
c = currency.USD;

2.4. Language Features 49

Rell Documentation, Release v0.10.0

Enum-specific functions and properties:

val cs: list<currency> = currency.values() // Returns all values (in the order in
→˓which they are declared)

val eur = currency.value('EUR') // Finds enum value by name
val gbp = currency.value(2) // Finds enum value by index

val usd_str: text = currency.USD.name // Returns 'USD'
val usd_value: integer = currency.USD.value // Returns 0.

Query

• Cannot modify the data in the database (compile-time check).

• Must return a value.

• If return type is not explicitly specified, it is implicitly deducted.

• Parameter types and return type must be Gtv-compatible.

Short form:

query q(x: integer): integer = x * x;

Full form:

query q(x: integer): integer {
return x * x;

}

Operation

• Can modify the data in the database.

• Does not return a value.

• Parameter types must be Gtv-compatible.

operation create_user(name: text) {
create user(name = name);

}

Function

• Can return nothing or a value.

• Can modify the data in the database when called from an operation (run-time check).

• Can be called from queries, operations or functions.

• If return type is not specified explicitly, it is unit (no return value).

Short form:

function f(x: integer): integer = x * x;

Full form:

50 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

function f(x: integer): integer {
return x * x;

}

When return type is not specified, it is considered unit:

function f(x: integer) {
print(x);

}

Namespace

Definitions can be put in a namespace:

namespace foo {
entity user {

name;
country;

}

struct point {
x: integer;
y: integer;

}

enum country {
USA,
DE,
FR

}
}

query get_users_by_country(c: foo.country) = foo.user @* { .country == c };

Features of namespaces:

• No need to specify a full name within a namespace, i. e. can use country under namespace foo directly, not
as foo.country.

• Names of tables for entities and objects defined in a namespace contain the full name, e. g. the table for entity
foo.user will be named c0.foo.user.

• It is allowed to define namespace with same name multiple times with different inner definitions.

Anonymous namespace:

namespace {
// some definitions

}

Can be used to apply an annotation to a set of definitions:

@mount('foo.bar')
namespace {

entity user {}
entity company {}

}

2.4. Language Features 51

Rell Documentation, Release v0.10.0

External

External blocks are used to access entities defined in other blockchains:

external 'foo' {
@log entity user {

name;
}

}

query get_all_users() = user @* {};

In this example, 'foo' is the name of an external blockchain. To be used in an external block, a blockchain must be
defined in the blockchain configuration (dependencies node).

Every blockchain has its chain_id, which is included in table names for entities and objects of that chain. If the
blockchain 'foo' has chain_id = 123, the table for the entity user will be called c123.user.

Other features:

• External entities must be annotated with the @log annotation. This implies that those entity cannot have mutable
attributes.

• Values of external entities cannot be created or deleted.

• Only entities and namespaces are allowed inside of an external block.

• Can have only one external block for a specific blockchain name.

• When selecting values of an external entity (using at-expression), an implicit block height filter is applied, so
the active blockchain can see only those blocks of the external blockchain whose height is lower than a specific
value.

• Every blockchain stores the structure of its entities in meta-information tables. When a blockchain is started, the
meta-information of all involved external blockchains is verified to make sure that all declared external entities
exist and have declared attributes.

Transactions and blocks

To access blocks and transactions of an external blockchian, a special syntax is used:

namespace foo {
external 'foo' {

entity transaction;
entity block;

}
}

function get_foo_transactions(): list<foo.transaction> = foo.transaction @* {};
function get_foo_blocks(): list<foo.block> = foo.block @* {};

• External block must be put in a namespace in order to prevent name conflict, since entities transaction
and block are already defined in the top-level scope (they represent transactions and blocks of the active
blockchain).

• Namespace name can be arbitrary.

• External and non-external transactions/blocks are distinct, incompatible types.

• When selecting external transactions or blocks, an implicit height filter is applied (like for external entities).

52 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Mount names

Entities, objects, operations and queries have mount names:

• for entities and objects, those names are the SQL table names where the data is stored

• for operations and queries, a mount name is used to invoke an operation or a query from the outside

By default, a mount name is defined by a fully-qualified name of a definition:

namespace foo {
namespace bar {

entity user {}
}

}

The mount name for the entity user is foo.bar.user.

To specify a custom mount name, @mount annotation is used:

@mount('foo.bar.user')
entity user {}

The @mount annotation can be specified for entities, objects, operations and queries.

In addition, it can be specified for a namespace:

@mount('foo.bar')
namespace ns {

entity user {}
}

or a module:

@mount('foo.bar')
module;

entity user {}

In both cases, the mount name of user is foo.bar.user.

A mount name can be relative to the context mount name. For example, when defined in a namespace

@mount('a.b.c')
namespace ns {

entity user {}
}

entity user will have following mount names when annotated with @mount:

• @mount('.d.user') -> a.b.c.d.user

• @mount('^.user') -> a.b.user

• @mount('^^.x.user') -> a.x.user

Special character . appends names to the context mount name, and ^ removes the last part from the context mount
name.

A mount name can end with ., in that case the name of the definition is appended to the mount name:

2.4. Language Features 53

Rell Documentation, Release v0.10.0

@mount('foo.')
entity user {} // mount name = "foo.user"

@mount('foo')
entity user {} // mount name = "foo"

2.4.3 Expressions

Table of Contents

• Expressions

– Values

– Operators

* Special

* Comparison

* Arithmetical

* Logical

* If

* Other

Values

Simple values:

• Null: null (type is null)

• Boolean: true, false

• Integer: 123, 0, -456

• Text: 'Hello', "World"

• Byte array: x'1234', x"ABCD"

Text literals may have escape-sequences:

• Standard: \r, \n, \t, \b.

• Special characters: \", \', \\.

• Unicode: \u003A.

Operators

Special

• . - member access: user.name, s.sub(5, 10)

54 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

• () - function call: print('Hello'), value.to_text()

• [] - element access: values[i]

Comparison

• ==

• !=

• ===

• !==

• <

• >

• <=

• >=

Operators == and != compare values. For complex types (collections, tuples, structs) they compare member values,
recursively. For entity values only object IDs are compared.

Operators === and !== compare references, not values. They can be used only on types: tuple, struct, list,
set, map, gtv, range.

Example:

val x = [1, 2, 3];
val y = list(x);
print(x == y); // true - values are equal
print(x === y); // false - two different objects

Arithmetical

• +

• -

• *

• /

• %

• ++

• --

Logical

• and

• or

• not

2.4. Language Features 55

Rell Documentation, Release v0.10.0

If

Operator if is used for conditional evaluation:

val max = if (a >= b) a else b;
return max;

Other

• in - check if an element is in a range/set/map

2.4.4 Statements

Table of Contents

• Statements

– Local variable declaration

– Basic statements

– If statement

– When statement

– Loop statements

Local variable declaration

Constants:

val x = 123;
val y: text = 'Hello';

Variables:

var x: integer;
var y = 123;
var z: text = 'Hello';

Basic statements

Assignment:

x = 123;
values[i] = z;
y += 15;

Function call:

56 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

print('Hello');

Return:

return;
return 123;

Block:

{
val x = calc();
print(x);

}

If statement

if (x == 5) print('Hello');

if (y == 10) {
print('Hello');

} else {
print('Bye');

}

if (x == 0) {
return 'Zero';

} else if (x == 1) {
return 'One';

} else {
return 'Many';

}

Can also be used as an expression:

function my_abs(x: integer): integer = if (x >= 0) x else -x;

When statement

Similar to switch in C++ or Java, but using the syntax of when in Kotlin:

when(x) {
1 -> return 'One';
2, 3 -> return 'Few';
else -> {

val res = 'Many: ' + x;
return res;

}
}

Features:

• Can use both constants as well as arbitrary expressions.

• When using constant values, the compiler checks that all values are unique.

• When using with an enum type, values can be specified by simple name, not full name.

2.4. Language Features 57

Rell Documentation, Release v0.10.0

A form of when without an argument is equivalent to a chain of if . . . else if:

when {
x == 1 -> return 'One';
x >= 2 and x <= 7 -> return 'Several';
x == 11, x == 111 -> return 'Magic number';
some_value > 1000 -> return 'Special case';
else -> return 'Unknown';

}

• Can use arbitrary boolean expressions.

• When multiple comma-separated expressions are specified, any of them triggers the block (i. e. they are com-
bined via OR).

Both forms of when (with and without an argument) can be used as an expression:

return when(x) {
1 -> 'One';
2, 3 -> 'Few';
else -> 'Many';

}

• else must always be specified, unless all possible values of the argument are specified (possible for boolean
and enum types).

• Can be used in at-expression, in which case it is translated to SQL CASE WHEN . . . THEN expression.

Loop statements

For:

for (x in range(10)) {
print(x);

}

for (u in user @* {}) {
print(u.name);

}

The expression after in may return a range or a collection (list, set, map).

