

Welcome to the Rell SDK!

This section will cover the advantages of Rell and its position within the Chromia platform.

If you are eager to get started with Rell, you can safely skip straight to the Quick Start section.

For code references, visit Language Features.

Rell language

Most dapp blockchain platforms use virtual machines of various kinds. But a traditional virtual machine architecture doesn’t work very well with the Chromia relational data model, as we need a way to encode queries as well as operations. For this reason, we are taking a more language-centric approach: a new language called Rell (Relational language) will be used for dapp programming. This language allows programmers to describe the data model/schema, queries, and procedural application code.

Rell code is compiled to an intermediate binary format which can be understood as code for a specialized virtual machine. Chromia nodes will then translate queries contained in this code into SQL (while making sure this translation is safe) and execute code as needed using an interpreter or compiler.

Rell has the following features:

	Type safety / static type checks. It’s very important to catch programming errors at the compilation stage to prevent financial losses. Rell is much more type-safe than SQL, and it makes sure that types returned by queries match types used in procedural code.

	Safety-optimized. Arithmetic operations are safe right out of the box, programmers do not need to worry about overflows. Authorization checks are explicitly required.

	Concise, expressive and convenient. Many developers dislike SQL because it is highly verbose. Rell doesn’t bother developers with details which can be derived automatically. As a data definition language, Rell is up to 7x more compact than SQL.

	Allows meta-programming. We do not want application developers to implement the basics from scratch for every dapp. Rell will allow functionality to be bundled as templates.

Our research indicated that no existing language or environment has this feature set, and thus development of a new language was absolutely necessary.

We designed Rell in such a way that it is easy to learn for programmers:

	Programmers can use relational programming idioms they are already familiar with. However, they don’t have to go out of their way to express everything through relational algebra: Rell can seamlessly merge relational constructs with procedural programming.

	The language is deliberately similar to modern programming languages like JavaScript and Kotlin. A familiar language is easier to adapt to, and our internal tests show that programmers can become proficient in Rell in a matter of days. In contrast, the ALGOL-style syntax of PL/SQL generally feels unintuitive to modern developers.

Chromia

Rell is built for Chromia [https://chromia.com/]. Chromia is a new blockchain platform for decentralized applications, conceived in response to the shortcomings of existing platforms and designed to enable a new generation of dapps to scale beyond what is currently possible

While platforms such as Ethereum allow any kind of application to be implemented in theory, in practice they have many limitations: bad user experience, high fees, frustrating developer experience, poor security. This prevents decentralized apps (dapps) from going mainstream.

We believe that to address these problems properly we need to seriously rethink the blockchain architecture and programming model with the needs of decentralized applications in mind. Our priorities are to:

	Allow dapps to scale to millions of users.

	Improve the user experience of dapps to achieve parity with centralized applications.

	Allow developers to build secure applications with using familiar paradigms.

Get Started with Web IDE

Important

Rell Web IDE is available at https://rellide-staging.chromia.dev/

Upon entering, you will see an interface similar to the image below.

Click Create Project button:

[image: ../_images/IDE-create-module.PNG]
This will open a modal element where you can specify the name of the Module and the Language used (in this example: Rell).

For convenience you can include template and test code.

[image: ../_images/IDE-modal.PNG]
Click on the “Create” button. The screen will now be filled with code.

[image: ../_images/IDE-start.PNG]

	Browser

	To the left bar is the Browser. You can use it to work with several examples.

	Editor

	Inside the central element on the right the editor filled with a template of source code.

	Buttons

	On top of the Editor there is a button to “Start Node” (the green “Play” icon), don’t press that one yet.
There is also a button “Run tests” (the gray “bug” icon).

Hello World!

As a minimal first application, you can make a Hello World example with a focus on Ukraine.

If you checked the use template box and look at editor section on the top, you will see this code as a template:

entity city { key name; }

operation insert_city (name) {
 create city (name);
}

This is a small registry of cities.

Don’t worry about the detail of this code yet, we will come to them in a bit. For now, let’s confirm that our code template is working properly.

In order to run the code we need a test in javascript. If you switch to the Hello.js test file, you will see it’s filled with some test written in javascript:

const tx = gtx.newTransaction([user.pubKey]);

tx.addOperation('insert_city', "Kiev");

tx.sign(user.privKey, user.pubKey);

return tx.postAndWaitConfirmation();

Click the ‘Run tests’ button, and a green message will appear.

[image: The IDE shows Run Succesfully]

Congratulations! After all this work, we suggest that you put “Relational Blockchain” on your CV.

Where to go next?

Next step is to learn about what the Rell code actually means in the Rell Basics section.

But if you prefer learning by example, you can choose to start with one of our Example Projects instead.

Rell Basics

This chapter will cover basic Rell syntax and functionality, as well as how we write our
client side so that it can communicate with our blockchain. Rell is a language designed for
relational blockchain programming. The structure of a decentralized application built
in Rell will look something like this:

[image: ../_images/structure.png]
The end user will be communicating with our client side, which in turn will send transactions
to Rell using a postchain client. There are currently postchain clients for JavaScript, C# and
Java, and we will be using JavaScript for our client side example.

	The Main Concepts section guides you through the concepts needed to create a program in Rell.

	While Client Side describes how to work with a Rell backend using a JavaScript client.

Main Concepts

Language overview

Rell is a language for relational blockchain programming. It combines
the following features:

	Relational data modeling and queries similar to SQL. People familiar
with SQL should feel at home once they learn the new syntax.

	Normal programming constructs: variables, loops, functions,
collections, etc.

	Constructs which specifically target application backends and, in
particular, blockchain-style programming including request routing,
authorization, etc.

Rell aims to make programming as ergonomic as possible. It minimizes
boilerplate and repetition. At the same time, as a static type system it
can detect and prevent many kinds of defects.

Blockchain programming

There are many different styles of blockchain programming. In the
context of Rell, we see blockchain as a method for secure
synchronization of databases on nodes of the system. Thus Rell is very
database-centric.

Programming in Rell is pretty much identical to programming application
backends: you need to handle requests to modify the data in the database
and other requests which retrieve data from a database. Handling these
two types of requests is basically all that a backend does. But, of course, before you implement request handlers, you need to
describe your data model first.

Entity definitions

In SQL, usually you define your data model using CREATE TABLE
syntax. In Java, you can define data objects using class definition. In Rell, we define them as entity.

Rell uses persistent objects, thus an entity definition automatically
creates the storage (e.g. a table) necessary to persist objects of a
entity. As you might expect, Rell’s entity definition includes a list of
attributes:

entity user {
 pubkey: pubkey;
 name: text;
}

It is very common that the name of the attribute is the same as its
type. For example, it makes sense to call user’s pubkey “pubkey.” Rell
allows you to shorten pubkey: pubkey; to just pubkey;. Rell also
has a number of convenient semantic types, so there is a type called name as well.
Thus you can rewrite the definition above as just:

entity user { pubkey; name; }

Typically a system should not allow different users to have the same name.
That is, names should be unique. If name is unique, it can be used to
identify a user. In Rell, this can be done by defining a key, i.e.
key name;. Note that it’s not necessary to define both key and
attribute. Rell is smart enough to figure out that if you use an
attribute in a key, that attribute should exist in a entity.

It also might be useful to find a user by his pubkey. Should it also be
unique? Not necessarily. A user might have several different identities.
When you want to enable fast retrieval, but do not need uniqueness, you
can use index definition:

entity user {
 key name;
 index pubkey;
}

However, if you want pubkey to be unique for a user, you can add a
second key:

entity user {
 key name;
 key pubkey;
}

Typically, when you define a class in a programming language, it creates
a type which can be used to refer to instances of that class. This is
exactly how it works in Rell. The definition of entity user creates a
type user which is a type of references to objects stored in a
database. References can themselves be used as attributes. For example,
you might want to define something owned by a user, say, a channel. You
can describe it like this:

entity channel {
 index owner: user;
 key name;
}

index makes it possible to efficiently find all channels owned by a
user. key makes sure that channel names are unique within the
system.

Let’s analyze channel entity definition from a point of view of a traditional relational database terminology.
A single user can be associated with multiple channel objects, but a single channel is always related to a single user.
Thus this represents one-to-many relationship. owner attribute of a channel refers to user object and thus constitutes a foreign key.

If channel names should be unique only in context of a single user (e.g.
alice/news and bob/news are different channels), then a
composite key can be used:

entity channel {
 key owner: user, name;
}

This basically means that a pair of (owner, name) should be unique.