Tuple unpacking can be used in a loop:

val l: list<(integer, text)> = get_list();
for ((n, s) in l) { ... }

While:

while (x < 10) {
print(x);
x = x + 1;

}

Break:

58 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

for (u in user @* {}) {
if (u.company == 'Facebook') {

print(u.name);
break;

}
}

while (x < 5) {
if (values[x] == 3) break;
x = x + 1;

}

2.4.5 Database Operations

At-Operator

Simplest form:

user @ { .name == 'Bob' }

General syntax:

<from> <cardinality> { <where> } [<what>] [limit N]

Cardinality

Specifies whether the expression must return one or many objects:

• T @? {} - returns T, zero or one, fails if more than one found.

• T @ {} - returns T, exactly one, fails if zero or more than one found.

• T @* {} - returns list<T>, zero or more.

• T @+ {} - returns list<T>, one or more, fails if none found.

From-part

Simple (one entity):

user @* { .name == 'Bob' }

Complex (one or more entities):

(user, company) @* { user.name == 'Bob' and company.name == 'Microsoft' and
user.xyz == company.xyz }

Specifying entity aliases:

(u: user) @* { u.name == 'Bob' }

(u: user, c: company) @* { u.name == 'Bob' and c.name == 'Microsoft' and
u.xyz == c.xyz }

2.4. Language Features 59

Rell Documentation, Release v0.10.0

Where-part

Zero or more comma-separated expressions using entity attributes, local variables or system functions:

user @* {} - returns all users

user @ { .name == 'Bill', .company == 'Microsoft' } - returns a specific user (all conditions
must match)

Attributes of an entity can be accessed with a dot, e. g. .name or with an entity name or alias, user.name.

Entity attributes can also be matched implicitly by name or type:

val ms = company @ { .name == 'Microsoft' };
val name = 'Bill';
return user @ { name, ms };

Explanation: the first where-expression is the local variable name, there is an attribute called name in the entity
user. The second expression is ms, there is no such attribute, but the type of the local variable ms is company, and
there is an attribute of type company in user.

What-part

Simple example:

user @ { .name == 'Bob' } (.company.name) - returns a single value (name of the user’s company)

user @ { .name == 'Bob' } (.company.name, .company.address) - returns a tuple of two
values

Specifying names of result tuple fields:

user @* {} (x = .company.name, y = .company.address, z = .year_of_birth) - re-
turns a tuple with named fields (x, y, z)

Sorting:

user @* {} (sort .last_name, sort .first_name) - sort by last_name first, then by
first_name.

user @* {} (-sort .year_of_birth, sort .last_name) - sort by year_of_birth desdend-
ing, then by last_name ascending.

Field names can be combined with sorting:

user @* {} (sort x = .last_name, -sort y = .year_of_birth)

When field names are not specified explicitly, they can be deducted implicitly by attribute name:

val u = user @ { ... } (.first_name, .last_name, age = 2018 - .year_of_birth);
print(u.first_name, u.last_name, u.age);

By default, if a field name is not specified and the expression is a single name (e. g. an attribute of an entity), that
name is used as a tuple field name:

val u = user @ { ... } (.first_name, .last_name);
// Result is a tuple (first_name: text, last_name: text).

To prevent implicit field name creation, specify = before the expression (i. e. use an “empty” field name):

60 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

val u = user @ { ... } (= .first_name, = .last_name);
// Result is a tuple (text, text).

Tail part

Limiting records:

user @* { .company == 'Microsoft' } limit 10

Returns at most 10 objects. The limit is applied before the cardinality check, so the following code can’t fail with
“more than one object” error:

val u: user = user @ { .company == 'Microsoft' } limit 1;

Result type

Depends on the cardinality, from- and what-parts.

• From- and what-parts define the type of a single record, T.

• Cardinality defines the type of the @-operator result: T?, T or list<T>.

Examples:

• user @ { ... } - returns user

• user @? { ... } - returns user?

• user @* { ... } - returns list<user>

• user @+ { ... } - returns list<user>

• (user, company) @ { ... } - returns a tuple (user,company)

• (user, company) @* { ... } - returns list<(user,company)>

• user @ { ... } (.name) - returns text

• user @ { ... } (.first_name, .last_name) - returns (first_name:text,
last_name:text)

• (user, company) @ { ... } (user.first_name, user.last_name, company) - re-
turns (text,text,company)

Nested At-Operators

A nested at-operator can be used in any expression inside of another at-operator:

user @* { .company == company @ { .name == 'Microsoft' } } (...)

This is equivalent to:

val c = company @ { .name == 'Microsoft' };
user @* { .company == c } (...)

2.4. Language Features 61

Rell Documentation, Release v0.10.0

Create Statement

Must specify all attributes that don’t have default values.

create user(name = 'Bob', company = company @ { .name == 'Amazon' });

No need to specify attribute name if it can be matched by name or type:

val name = 'Bob';
create user(name, company @ { company.name == 'Amazon' });

Can use the created object:

val new_company = create company(name = 'Amazon');
val new_user = create user(name = 'Bob', new_company);
print('Created new user:', new_user);

Update Statement

Operators @, @?, @*, @+ are used to specify cardinality, like for the at-operator. If the number of updated records does
not match the cardinality, a run-time error occurs.

update user @ { .name == 'Bob' } (company = 'Microsoft'); // exactly one
update user @? { .name == 'Bob' } (deleted = true); // zero or one
update user @* { .company.name == 'Bad Company' } (salary -= 1000); // any number

Can change only mutable attributes.

Entity attributes can be matched implicitly by name or type:

val company = 'Microsoft';
update user @ { .name == 'Bob' } (company);

Using multiple entities with aliases. The first entity is the one being updated. Other entities can be used in the
where-part:

update (u: user, c: company) @ { u.xyz == c.xyz, u.name == 'Bob', c.name == 'Google' }
→˓ (city = 'Seattle');

Can specify an arbitrary expression returning a entity, a nullable entity or a collection of entities:

val u = user @? { .name == 'Bob' };
update u (salary += 5000);

A single attribute of can be modified using a regular assignment syntax:

val u = user @ { .name == 'Bob' };
u.salary += 5000;

62 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Delete Statement

Operators @, @?, @*, @+ are used to specify cardinality, like for the at-operator. If the number of deleted records does
not match the cardinality, a run-time error occurs.

delete user @ { .name == 'Bob' }; // exactly one
delete user @? { .name == 'Bob' }; // zero or one
delete user @* { .company.name == 'Bad Company' }; // any number

Using multiple entities. Similar to update, only the object(s) of the first entity will be deleted:

delete (u: user, c: company) @ { u.xyz == c.xyz, u.name == 'Bob', c.name == 'Google' }
→˓;

Can specify an arbitrary expression returning an entity, a nullable entity or a collection of entities:

val u = user @? { .name == 'Bob' };
delete u;

2.4.6 System entities

entity block {
block_height: integer;
block_rid: byte_array;
timestamp;

}

entity transaction {
tx_rid: byte_array;
tx_hash: byte_array;
tx_data: byte_array;
block;

}

It is not possible to create, modify or delete values of those entities in code.

chain_context

chain_context.args: module_args - module arguments specified in raw_config under path gtx.
rell.moduleArgs.<module name>. The type is module_args, which must be a user-defined struct. If no
module_args struct is defined in the module, the args field cannot be accessed.

Example of module_args:

struct module_args {
s: text;
n: integer;

}

Corresponding module configuration:

2.4. Language Features 63

Rell Documentation, Release v0.10.0

{
"gtx": {

"rell": {
"moduleArgs": {

"module_name": {
"s": "Hello",
"n": 123

}
}

}
}

}

Code that reads module_args:

function f() {
print(chain_context.args.s);
print(chain_context.args.n);

}

Every module can have its own module_args. Reading chain_context.args returns the args for the current
module, and the type of chain_context.args is different for different modules: it is the module_args struct
defined in that module.

chain_context.blockchain_rid: byte_array - blockchain RID

chain_context.raw_config: gtv - blockchain configuration object, e. g.
{"gtx":{"rell":{"mainFile":"main.rell"}}}

op_context

System namespace op_context can be used only in an operation or a function called from an operation, but not in
a query.

op_context.block_height: integer - the height of the block currently being built (equivalent of
op_context.transaction.block.block_height).

op_context.last_block_time: integer - the timestamp of the last block, in milliseconds (like
System.currentTimeMillis() in Java). Returns -1 if there is no last block (the block currently being built is
the first block).

op_context.transaction: transaction - the transaction currently being built.

2.4.7 Miscellaneous

Comments

Single-line comment:

print("Hello"); // Some comment

Multiline comment:

print("Hello"/*, "World"*/);
/*

(continues on next page)

64 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

(continued from previous page)

print("Bye");

*/

2.5 Advanced Topics

2.5.1 Modules in an Application

Rell application consists of modules. A module is either a single .rell file or a directory with one or multiple
.rell files.

A single-file Rell module must have a module header:

module;

// entities, operations, queries, functions and other definitions

If a .rell file has no module header, it is a part of a directory-module. All such .rell files in a directory belong
to the same directory-module. An exception is a file called module.rell: it always belongs to a directory-module,
even if it has a module header. It is not mandatory for a directory-module to have a module.rell.

Every file of a directory-module sees definitions of all other files of the module. A file-module file sees only its own
definitions.

Example of a Rell source directory tree:

.
app

multi
functions.rell
module.rell
operations.rell
queries.rell

single.rell

app/multi/functions.rell:

function g(): integer = 456;

app/multi/module.rell:

module;
enum state { OPEN, CLOSED }

app/single.rell:

module;
function f(): integer = 123;

Every module has a name defined by its source directory path. The sample source directory tree given above defines
two modules:

• app.multi - a directory-module in the directory app/multi (consisting of 4 files)

• app.single - a file-module in the file app/single.rell

2.5. Advanced Topics 65

Rell Documentation, Release v0.10.0

There may be a root module - a directory-module which consists of .rell files located in the root of the source directory.
Root module has an empty name. Web IDE uses the root module as the default main module of a Rell application.

Import

To access module’s definitions, the module has to be imported:

import app.single;

function test() {
single.f(); // Calling the function "f" defined in the module "app.single

→˓".
}

When importing a module, it is added to the current namespace with some alias. By default, the alias is the last part
of the module name, i. e. single for the module app.single or multi for app.multi. The definitions of the
module can be accessed via the alias.

A custom alias can be specified:

import alias: app.multi;

function test() {
alias.g();

}

It is possible to specify a relative name of a module when importing. In that case, the name of the imported module is
derived from the name of the current module. For example, if the current module is a.b.c,

• import .d; imports a.b.c.d

• import alias: ^; imports a.b

• import alias: ^^; imports a

• import ^.e; imports a.b.e

Run-time

At run-time, not all modules defined in a source directory tree are active. There is a main module which is specified
when starting a Rell application. Only the main module and all modules imported by it (directly or indirectly) are
active.

When a module is active, its operations and queries can be invoked, and tables for its entities and objects are added to
the database on initialization.

2.5.2 Chromia Vault

Short Overview

Chromia Vault is a wallet in nature that supports both same-chain and cross-chain transfers within the Chromia ecosys-
tem. It can be used to transfer any kind of FT3 assets (Chromia equivalent of Ethereum ERC-20 and ERC-721 proto-
cols).

However, besides just transfers, Vault has additional features like dapp account linking and browsing Chromia dapps.
Dapp account linking feature allows you to Single Sign-On (SSO) into your dapp account using the Vault (same way

66 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Google or Facebook login can be used to login into different websites), and to control your dapp account assets directly
from the Vault.

This section describe how an end user can perform such actions on the Chromia Vault webapp.

Accessing the Vault

Creating new account

Account creation is a 3-steps process.

1. First, user will have to choose the account name along with a password for it. The name and password are not
public, and will only be used for accessing the account later on.

2. After account name and password fields are filled, by clicking “Continue” user will be taken to the new screen
showing 15 words (the mnemonic).

It is highly advised to print out or write down these words and store them in a safe place.

Important: Knowing these 15 words in correct order is the only way to retrieve the account if the password has been

2.5. Advanced Topics 67

https://wallet-v2.chromia.dev/

Rell Documentation, Release v0.10.0

lost.

3. After user has safely stored the words, clicking “Continue” will take user to a screen where they will have to
click (or drag&drop) the words in the correct order and thus “confirm” that they has stored the words somewhere.

When all words are laid down in the correct order will the “Confirm” button be enabled.

By clicking “Confirm”, the account will be stored to local browser storage and user will be taken to the Dashboard
screen.

68 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Accessing the account (Login)

All created accounts will be stored to local browser storage (on the device). Accounts are unlocked by a password that
was chosen while creating an account.

If the user wants to access an account on some other device (other than the one they have created the account on), they
can use the “Import Existing Account”:

Importing existing account

Import existing account feature is used when you are trying to access your account on other devices, or when you have
forgotten your password so can’t login normally.

Importing account is a 2-steps process.

1. First user will be asked to provide the 15 words mnemonic from when they created that account in correct order.

2.5. Advanced Topics 69

Rell Documentation, Release v0.10.0

2. On the next screen user will be asked to provide a name for the account and choose the password for it, which
will be used to access the account on that device from now on.

Dashboard

The Dashboard page is separated into 3 different sections: Chromia Accounts, Linked Apps and Explore Apps.

Chromia accounts

Chromia Accounts are something that we usually call “main chain” accounts. There could be multiple Chromia
Accounts within one Vault Account. Gaining access to a Vault Account will allow access to all Chromia Accounts
beneath it.

70 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Explore Apps

Explore Apps section is basically app explorer (Google play / App store equivalent) where one can browse and explore
all the apps built in chromia ecosystem.

Linked Apps

Linked Apps section contains all the apps that user has created an account for, which this Vault Account has control
over.

Each dapp in Chromia ecosystem is basically it’s own blockchain. Every account (that little “Tile”) on the dashboard
represents a combination of blockchain and specific account on that particular blockchain. These “Tile” are composed
of 2 parts:

• Automatically generated squared image created from Blockchain ID, and

• Automatically generated robo-icon created from the Account ID.

That means if you have multiple accounts on the same Blockchain, they will have the same squared image, while
robo-icons will always be unique as they are Account specific.

Clicking on any of the accounts in the dashboard is taking to the “wallet” functionality of the Vault, used to send/receive
assets from/to that specific account.

2.5. Advanced Topics 71

Rell Documentation, Release v0.10.0

Asset Transfer (Wallet features)

Asset transfer logic is blockchain independent, which means that assets could be sent from any to any blockchain
within the chromia ecosystem. In order to access the wallet section, one needs to select the account from the dashboard
first.

72 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Assets

Assets section is showing the list of all the available assets in that specific Account.

2.5. Advanced Topics 73

Rell Documentation, Release v0.10.0

Sending assets

Assets are sent from the “Send Tokens” tab of the transfer section.

You can either enter the address manually (copy/paste) or use the scanner to scan QR code containing recipient address
info. The address is composed of 2 parts - blockchain id and account id, separated by the semicolon. So, address format
is <blockhainId;accountId>.

Once address field is populated, “Application” and “Account” will be filled with appropriate hash icons automatically
generated from the input address.

After address is populated, select an appropriate Asset and Amount to send, and click “Send”.

74 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Receiving assets

On the “Receive Tokens” tab of transfer section, the address for this specific account is shown.

There is also a QR code shown next to the address. Instead of providing the address itself, it’s possible to provide QR
code which someone can scan and send assets.

Furthermore, besides holding just address info, QR code can also hold “Amount” and “Asset” information. Whenever
“Amount” or “Asset” fields are changed, QR code is being updated.

When such a QR code (containing asset or amount info) is scanned from the “Send Tokens” tab, those fields will be
auto-populated on the UI as well.

Transaction history

Transaction history is a table showing account’s transactional activities.

It contains info about transaction type (sending or receiving), the account to which we have sent or from which we
have received the assets (sender/recipient), along with some other information like which Assets were transferred, the
amount, timestamp, etc.

2.5. Advanced Topics 75

Rell Documentation, Release v0.10.0

SSO and app linking

Chromia Vault offers Single Sign-On (SSO) service for the dapps in Chromia ecosystem. This allows users to login
to different systems (apps) using single account. In order to take advantage of it, the application needs to integrate
with Chromia Vault SSO service. Similarly to “Login with Facebook” or “Login with Google” features, once Chromia
Vault has been used for SSO, user will have to authorize the app in the system. That looks like on the image below:

76 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

2.5.3 FT3 Module

FT3 is the recommended standards to handle tokens in Chromia ecosystem. It allow dapps to make full use of Chromia
Vault, including Single Sign-On (SSO), assets transfer and visibility on the Vault’s dapp explorer.

2.5. Advanced Topics 77

Rell Documentation, Release v0.10.0

FT3 consists of Rell module which contains blockchain logic, and client side lib which provides js API for interaction
with the module.

Features

FT3 supports the following features:

• Account management

• Asset management and transaction history

Account Management

The central entity of FT3 module is account. An account is uniquely identified by an id:

entity account {
key id: byte_array;

}

Account can be controlled by multiple users with different level of access rights. The authentication descriptors defines
who can control an account and what he can do with it:

entity account_auth_descriptor {
descriptor_id: byte_array;
key account, descriptor_id;
index descriptor_id;
auth_type: text;
args: byte_array;

}

At the moment, the module defines two types of authentication descriptors: SingleSig and MultiSig and two autho-
rization types: Account and Transfer. The first flag specifies who can edit an account, and the later who can transfer
the assets.

Although there are only two predefined authorization flags, dapp developers are free to add more flag types to create a
custom access control for his dapp.

SingleSig authentication descriptor is used to provide access to a single user. The descriptor accepts user’s public key
and authorization flags which specify what access rights the user has:

struct single_sig_args {
flags: set<text>;
pubkey;

}

MutliSig authentication descriptor provides M of N control of an account. It accepts a list of N public keys, of which
a minimum number M of signatures are required to authorize an operation and a set of authorization flags:

struct multi_sig_args {
flags: set<text>;
signatures_required: integer;
pubkeys: list<pubkey>;

}

78 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Asset Management

FT3 provides support for multiple assets. Assets can be transfered inside and between different chains. Assets coming
from outside of a chain are only accepted if source chains and assets are registered on the chain. The asset table
contains list of registered assets (both native and the ones issued by other chains):

entity asset {
id: byte_array;
key id;
key name;
issuing_chain_rid: byte_array;

}

The balance table keeps track of an account’s assets:

entity balance {
key account, asset;
mutable amount: integer = 0;

}

Project Setup

In this section, we explain how to setup a project to use FT3.