Finally, one might ask: what changes if we change index owner: user
to key owner: user? This makes a user reference unique per
channel table, thus there can be at most one channel per user in
that case. (I.e. if owner is declared as a key, relationship between users and channels becomes a one-to-one relationship.)

Operations

Now that we defined the data model, we can finally get to handling
requests. As previously mentioned, Rell works with two types of
requests:

	Data-modifying requests. We call them operations which are
applied to the database state.

	Data-retrieving requests. We call them queries.

But for both types of requests we are going to need to refer to things
in the database, so let’s consider relational operators first.

Creating objects

First, let’s look how we create objects:

create user (pubkey=x"0373599a61cc6b3bc02a78c34313e1737ae9cfd56b9bb24360b437d469efdf3b15",
 name="Alice");

This is essentially the same as INSERT operation in SQL, but the
syntax is a bit different. Rell is smart enough to identify the
connection between arguments and attributes based on their type.
x"..." notation is a hexadecimal byte_array literal which is
compatible with pubkey type. On the other hand, name is provided via
text literal. Thus we can write:

create user("Alice", x"0373599a61cc6b3bc02a78c34313e1737ae9cfd56b9bb24360b437d469efdf3b15");

The order of arguments does not matter here, they are matched with
attributes based on types.

Finding objects

How do we find that object now?

val alice = user @ {.name=="Alice"};

	The @ operator retrieves a single record (or an object in this case)
satisfying the search criteria you provided. If there is no such record,
or more than one exists, it raises an error. It’s recommended to use this
construct when an operation needs a single record to operate on. If this requirement
is violated the operation will be aborted and all its effects will be rolled back.
Thus it is a succinct and effective way to deal with requirements.

	val defines a read-only variable which can later be used in an
expression. A variable defined using var can be reassigned later.

If you want to retrieve a list of users, you can use the @* operator. For
example:

val all_users = user @* {};

This returns a list of all users (since no filter expression was provided,
all users match it). Value declarations can include a type,
for example, we can specify that all_users is of type list<user>
like this:

val all_users: list<user> = user @* {};

Since the Rell compiler knows a type of every expression it does not really
need a type declaration, however, if one is provided, it will check
against it. Type declarations are mostly useful as documentation for
programmers reading the code and should be omitted in cases where there is no ambiguity.

Both @ and @* correspond to SELECT in SQL.

Operation example

Let’s make an operation which allows a user to create a new channel:

operation register_channel (user_pubkey: pubkey, channel_name: name) {
 require(op_context.is_signer(user_pubkey));
 create channel (
 owner = user@{.pubkey == user_pubkey},
 name = channel_name
);
}

Let’s go through this line by line. First we declare the operation name
and a list of parameters:

operation register_channel (user_pubkey: pubkey, channel_name: name) {

This is very similar to a function definitions in other languages. In fact,
an operation is a function of a special kind: it can be invoked using a blockchain
transaction by its name. When invoking register_channel, the caller must
provide two arguments of specified types, otherwise it will fail.

require(op_context.is_signer(user_pubkey));

We don’t want Alice to be able to pull a prank on Bob by registering a
channel with a silly name on his behalf. Thus we need to make sure that
the transaction was signed with a key corresponding to the public key
specified in the first parameter. (In other words, if Bob’s public key
is passed as user_pubkey, the transaction must also be signed by Bob,
that is, Bob is a signer of this transaction.)
This is a common pattern in Rell – typically
you specify an actor in a parameter of an operation and in the body of
the operation you verify that the actor was actually the signer.
require fails the operation if the specified condition is not met.

create channel, obviously, creates a persistent object channel.
You don’t need to explicitly store it, as all created objects are
persisted if operation succeeds.

user@{.pubkey=user_pubkey} – now we retrieve a user object by its
pubkey, which should be unique. If no such user exists the operation will
fail. We do not need to test for that explicitly as @ operator will
do this job.