First lets clone the ft3-lib repository:

git clone https://bitbucket.org/chromawallet/ft3-lib.git

Checkout the development branch.

Create a new directory for your project, we will work inside this directory.

Blockchain side setup

Config project to use FT3

1. Inside the project create a rell directory with the following structure:

rell/
config/
lib/

2. From the cloned ft3-lib, copy rell/ft3 directory into our rell/lib directory.

3. Inside rell/config create a ft3_config.rell file, and define a ft3_config object:

// rell/config/ft3_config.rell

object ft3_config {
blockchain_name: text = <dapp_name>;
blockchain_website: text = <dapp_website>;
blockchain_description: text = <dapp_description>;

}

4. Create a main.rell file for the dapp inside rell directory, then include ft3_config and ft3-lib:

2.5. Advanced Topics 79

Rell Documentation, Release v0.10.0

include "config/ft3_config";
include "lib/ft3/ft3_xc_basic_dev";

Warning: Make sure ft3_config is included before ft3-lib, because the lib has dependency on
ft3_config object.

After this step rell directory should have the following structure:

rell/
config/

ft3_config.rell

lib/
ft3/

main.rell

Database setup

If you haven’t already, follow the instruction here to setup a database: https://rell.chromia.com/en/master/eclipse/
eclipse.html#database-setup

Node configuration

Next step is to add scripts, binaries and configuration which is needed for blockchain logic to run.

1. From ft3-lib copy postchain directory to our project’s root directory.

2. Navigate to postchain/config/nodes/. Duplicate the template directory and rename it to
<dapp_name> (or any name of your choice).

3. Update postchain/config/nodes/my_dapp/blockchains/dapp/entry-file.txt to specify
path to dapp main.rell file (relative to postchain directory). In our case:

// entry-file.txt
../rell/main.rell

Now run:

postchain/bin/run-node.sh <dapp_name>

If everything is properly configured, you will soon see a success message printed to the console:

Postchain node launching is done

In subsequent runs, if we want to wipe old database, we can add the -W option:

postchain/bin/run-node.sh <dapp_name> -W

With that the blockchain side is ready, we can go on to the client side.

80 Chapter 2. Chromia

https://rell.chromia.com/en/master/eclipse/eclipse.html#database-setup
https://rell.chromia.com/en/master/eclipse/eclipse.html#database-setup

Rell Documentation, Release v0.10.0

Client side setup

Create a client directory in project root and run npm init inside it (or bootstrap a project using a generator, e.g.
create-react-app).

Add dependencies to the node project:

npm i --save ft3-lib
npm i --save postchain-client

Add other libraries to your liking.

Directory Chain

In Chromia ecosystem, the directory chain is responsible for keeping track of all chains. FT3 will connect to directory
chain to get connection info of a chain to which the lib wants to connect.

The FT3 client lib contains a DirectoryService interface for this interaction.

Since directory chain is not implemented yet, we have to implement a DirectoryService and provide a list of
chains for FT3 to access.

The simplest way to define directory chain is to extends DirectoryServiceBase class, which should be
enough in most of the cases. Inside client directory create a /lib/directory-service.js file:

// client/lib/directory-service.js
import { DirectoryServiceBase, ChainConnectionInfo } from 'ft3-lib';

const chainList = [

// Our local chain
new ChainConnectionInfo(
Buffer.from(

'0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF',
'hex'

),
'http://localhost:7740'

),
/*
We can add other chains to the list in the future:
new ChainConnectionInfo(

Buffer.from('<chain1RID>', 'hex'),
'http://chain1URL'

),
new ChainConnectionInfo(

Buffer.from('<chain2RID>', 'hex'),
'http://chain2URL'

),
new ChainConnectionInfo(

Buffer.from('<chain3RID>', 'hex'),
'http://chain3URL'

)

*/
];

export default class DirectoryService extends DirectoryServiceBase {
constructor() {

(continues on next page)

2.5. Advanced Topics 81

Rell Documentation, Release v0.10.0

(continued from previous page)

super(chainList);
}

}

Note: Instead of defining the chainList in the class file, it should be done in a configuration file of the app.

Conclusion

That concluded the project setup process. After setup, our project should look like this:

root
client/

lib/
directory-service.js

...

poschain/
config/

nodes/
my_dapp/

...

rell/
config/

ft3_config.rell
lib/

ft3/
main.rell

Javascript library

In this section, we explain how to use the client side library (ft3-lib node package).

Initialize Blockchain object

The first thing that has to be done before a blockchain can be accessed is to initialize Blockchain object which is used
to interact with the blockchain:

// /client/index.js
import { Blockchain } from 'ft3-lib';
import DirectoryService from './lib/directory-service';

const blockchainRID =
→˓'0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF';
const chainId = Buffer.from(

blockchainRID,
'hex'

);

(continues on next page)

82 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

(continued from previous page)

const blockchain = await Blockchain.initialize(
chainId,
new DirectoryService()

);

Note: Chain id is specified in the config file postchain/config/nodes/
<dapp_name>/blockchains/ft3/brid.txt. Here we use the default value
‘0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF’.

Details of the initialized chain can be accessed by accessing info (instance of BlockchainInfo) property which has
name, website and description properties:

console.log("-------------- Blockchain Info --------------");
console.log("name : ${blockchain.info.name} ");
console.log("website : ${blockchain.info.website} ");
console.log("description : ${blockchain.info.description} ");

These fields have the values which are set in the ft3_config.rell file.

The User class

The User class represents a logged in user, and is used to keep the user’s key pair and authentication descriptor.

Any method that require transaction signing will need an object of this class.

import { SingleSignatureAuthDescriptor, User, FlagsType } from 'ft3-lib';

...

const authDescriptor = new SingleSignatureAuthDescriptor(
keyPair.pubKey,
[FlagsType.Account, FlagsType.Transfer]

);
const user = new User(keyPair, authDescriptor);

Many functions provided by Blockchain class require User object, for example:

const authDescriptor = ...;
const user =;

// gets all accounts where this user has this type of authDescriptor
const accounts = await blockchain.getAccountsByAuthDescriptorId(

authDescriptor.id,
user

);

In most of the cases the same User instance is used throughout an app (the “current user”). In order to avoid passing
both Blockchain and User objects around in an app, the BlockchainSession class is introduced.

It has many of the same functions as Blockchain class, but with a difference that functions provided by the
BlockchainSession don’t require User parameter:

2.5. Advanced Topics 83

Rell Documentation, Release v0.10.0

const authDescriptor = ...;
const user =;

const session = blockchain.newSession(user);
const accounts = await session.getAccountsByAuthDescriptorId(authDescriptorId);

The Account class

An Account object contains:

• assets: an array of AssetBalance instances.

• authDescriptor: an array of AuthDescriptor instances.

• session: the BlockchainSession that returned it.

Account registration

const ownerKeyPair = ...;
const authDescriptor = new SingleSignatureAuthDescriptor(
ownerKeyPair.pubKey,
[FlagsType.Account, FlagsType.Transfer]

);

const account = await blockchain.registerAccount(authDescriptor, user);

More commonly the current user will be creating an account for themselves. In those case we can simply pass user.
authDescriptor into the operation:

const account = await blockchain.registerAccount(user.authDescriptor, user);

Searching accounts

Accounts can be searched by account ID:

const account = await session.getAccountById(accountId);

by authentication descriptor ID:

const accounts = await session.getAccountsByAuthDescriptorId(authDescriptorId);

or by participant ID:

const accounts = await session.getAccountsByParticipantId(user.keyPair.pubKey);

For SingleSig and MultiSig account descriptors, participant ID is pubKey. Therefore this function allows to search for
accounts by pubKey.

The difference between getAccountsByParticipantId and getAccountsByAuthDescriptorId is:

• getAccountsByParticipantId returns all accounts where user is participant, no matter which access
rights user has or which type of authentication is used to control the accounts

84 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

• while getAccountsByAuthDescriptorId returns only accounts where user has access with specific type
of authentication and authorization.

Transferring assets

const account = await session.getAccountById(accountId);
await account.transfer(recipientId, assetId, amount);

Note: Here we see that the Account class retains the same characteristic as BlockchainSession: we don’t need to
provide an User object to sign the transaction.

Adding authentication descriptor

const newAuthDescriptor = new SingleSignatureAuthDescriptor(
pubKey,
[FlagsType.Account, FlagsType.Transfer]

);
const account = await session.getAccountById(accountId);
await account.addAuthDescriptor(newAuthDescriptor);

Calling operations

Single operation

FT3 operations and other blockchain operations can also be directly called using the Blockchain and BlockchainSes-
sion classes.

For instance, the same “adding auth descriptor” operation above can be done using:

import { op } from 'ft3-lib';

const account = ...
const user = ...
const newAuthDescriptor = ...

await blockchain.call(
op(
'ft3.add_auth_descriptor',
accountId,
user.authDescriptor.id,
newAuthDescriptor

),
user

)

2.5. Advanced Topics 85

Rell Documentation, Release v0.10.0

Multiple operations

The transaction builder can be used if multiple operations have to be called in a single transaction:

await blockchain.transactionBuilder()
.add(op('foo', param1, param2))
.add(op('bar', param))
.buildAndSign(user)
.post();

Previous statement creates a single transaction with both foo and bar operations, adds signers from user’s auth
descriptor and signs it with user’s private key.

If more control is needed over signers and signing then build and sign functions could be used instead:

await blockchain.transactionBuilder()
.add(op('foo', param1, param2))
.add(op('bar', param))
.build(signersPublicKeys)
.sign(keyPair1)
.sign(keyPair2)
.post();

Instead of immediately sending a transaction after building it, it is also possible to get a raw transaction:

const rawTransaction = blockchain.transactionBuilder()
.add(op('foo', param1, param2))
.buildAndSign(user)
.raw();

which can be sent to a blockchain node later:

await blockchain.postRaw(rawTransaction);

The nop operation

To prevent replay attack postchain rejects a transaction if it has the same content as one of the transactions already
stored on the blockchain. For example if we directly call ft3.transfer operation two times, the second call will fail.

const inputs = ...
const outputs = ...
const user = ...

// first will succeed
await blockchain.call(op('ft3.transfer', inputs, outputs), user);

// second will fail
await blockchain.call(op('ft3.transfer', inputs, outputs), user);

To avoid transaction failing, nop operation can be added to a second transaction in order to make it differ from the first
transaction.

import { op, nop } from 'ft3-lib';

await blockchain.transactionBuilder()

(continues on next page)

86 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

(continued from previous page)

.add(op('ft3.transfer', inputs, outputs))

.add(nop())

.buildAndSign(user)

.post();

nop() function returns nop operation with a random number as argument.

GtvSerializable interface

In typescript, op function is defined as:

function op(name: string, ...args: GtvSerializable[]): Operation {
return new Operation(name, ...args);

}

It expects arguments to implement GtvSerializable interface, i.e. to have implemented toGTV() function.

Array, Buffer, String and Number are already extended with toGTV function.

If user defined object wants to be passed to an operation, it has to implement GtvSerializable interface, e.g.

class Player {
constructor(firstName, lastName) {
this.firstName = firstName;
this.lastName = lastName;

}

toGTV() {
return [this.firstName, this.lastName],

}
}

await blockchain.call(
op('some_op', new Player('John', 'Doe')),
user

)

To be able to handle the Player object, on blockchain side, some_op would have to be defined as either:

operation some_op(player: list<gtv>) {
...

}

or

record player {
first_name: text;
last_name: text;

}

operation some_op(player) {
...

}

2.5. Advanced Topics 87

Rell Documentation, Release v0.10.0

Rell Integration

Defining DApp user class

The ft3.account class provided by ft3 module can be used for account management.

An example dapp’s user account could be defined as:

// user.rell
entity user {
first_name: text;
last_name: text;
age: integer;
key account: ft3.account;

}

In this user model, there is no public key or user ID. Those details are provided by ft3.account.

ft3.account has an id property which uniquely identifies an account, and access is controlled by ft3.
account_auth_descriptor which include user public key.

The underlying structure of ft3.account and ft3.account_auth_descriptor is explained in FT3 Fea-
tures.

Note: It should be noted that this user entity is a dapp-defined user, and has no relationship with ft3-lib’s User
class mentioned in earlier section.

Now let’s add user entity to the project. First we create user.rell in rell directory and add user entity defined above,
and then include user file in main.rell:

// main.rell
include "config/ft3_config";
include "lib/ft3/ft3_xc_basic_dev";
include "user";

After user class is defined, the next step is to define operation used to create an instance of user:

operation create_user(
first_name: text,
last_name: text,
age: integer,
user_auth: ft3.auth_descriptor

) {
val account_id = ft3.create_account_with_auth(user_auth);
create user (
first_name,
last_name,
age,
ft3.account @ { account_id }

);
}

Restart the node for changes to take effect. Because we have changed database structure, we need to add -W option to
delete the database and add new user table:

postchain/bin/run-node.sh <dapp_name> -W

88 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

On the client side, operation can be called using ft3-lib (or postchain-client):

import DirectoryService from './lib/directory-service';
import { util } from 'postchain-client';
import {
op,
Blockchain,
SingleSignatureAuthDescriptor,
FlagsType,
User

} from 'ft3-lib';

const keyPair = util.makeKeyPair();
const user = new User(
keyPair,
new SingleSignatureAuthDescriptor(
keyPair.pubKey,
[FlagsType.Account, FlagsType.Transfer]

)
);

const blockchain = await Blockchain.initialize(
chainId,
new DirectoryService()

);
const session = blockchain.newSession(user);

await session.call(op(
'create_user',
'John',
'Doe',
30,
user.authDescriptor

));

We can check if create_user operation is executed successfully by connecting to postchain database and executing:

select * from dapp_name."c0.user";

Single Sign-on (SSO)

SSO allows a user to login to different applications with a single account. In order for SSO to work, application has to
be integrated with a SSO service.

In Chromia ecosystem the role of a SSO service is handled by Chromia Vault, though it can be easily implemented in
any other FT3 application thanks to FT3 module’s flexible authentication model.

As already said access to a FT3 account is controlled with authentication descriptors. So if an auth descriptor with a
Vault account’s public key is added to dapp’s account, Vault will have control over the dapp account and it will be able
to edit authentication descriptors.

When user wants to SSO into a dapp, dapp just has to generate a new key pair, and ask Vault to add new auth descriptor
with that keypair to the dapp’s account. The user (or rather, the user’s current device) can now use that new key pair
to perform transactions for the account. Such keypairs are disposable and can safely be discarded or replaced at user’s
discretion.

2.5. Advanced Topics 89

Rell Documentation, Release v0.10.0

Register flow

A standard register flow is as follow:

Step 1. At Dapp:

1. User click on ‘Register’ button.

2. Redirect to vault to collect vault account’s pubkey to be added to ft3 account during registration.

• An auth descriptor with Vault’s pubkey is added for SSO (add new auth descriptors).

• Another auth descriptor (created by dapp) is used to interact with the dapp (sign transactions).

• Query parameter:

returnUrl - dapp url which will be opened after collecting vault account pub key

When using Vault as SSO service, the redirect url should looks like this: https://wallet-v2.chromia.dev/
?route=/link-account&returnUrl=<dapp_address>.

Step 2. At Vault:

1. User login to a vault account.

2. Vault get user’s pubkey.

3. Redirect back to dapp (using returnUrl) with query paramter:

pubkey - vault account’s public key which will be added to auth descriptor.

Step 3. At Dapp:

1. Generate new key pair for user auth descriptor.

2. Create auth descriptor with generated pub key (user auth descriptor).

3. Read vault account pub key from query parameter.

4. Create auth descriptor with vault account pub key (vault auth descriptor).

5. Register dapp user account with user auth descriptor, and add vault auth descriptor for the newly created account.

And now js code sample. First we open the Vault to collect Vault account’s pub key:

const returnUrl = encodeURIComponent('http://my-dapp-account-creation-url');
window.location.href = `https://wallet-v2.chromia.dev/?route=/link-account&returnUrl=$
→˓{returnUrl}`;

After user logs into their Vault account, Vault then redirects them to returnUrl page in the dapp where following
logic has to be executed:

import { util } from 'postchain-client';
import {
op,
Blockchain,
SingleSignatureAuthDescriptor,
FlagsType,
User

} from 'ft3-lib';

// The parse function parses query parameter into an object
const { pubKey } = parse(location.search || {});

(continues on next page)

90 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

(continued from previous page)

const vaultAuthDescriptor = new SingleSignatureAuthDescriptor(
pubKey,
[FlagsType.Account, FlagsType.Transfer]

);

const keyPair = util.makeKeyPair();
const user = new User(
keyPair,
new SingleSignatureAuthDescriptor(
keyPair.pubKey,
[FlagsType.Account, FlagsType.Transfer]

)
);

const blockchain = await Blockchain.initialize(
chainId,
new DirectoryService()

);

await blockchain.call(
op(
'create_user',
firstName,
lastName,
age,
user.authDescriptor,
vaultAuthDescriptor

),
user

);

On the blockchain, we will have to update create_user operation to handle 2 auth descriptors:

operation create_user(
first_name: text,
last_name: text,
age: integer,
user_auth: ft3.auth_descriptor,
vault_auth: ft3.auth_descriptor

) {
val account_id = ft3.create_account_with_auth(user_auth);
create user (
first_name,
last_name,
age,
ft3.account @ { account_id }

);

val account = account @ { .id == account_id };
ft3._add_auth_descriptor(account, vault_auth);

}

Note: Even though it make more sense for the account to be created using vault_auth (because user_auth is
a disposable keypair), it should be noted that while creating an account, ft3 create account_id by hashing the auth
descriptor used for creation.