Rell can automatically find attribute names corresponding to arguments
using types. As user and name are different types,
create channel can be written like
this:

create channel (user@{.pubkey=user_pubkey}, channel_name);

Function

Sometimes multiple operations (or queries) need the same piece functionality, e.g. some kind of a validation code, or code which retrieves objects in a particular way.
In order to not repeat yourself you can use function.
Functions work similarly to operations: they get some input and can perform validations and work with data. Additionally, they also have a return type which can be specified after the list of parameters.
For example, if you want to allow the user of a channel to change the name of the channel itself:

// We added mutable specifier to channel's attribute "name" to make name editable.
// Note that in case both an attribute and a key need to be declared.

entity channel {
 mutable name;
 key name;
 index owner: user;
}

function get_channel_owned_by_user(user_pub: pubkey, channel_name: name): channel {
 val user = user@{.pubkey == user_pub};
 return channel@{channel_name, .owner == user};
}

operation change_channel_name(signer: pubkey, old_channel_name: name, new_channel_name: name) {
 require(op_context.is_signer(signer));
 val channel_to_change = get_channel_owned_by_user(signer, old_channel_name);
 update channel@{channel == channel_to_change}(.name = new_channel_name);
}

In the function get_channel_owned_by_user the code first retrieves a user with given public key and returns a channel owned by the retrieved user with the given channel name. Operator @ expects exactly one object to be found (see Cardinality for more information.), thus you can be sure that in case there is no user or channel with such a pubkey or name the function will fail and so will the operation that is calling it.
Finally, the function returns the channel instance that was validated, saving the developer the hassle to check owner every time a channel is retrieved.

Please note that you must mark the attribute name with the keyword mutable. This is because only the fields which are declared mutable can be changed using the update statement.

Query

Storing data without the ability to access it again would be useless.
Let’s consider a simple example - retrieving channel names for a user with
a certain name:

query get_channel_names (user_name: name) {
 return channel @* {
 .owner == user@{.name==user_name}
 } (.name);
}

Here you see a selection operator you’re already familiar with –
@*. We select all the channels with a given owner (which we first
find by name).

Then we extract name attribute from retrieved objects using the
(.name) construct.

Note that since we only need name from channel, is also possible to write

query get_channel_names (user_name: name) {
 return channel @* {
 .owner == user@{.name==user_name}
 }.name;
}

Relational expressions

In general, a relational expression consists of five parts, some of
which can be omitted:

FROM OPERATOR { WHERE } (WHAT) LIMIT

	FROM describes where data is taken from. It can be a single entity,
such as just user. Or, it can be combination of multiple entities,
e.g. (user, channel). In the latter case, conceptually we are
dealing with a Cartesian product, which is a set of all possible
combinations. But, typically WHERE part will then provide
a condition which defines a correspondence between objects of
different entities. E.g. one can select such (user, channel)
combinations where user is an owner of the channel. This
works same way as JOIN in SQL, in fact, the optimizer will
typically translate it to JOINs.

	OPERATOR – there are different operators depending on required
cardinality. They are:

	@ – exactly one, returns a value

	@* – any number, returns a list of values

	@+ – at least one, returns a list of values

	@? – one or zero, returns a nullable value

	WHERE describes how to filter the FROM set. So, you would use
your search criteria as well as JOINs.

	WHAT describes how to process the set, for doing a projection,
aggregation or sorting. If it is omitted then members of the set are
returned as they are.

	LIMIT for operators which return a list, limits the number of elements
returned.

In SQL, the logical processing order does not match the order in which
clauses are written, for example, FROM is logically processed before SELECT
even though SELECT comes first. (SQL logical processing order can be found e.g.
in SQL Server documentation [https://stackoverflow.com/questions/4596467/order-of-execution-of-the-sql-query]).

The order of components of a relational expression in Rell matches the logical
processing order. So, first a set is defined, then it is filtered,
and then it is post-processed. Of course, the query planner is allowed to
perform operations in a different order, but that shouldn’t affect the
results. Thus a relational expression can be understood as a kind of a
pipeline.

Let’s see some examples of relational expressions. Suppose in addition
to user and channel entities we provided before, we also have:

entity message {
 index channel;
 index timestamp;
 text;
}

We can retrieve all messages of a given user:

(channel, message) @* {
 channel.owner == given_user, message.channel == channel
}(message.text);

So, basically, we join channel with message. We can shorten the
expression using entity aliases:

(c: channel, m: message) @* { c.owner == given_user, m.channel == c } (m.text, m.timestamp)

We can easily read this expression left to right:

	consider all pairs (c, m) where c is channel and m is
message

	find those where c.owner equals given_user and m.channel
equals c

	extract text and timestamp from m

The result of this expression is a list of tuples with text and
timestamp attributes.