2.5. Advanced Topics 91

Rell Documentation, Release v0.10.0

Because account_id is a key attributes of account, if you use vault_auth to create the account and an user
try to register a second account, the same vault_auth as the first will be used and thus fails the transaction.

Login flow

Step 1. At Dapp:

1. User click on ‘Login with wallet’ button to login to a dapp account.

2. Generate a new key pair and save key pair to local storage.

3. Redirect to user the vault to authorize generated key pair. Query parameters:

dappId - ID of the dapp (blockchain RID)

accountId - dapp account ID

pubkey - generated public key

successAction - vault redirects to this URL after successful authorization

Step 2. At Vault:

1. Userlogin to vault.

2. Vault display authorization form with dapp account details.

3. User click authorize.

4. Vault connects to the dapp chain and adds authorization descriptor.

5. Vault redirect user to the URL provided in successAction query parameter.

Step 3. At Dapp:

1. Read stored key pair from Step 1.

2. Complete dapp login flow and start controlling account with the keypair.

And again here’s a basic code which does the steps needed on a dapp side:

import { util } from 'postchain-client';
import DirectoryService from './lib/directory-service';

const { pubKey, privKey } = util.makeKeyPair();

localStorage.setItem('keyPair', JSON.stringify({
pubKey: pubKey.toString('hex'),
privKey: privKey.toString('hex')

}));

const returnUrl = encodeURIComponent('http://my-dapp-login-success-url');

const href = `https://wallet-v2.chromia.dev/?route=/authorize&dappId=${chainIdString}&
→˓accountId=${accountId}&pubkey=${pubKey}&successAction=${returnUrl}`;

window.location.href = href;

And then on the page where we are redirected after successful authorization (step 3) we verify auth descriptor is added
to our ft3 account:

92 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

const { pubKey, privKey } = JSON.parse(localStorage.getItem('keyPair'));

const keyPair = {
pubKey: Buffer.from(pubKey, 'hex'),
privKey: Buffer.from(privKey, 'hex')

};

const authDescriptor = new SingleSignatureAuthDescriptor(
keyPair.pubKey,
[FlagsType.Account, FlagsType.Transfer]

);

const user = new User(keyPair, authDescriptor);
const blockchain = await Blockchain.initialize(

Buffer.from(chainIdString, 'hex'),
new DirectoryService()

);

const accounts = await blockchain.getAccountsByParticipantId(
keyPair.pubKey,
user

);

const isAdded = accounts.some(({ id_ }) => (
id_.toString('hex').toUpperCase() === accountId.toUpperCase()

));

if (isAdded) {
// do dapp specific login, i.e. initialize dapp user object

} else {
// display login error

}

Congratulations! Your dapp is now fully FT3-integrated!

2.6 Upgrading to Rell 0.10

There are two kinds of breaking changes in Rell 0.10.0:

1. Rell Language:

• Module System; include is deprecated and will not work.

• Mount names: mapping of entities and objects to SQL tables changed.

• class and record renamed to entity and struct, the code using old keywords will not compile.

• Previously deprecated library functions are now unavailable; the code using them will not compile.

2. Configuration and tools:

• Postchain blockchain.xml: now needs a list of modules instead of the main file name; module argu-
ments are per-module.

• Run.XML format: specifying module instead of main file; module arguments are per-module.

• Command-line tools: accept a source directory path and main module name combination instead of the
main .rell file path.

2.6. Upgrading to Rell 0.10 93

Rell Documentation, Release v0.10.0

2.6.1 Step-by-step upgrade

1. Read about the Module System.

2. Read about mount names.

3. Use the migrate-v0.10.sh tool to rename class, record and deprecated function names (see below).

4. Manually update the source code to use the Module System instead of include.

5. Use @mount annotation to set correct mount names to entities, objects, operations and queries (recommended
to apply @mount to entire modules or namespaces, not to individual definitions).

6. Update configuration files, if necessary (see the details below).

7. The Web IDE users the root module as the main module, so make sure you have it and import all required
modules there.

2.6.2 Details

migrate-v0.10.sh tool

The tool can be found in the postchain-node directory of a Rell distribution. It renames class, record and
most of deprecated functions, e. g. requireNotEmpty() -> require_not_empty.

Usage: migrator [--dry-run] DIRECTORY
Replaces deprecated keywords and names in all .rell files in the directory
→˓(recursively)

DIRECTORY Directory
--dry-run Do not modify files, only print replace counts

Specify a Rell source directory as an argument, and the tool will do renaming in all .rell files in that directory and its
subdirectories.

NOTE. UTF-8 encoding is always used by the tool; if files use a different encoding, some characters may be broken.
It is recommended to not run the tool if there are uncommitted changes in the directory. After running it, review the
changes it made.

blockchain.xml

New blockchain.xml Rell configuration looks like this (only changed parts shown):

<dict>
<entry key="gtx">

<dict>
<entry key="rell">

<dict>
<entry key="moduleArgs">

<dict>
<entry key="app.foo">

<dict>
<entry key="message">

<string>Some common message...</string>
</entry>

</dict>
</entry>
<entry key="app.bar">

(continues on next page)

94 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

(continued from previous page)

<dict>
<entry key="x">

<int>123456</int>
</entry>
<entry key="y">

<string>Hello!</string>
</entry>

</dict>
</entry>

</dict>
</entry>
<entry key="modules">

<array>
<string>app.foo</string>
<string>app.bar</string>

</array>
</entry>

</dict>
</entry>

</dict>
</entry>

</dict>

What was changed:

• gtx.rell.moduleArgs is now a dictionary, specifying module_args for multiple modules (in older
versions there was only one module_args for a Rell application, now there can be one module_args per
module).

• gtx.rell.modules is an array of module names

run.xml

An example of a new run.xml file:

<run wipe-db="true">
<nodes>

<config src="node-config.properties" add-signers="false" />
</nodes>
<chains>

<chain name="test" iid="1" brid=
→˓"01234567abcdef01234567abcdef01234567abcdef01234567abcdef01234567">

<config height="0">
<app module="app.main">

<args module="app.bar">
<arg key="x"><int>123456</int></arg>
<arg key="y"><string>Hello!</string></arg>

</args>
<args module="app.foo">

<arg key="message"><string>Some common message...</string></
→˓arg>

</args>
</app>

</config>
</chain>

(continues on next page)

2.6. Upgrading to Rell 0.10 95

Rell Documentation, Release v0.10.0

(continued from previous page)

</chains>
</run>

What was changed:

• module tag replaced by app, which has module attribute

• there can be multiple args elements, each must have a module attribute

2.7 Eclipse IDE

2.7.1 Installation

Prerequisites

• Java 8+.

• To be able to run a Postchain node: PostgreSQL 10.

Using a full Rell Eclipse IDE bundle

Rell Eclipse IDE can be downloaded here: https://www.chromia.dev/rell-eclipse/index.html.

Download an archive for your OS.

• Linux: unpack, run eclipse

• Windows: unpack, run eclipse.exe

• MacOS: open the DMG image, run or install Eclipse.

Adding Rell plugin to an existing Eclipse IDE

If you already have an Eclipse IDE (for example, Eclipse IDE for Java), the Rell plugin can be added to it.

1. Go to the menu Help - Install New Software. . .

2. In the Install dialog, click Add. . . , then type:

• Name: Rell

• Location: https://www.chromia.dev/rell-eclipse/update

96 Chapter 2. Chromia

https://www.chromia.dev/rell-eclipse/index.html
https://www.chromia.dev/rell-eclipse/update

Rell Documentation, Release v0.10.0

3. Rell shall appear in the list. Select it and click Next >, then Finish.

4. When seeing a warning “You are installing software that contains unsigned content”, click Install anyway.

5. Click Restart Now when asked to restart Eclipse IDE.

6. Switch to the Rell perspective. Menu Window - Perspective - Open Perspective - Other. . . , choose Rell.

2.7. Eclipse IDE 97

Rell Documentation, Release v0.10.0

Next step is to create a Rell project (see Hello World Program).

How to update the Rell plugin

When a new version of the Rell plugin is released, it has to be updated in Eclipse. If Rell update URL has already
been configured, Eclipse will check for updates automatically once in a while, and show a message when a plugin can
be updated.

To manually check for updates:

1. Menu: Help - Check for Updates.

2. If it shows that a new version of Rell plugin is available, install it.

If “No updates found” message is shown, check that Rell update site is set up.

1. Click available software sites link in the message dialog.

2. If there is no Rell in the list, click Add. . . to add it.

98 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

3. Specify:

• Name: Rell

• Location: https://www.chromia.dev/rell-eclipse/update

and click Add.

If Rell update site is in the list, but “No updates found” message is shown, try to reload the site:

1. Click available software sites link in the message dialog.

2. Click Reload.

If still no updates are shown, your Rell plugin must be already up-to-date.

Database Setup

Rell requires PostgreSQL 10 to be installed and set up. The IDE can work without it, but will not be able to run a
node. A console app or a remote postchain app can be run without a database, though.