The above expression can be easily modified to retrieve the latest 25
messages:

(c: channel, m: message) @* {
 c.owner == given_user, m.channel == c
} (m.text, @sort_desc m.timestamp) limit 25

Here we sorted results by timestamp in a descending order using
@sort_desc and limited the number of returned rows.

Composite indices

We can also select recent messages by adding, for example,
m.timestamp >= given_timestamp condition to WHERE part.
But a database cannot filter messages efficiently (that is, without
considering every message) using two criteria at once unless we create
a composite index, changing the message entity definition in the following way:

entity message {
 index channel, timestamp;
 text;
}

Instead two separate indexes we got one composite index. The idea here is
that we want to retrieve not the latest messages overall, but
the latest messages for a given channel. Thus, we need to order
messages by channels first. Paged retrieval can be done using the
following query:

query get_next_messages (user_name: name, upto_timestamp: timestamp) {
 val given_user = user@{user_name};
 return (c: channel, m: message) @* {
 c.owner == given_user, m.channel == c, m.timestamp < upto_timestamp
 } (m.text, -sort m.timestamp) limit 25;
}

This can be used in an app like Twitter. A visitor might first retrieve
the latest 25 messages, then go further – in which case the client will
send a query with a timestamp of the oldest message retrieved.

To understand why this can work efficiently, consider that the index
stores an ordered collection of pairs. For example:

1. (channel_1, 1000000) -> m1
2. (channel_1, 1000050) -> m3
3. (channel_1, 1000100) -> m5
4. (channel_2, 1000025) -> m2
5. (channel_2, 1000075) -> m4

A database can efficiently find a place which corresponds to a given
timestamp in a given channel and traverse the index through it.

Note

It’s worth noting that all SQL databases work this way, this feature is
not unique to Rell. But in a decentralized system resources are
typically precious, thus it is important for Rell programmers to
understand the query behavior and use indices efficiently.

Client Side

Ok, so now we have a basic understanding of how Rell works, but users don’t typically query Rell directly.
They instead perform actions in a frontend that sends transactions to the Rell backend with the help of postchain client code.
Because state gets stored on a blockchain, the postchain client needs to sign transactions and perform other blockchain-related
operations before it sends transactions to Rell.

This client tutorial is a continuation on the quickstart “city” example.
In this section we illustrate how to send transactions to and retrieve information from a blockchain node running Rell.

Try the example code

First of all, we need to add a query to Rell source file:

query is_city_registered(city_name: text): boolean {
 return (city @? { city_name }) != null;
}

Clicking ‘Start node’ will start a Postchain node in a single-node mode which is convenient for testing.

The node builds blocks when there are transactions, or at least once every 30 seconds. It also has REST API we
can interact with to submit transactions and retrieve information.

The client code is written in JavaScript, this example uses the NodeJS environment. postchain-client-example [https://bitbucket.org/chromawallet/postchain-client-example/src/master/] can be downloaded using git:

git clone https://bitbucket.org/chromawallet/postchain-client-example.git

To run it, execute:

npm install
node index.js

This will create a transaction, sign it and submit it to a node. Once the transaction is added to a block, the client will perform a query.

Now let’s see how this client code can be implemented:

Install the client

Note

It is recommended that you write your javascript client outside of the Web IDE, as it is primarily designed to set up a Rell backend. Open up a text editor or an IDE
and follow the steps.

We assume you have nodejs installed. The client library is called postchain-client [https://www.npmjs.com/package/postchain-client] and can be installed from npm.