Default database configuration for Rell is:

• database: postchain

2.7. Eclipse IDE 99

https://www.chromia.dev/rell-eclipse/update

Rell Documentation, Release v0.10.0

• user: postchain

• password: postchain

Ubuntu (Debian)

Install PostgreSQL:

sudo apt-get install postgresql

Prepare a Rell database:

sudo -u postgres psql -c "CREATE DATABASE postchain;" -c "CREATE ROLE postchain LOGIN
→˓ENCRYPTED PASSWORD 'postchain'; GRANT ALL ON DATABASE postchain TO postchain;"

MacOS

Install PostgreSQL:

brew install postgresql
brew services start postgresql
createuser -s postgres

Prepare a Rell database:

psql -U postgres -c "CREATE DATABASE postchain;" -c "CREATE ROLE postchain LOGIN
→˓ENCRYPTED PASSWORD 'postchain'; GRANT ALL ON DATABASE postchain TO postchain;"

2.7.2 Hello World Program

1. Switch to the Rell perspective, if not done already. Menu: Window - Perspective - Open Perspective -
Other. . . , choose Rell.

2. Create a project:

• Menu File - New - Rell Project.

• Enter a project name test and click Finish.

100 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

A Rell project with a default directory structure shall be created.

3. Create a Rell file:

• Right-click on the src folder and choose New - File.

• Enter a file name test.rell and click Finish.

4. Write the code in the editor:

function main() {
print('Hello, World!');

}

Save: manu File - Save or CTRL-S (S).

5. Run the program: right-click on the editor and choose Run As - Rell Console App.

2.7. Eclipse IDE 101

Rell Documentation, Release v0.10.0

6. The output “Hello, World!” must be shown in the Console view.

102 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

2.7.3 IDE Overview

Eclipse IDE window consists of different views. Every view has its own tab. By default, Rell IDE has following views:

• Project Explorer - shows projects and their directory trees.

• Problems - shows compilation warnings and errors.

• Console - console output (when running programs).

• Outline - shows the structure of a selected Rell file.

2.7. Eclipse IDE 103

Rell Documentation, Release v0.10.0

2.7.4 Running Applications

Right-click on a file (or an editor) and choose Run As. Run options available for the file will be shown.

104 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Alternatively, use keyboard shortcut CTRL-F11 (F11).

2.7. Eclipse IDE 105

Rell Documentation, Release v0.10.0

Rell Console App

Executes a *.rell file as a stand-alone console program, not as a module in a Postchain node.

The program must contain a function (or operation, or query) called main, which will be the entry point. The output
is displayed in the Console view.

The name of the main function and its arguments can be specified in a run configuration.

Database connection

By default, the program is executed without a database connection, and an attempt to perform a database operation
will result in a run-time error.

To run a console app with a database connection, there must be a file called console-db.properties, db.
properties or node-config.properties in the directory of the Rell file or in the rell/config directory
of the project. The file shall contain database connection settings. For example:

database.driverclass=org.postgresql.Driver
database.url=jdbc:postgresql://localhost/postchain
database.username=postchain

(continues on next page)

106 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

(continued from previous page)

database.password=postchain
database.schema=rell_app

When running a console app with a database connection, tables for defined classes and objects are created on start-up.
If a table already exists, missing columns are added, if necessary.

How to prepare a database is described in the Database Setup section.

Rell Simple Postchain App

Starts a Postchain node running the given Rell module.

A database connection and other standard Postchain node properties must be specified in a node-config.
properties file. The file is searched in the directory of the selected Rell file and then in the rell/config
directory.

If the properties file is not found, the IDE offers to create a default one; click Yes.

2.7. Eclipse IDE 107

Rell Documentation, Release v0.10.0

If a database configuration which is different from the default for Rell (postchain/postchain/postchain as
database/user/password) has to be used, specify it in the created file. Then run the app again.

Rell program output and Postchain node log is shown in the Console view. To stop a node, click the Terminate (red
square) icon in the Console view.

One can use curl to call a query from the running node:

curl http://localhost:7740/query/
→˓0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF -X POST -d '{"type
→˓":"q"}'

108 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

By default, the blockchain RID is 0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF.
It can be changed in a run configuration.

Rell Postchain App

Starts a Postchain node with a configuration written in the Run.XML format. To use this option, right-click on a
*.xml file, not on a *.rell file.

Using run.xml allows to run multiple blockchains in one Postchain node.

Example of a minimal run.xml:

<run>
<nodes>

<config>
database.driverclass=org.postgresql.Driver
database.url=jdbc:postgresql://localhost/postchain
database.username=postchain
database.password=postchain
database.schema=rell_app

activechainids=1

api.port=7740
api.basepath=

messaging.
→˓privkey=3132333435363738393031323334353637383930313233343536373839303131

messaging.
→˓pubkey=0350fe40766bc0ce8d08b3f5b810e49a8352fdd458606bd5fafe5acdcdc8ff3f57

node.0.id=node0
node.0.host=127.0.0.1
node.0.port=9870
node.0.

→˓pubkey=0350fe40766bc0ce8d08b3f5b810e49a8352fdd458606bd5fafe5acdcdc8ff3f57
</config>

</nodes>
<chains>

<chain name="user" iid="1" brid=
→˓"01234567abcdef01234567abcdef01234567abcdef01234567abcdef01234567">

<config>
<module src="main" />

</config>
</chain>

</chains>
</run>

2.7. Eclipse IDE 109

../runxml.html

Rell Documentation, Release v0.10.0

Rell Simple Postchain Test

Runs tests written in XML format, same as used by the Web IDE. This run option is available for XML files *_test.
xml. For a file X_test.xml there must be a file called X.rell in the same directory. The tests defined in the XML
file will be run against the Rell file. Results are printed to the Console view.

Example of a test:

<test>
<block>

<transaction>
<signers>

<param type="bytea" key="Alice" />
</signers>
<operations>

<operation name="insert_city">
<string>Kiev</string>

</operation>
</operations>

</transaction>
</block>

</test>

And a corresponding .rell file:

110 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

class city { key name; }

operation insert_city (name) {
log('insert_city', name);
create city (name);

}

Clear Database

This option is available for database properties files, *.properties (for instance, node-config.
properties). Drops all tables (and stored procedures) in the database.

2.7. Eclipse IDE 111

Rell Documentation, Release v0.10.0

Run with a Keyboard

By default, CTRL-F11 (F11) shortcut runs the file of the active editor. It can be configured to run the last launched
application instead, which may be more convenient, as there is no need to choose an application type. Go to the menu
Window - Preferences (macOS: Eclipse - Preferences), then Run/Debug - Launching. In the Launch Operation
box, choose Always launch the previously launched application.

112 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Running Multiple Apps

It is possible to run multiple applications (e. g. multiple nodes) simultaneously. For example, one can define two
Run.XML configuration files that use the same Rell module, but different ports and database schemas.

The output of all running applications will be shown in the Console view, but on different pages. It is possible to
switch between the consoles of different applications using a button or a dropdown list.

2.7. Eclipse IDE 113

../runxml.html

Rell Documentation, Release v0.10.0

Run Configurations

To run an application, Eclipse IDE needs a run configuration, which contains different properties, like the name of the
main function, arguments or blockchain RID. When running an application via the Run As context menu, the IDE
automatically creates a run configuration with default settings if it does not exist.

To change a run configuration, go to the menu Run - Run Configurations. . . . The last launched application will be
selected. Change the settings and click either Apply or Run to save the changes.

2.7.5 Features of the IDE

Outline

When a Rell editor is open, the structure of its file (tree of definitions) is shown in the Outline view (which is by default
on the right side of the IDE).

114 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

There is also a Quick outline window, which is activated by the CTRL-O (O) shortcut. Type a name to find its definition
in the file.

2.7. Eclipse IDE 115

Rell Documentation, Release v0.10.0

116 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Problems View

Problems view shows compiler warnings and errors found in all projects in the IDE. The list is updated when saving a
file.

2.7. Eclipse IDE 117

Rell Documentation, Release v0.10.0

Global Text Search

Press CTRL-H (H) to open the Search dialog. It allows to search for a string in all files in the IDE. Select the File
Search tab, enter the text to search for and file name pattern.

118 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Results are shown in the Search view, as a tree.

2.7. Eclipse IDE 119

Rell Documentation, Release v0.10.0

Git

Git operations are available via a context menu: right-click on a file and choose Team.

120 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

To commit file(s), click Add to Index, then Commit...

File icon in the Project Explorer indicates whether the file is a new, changed or an unmodified file.

2.7. Eclipse IDE 121

Rell Documentation, Release v0.10.0

Changed files do not look very nice. To change the way how they are displayed, go to the Window - Preferences
(macOS: Eclipse - Preferences) menu, then Team - Git - Label Decorations:

• on the Text Decorations tab: delete the “>” character in all text fields

• on the Icon Decoartions tab: check the Dirty resources checkbox

122 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

• click Apply and Close

Now files look much better:

Spaces vs. Tabs

Eclipse uses tabs instead of spaces by default. It is recommented to use spaces. A few settings have to be changed:

1. Open the Preferences dialog: menu Window - Preferences (macOS: Eclipse - Preferences).

2. Type “tabs” in the search box.

3. Go to General - Editors - Text Editors and check Insert spaces for tabs.

2.7. Eclipse IDE 123

Rell Documentation, Release v0.10.0

4. Go to XML - XML Files - Editor, select Indent using spaces, specify Indentation size: 4.

124 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Miscellaneous

• To show or hide line numbers: right-click on the left margin of an editor, click Show Line Numbers.

2.7. Eclipse IDE 125

Rell Documentation, Release v0.10.0

• To comment a code fragment, select it and press CTRL-/ (/).

• Activate the Link with Editor icon, and the IDE will automatically select a file in the Project Explorer when its
editor is focused.

• CTRL-SHIFT-R (R) invokes the Open Resource dialog, which allows to search project files by name. Glob
patterns (with * and ?) are supported.

126 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

• The Show Whitespace Characters (paragraph) icon in the main toolbar allows to distinguish tabs from spaces.

• To see the full list of Eclipse keyboard shortcuts, press CTRL-SHIFT-L (L). Some shortcuts are for the Java
editor, and do nothing in Rell.

2.7. Eclipse IDE 127

Rell Documentation, Release v0.10.0

Keyboard shortcuts

Most useful keyboard shortcuts (subjectively):

128 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Action Linux/Windows macOS
Run the file shown in the active edi-
tor

CTRL-F11 F11

Show the New wizard CTRL-N N
Show the New menu ALT-SHIFT-N N
Save the current file CTRL-S S
Close the active editor tab CTRL-W W
Close all editor tabs CTRL-SHIFT-W W

Quick outline CTRL-O O
Find text in the active editor CTRL-F F
Globally search for the selected text
fragment

CTRL-ALT-G G

Show global text search dialog CTRL-H ^H
Find a file by name CTRL-SHIFT-R R

Go to a line number CTRL-L L
Go to a previous location ALT-Left ←
Go to a next location (can be used
after Alt-Left)

ALT-Right →

Go to the last edit location CTRL-Q Q

Comment the selected code frag-
ment with //

CTRL-/ /

Convert selected text to upper case CTRL-SHIFT-X X
Convert selected text to lower case CTRL-SHIFT-Y Y

Show the full list of keyboard short-
cuts

CTRL-SHIFT-L L

2.8 Run.XML

Run.XML format is used to define a run-time configuration of a Rell node. The configuration consists of two key
parts:

1. The list of Postchain nodes (the target node is one of those nodes).

2. The list of blockchains, each having an associated configuration(s) and a Rell application.

The format is used:

2.8. Run.XML 129

Rell Documentation, Release v0.10.0

• By Rell command-line utilities multirun.sh and multigen.sh.

• By the Eclipse IDE (which internally uses multirun.sh to launch Postchain applications).

2.8.1 The Format

Example of a Run.XML file:

<run wipe-db="true">
<nodes>

<config src="config/node-config.properties" add-signers="false" />
</nodes>
<chains>

<chain name="user" iid="1" brid=
→˓"01234567abcdef01234567abcdef01234567abcdef01234567abcdef01234567">

<config height="0">
<app module="user" />
<gtv path="gtx/rell/moduleArgs/user">

<dict>
<entry key="foo"><bytea>

→˓0373599a61cc6b3bc02a78c34313e1737ae9cfd56b9bb24360b437d469efdf3b15</bytea></entry>
</dict>

</gtv>
</config>
<config height="1000">

<app module="user_1000">
<args module="user_1000">

<arg key="foo"><bytea>
→˓0373599a61cc6b3bc02a78c34313e1737ae9cfd56b9bb24360b437d469efdf3b15</bytea></arg>

</args>
</app>
<gtv path="path" src="config/template.xml"/>

</config>
</chain>
<chain name="city" iid="2" brid=

→˓"abcdef01234567abcdef01234567abcdef01234567abcdef01234567abcdef01">
<config height="0" add-dependencies="false">

<app module="city" />
<gtv path="signers">

<array>
<bytea>

→˓0350fe40766bc0ce8d08b3f5b810e49a8352fdd458606bd5fafe5acdcdc8ff3f57</bytea>
</array>

</gtv>
</config>
<include src="config/city-include-1.xml"/>
<include src="config/city-include-2.xml" root="false"/>
<dependencies>

<dependency name="user" chain="user" />
</dependencies>

</chain>
</chains>

</run>

Top-level elements are:

• nodes - defines Postchain nodes

• chains - defines blockchains

130 Chapter 2. Chromia

Rell Documentation, Release v0.10.0

Nodes

Node configuration is provided in a standard Postchain node-config.properties format.

Specifying a path to an existing node-config.properties file (path is relative to the Run.XML file):

<nodes>
<config src="config/node-config.properties" add-signers="false" />

</nodes>

Specifying node configuration properties directly, as text:

<nodes>
<config add-signers="false">

database.driverclass=org.postgresql.Driver
database.url=jdbc:postgresql://localhost/postchain
database.username=postchain
database.password=postchain
database.schema=test_app

activechainids=1

api.port=7740
api.basepath=

node.0.id=node0
node.0.host=127.0.0.1
node.0.port=9870
node.0.

→˓pubkey=0350fe40766bc0ce8d08b3f5b810e49a8352fdd458606bd5fafe5acdcdc8ff3f57

messaging.
→˓privkey=3132333435363738393031323334353637383930313233343536373839303131

messaging.
→˓pubkey=0350fe40766bc0ce8d08b3f5b810e49a8352fdd458606bd5fafe5acdcdc8ff3f57

</config>
</nodes>

Chains

A chain element can have multiple config elements and a dependencies element inside.

A single chain may have specific configurations assigned to specific block heights.

<config height="0" add-dependencies="false">
<app module="city" />
<gtv path="signers">

<array>
<bytea>0350fe40766bc0ce8d08b3f5b810e49a8352fdd458606bd5fafe5acdcdc8ff3f57

→˓</bytea>
</array>

</gtv>
</config>

An app element specifies a Rell application used by the chain. Attribute module is the name of the main module of
the app. The source code of the main module and all modules it imports will be injected into the generated blockchain
XML configuration.

2.8. Run.XML 131

Rell Documentation, Release v0.10.0

Elements gtv are used to inject GTXML fragments directly into the generated Postchain blockchain XML configu-
ration. Attribute path specifies a dictionary path for the fragment (default is root). For example, the fragment

<gtv path="gtx/rell/moduleArgs/user">
<dict>

<entry key="foo"><bytea>
→˓0373599a61cc6b3bc02a78c34313e1737ae9cfd56b9bb24360b437d469efdf3b15</bytea></entry>

</dict>
</gtv>

will produce a blockchain XML:

<dict>
<entry key="gtx">

<dict>
<entry key="rell">

<dict>
<entry key="moduleArgs">

<dict>
<entry key="user">

<dict>
<entry key="foo">

<bytea>
→˓0373599A61CC6B3BC02A78C34313E1737AE9CFD56B9BB24360B437D469EFDF3B15</bytea>

</entry>
</dict>

</entry>
</dict>

</entry>
</dict>

</entry>
</dict>

</entry>
</dict>

GTXML contents to be injected shall be either specified as a nested element of a gtv element, or placed in an XML
file referenced via the src attribute.

Included files

Other XML files can be included anywhere in a Run.XML using include tag. Included files may include other
XML files as well.

Including a file with its root element replacing the include element:

<include src="config/city-include-1.xml"/>

Including a file without its root element, the include is replaced by the child elements of the root element of the file:

<include src="config/city-include-2.xml" root="false"/>

2.8.2 Utilities

Those utilities are a part of the Rell language.

132 Chapter 2. Chromia

https://bitbucket.org/chromawallet/rellr

Rell Documentation, Release v0.10.0

multirun.sh

Runs an application described by a Run.XML configuration.

Usage: RellRunConfigLaunch [-d=SOURCE_DIR] RUN_CONFIG
Launch a run config

RUN_CONFIG Run config file
-d, --source-dir=SOURCE_DIR

Rell source code directory (default: current directory)

multigen.sh

Creates a Postchain blockchain XML configuration from a Run.XML configuration.

Usage: RellRunConfigGen [--dry-run] [-d=SOURCE_DIR] [-o=OUTPUT_DIR] RUN_CONFIG
Generate blockchain config from a run config

RUN_CONFIG Run config file
--dry-run Do not create files

-d, --source-dir=SOURCE_DIR
Rell source code directory (default: current directory)

-o, --output-dir=OUTPUT_DIR
Output directory

Example of a generated directory tree:

out/
blockchains

1
0.xml
1000.xml
brid.txt

2
0.xml
1000.xml
2000.xml
3000.xml
brid.txt

node-config.properties
private.properties

2.8. Run.XML 133

	Rell language
	Chromia
	Get Started with Web IDE
	Rell Basics
	Example Projects
	Language Features
	Advanced Topics
	Upgrading to Rell 0.10
	Eclipse IDE
	Run.XML