Create a new directory for your test. Open a terminal in the new directory, initialize npm and install the client.

npm init -y
npm install postchain-client --save

Connect to the node

To connect to a Postchain node we need to know its REST API URL and blockchain identifier. DevPreview bundle comes with following defaults:

const pcl = require('postchain-client');

// using default postchain node REST API port
// On rellide-staging.chromia.dev, check node log for api url
const node_api_url = "http://localhost:7740";

// default blockchain identifier used for testing
const blockchainRID = "78967baa4768cbcef11c508326ffb13a956689fcb6dc3ba17f4b895cbb1577a3";

const rest = pcl.restClient.createRestClient(node_api_url, blockchainRID, 5);

Note

The blockchainRID is unique for each setup. For port 7740, it can be found at http://localhost:7740/brid/iid_1

Once we set up the information about the the REST Client connection, we can create the gtxClient connection.
This in particular, needs to receive the previous REST connection, the blockchainRID in Buffer format
and an array the names of the operations that you want to call (at the moment this can be left empty):

const gtx = pcl.gtxClient.createClient(
 rest,
 Buffer.from(blockchainRID, 'hex'),
 []
);

Now that the connection is set, you can start to create transactions and queries.

Make a transaction (with operations inside)

You need to create the transaction client side, sign it with one or more keypairs, send it to the node and wait for it to be included into a block.

First, let’s create the transaction and specify the public key of the person(s) that will sign it.
To create a random user keypair on the go you can use makeKeyPair() function.

const user = pcl.util.makeKeyPair();
const tx = gtx.newTransaction([user.pubKey]);

Once the transaction has been created it is possible to call as many operations as you want.

tx.addOperation('insert_city', "Toulouse");
tx.addOperation('insert_city', "Stockholm");
tx.addOperation('insert_city', "Bologna");
/* etc */

Now, all is left is to sign and post the transaction

tx.sign(user.privKey, user.pubKey);
tx.postAndWaitConfirmation();

Note: tx.postAndWaitConfirmation() returns a promise, and thus can be await-ed.

Query

Queries also make use of gtx client.

gtx.query accepts as first parameter the name of the query as specified in the module and
then an object with as parameter name the variable name as specified in the query module.

E.g:

function is_city_registered(city_name) {
 return gtx.query("is_city_registered", {city_name: city_name});
}

will work with query specified in the Rell file:

query is_city_registered(city_name: text): boolean {
 return (city @? { city_name }) != null;
}

Note: gtx.query(queryName, queryObject) also returns a promise.

Examples and further exercises

For now we have covered the basics of working with Rell. In the next section, we will go over the Rell plugin in Eclipse and how to use it. But if you want to toy around with examples in the Web IDE,
you can skip ahead to the Examples chapter.

Eclipse IDE

Rell has a plugin for Eclipse which can be used to write Rell code and starting up a testnode with minimal hassle.
In this chapter we will be introduced to this plugin, how to write a Rell program with it and how to launch a testnode with it.

	Installation

	Database Setup

	Using Rell in Eclipse

	Features of the IDE

Installation

Prerequisites

	Java 11+.

	To be able to run a Postchain node: PostgreSQL 10 or later.

	Eclipse IDE (Eclipse can be downloaded here [https://www.eclipse.org/downloads/packages/].)

Adding the Rell plugin to the Eclipse IDE

Once you have downloaded the Eclipse IDE, the next step is to add the Rell plugin.

	Go to the menu Help - Install New Software…

	In the Install dialog, click Add…, then type:

	Name: Rell

	Location: https://www.chromia.dev/rell-eclipse/update

[image: ../_images/Eclipse-add_Rell.PNG]

	Rell shall appear in the list. Select it and click Next >, then Finish.

[image: ../_images/Rell-install.PNG]

	If a warning “You are installing software that contains unsigned content” appears, click Install anyway.

	Click Restart Now when asked to restart Eclipse IDE.

	Switch to the Rell perspective. Menu Window - Perspective - Open Perspective - Other…, choose Rell.

[image: ../_images/Eclipse-perspective.png]

Enabling automatic updates for the plugin

When a new version of the Rell plugin is released, it has to be updated in Eclipse. If Rell update URL has already been configured, Eclipse will check for
updates automatically once in a while, and show a message when a plugin can be updated.

To manually check for updates:

	Menu: Help - Check for Updates.

	If it shows that a new version of Rell plugin is available, install it.

If “No updates found” message is shown, check that Rell update site is set up.

[image: ../_images/Eclipse-update.png]

	Click available software sites link in the message dialog.

	If there is no Rell in the list, click Add… to add it.

[image: ../_images/Eclipse-software_sites.png]

	Specify:

	Name: Rell

	Location: https://www.chromia.dev/rell-eclipse/update

and click Add.

If Rell update site is in the list, but “No updates found” message is shown, try to reload the site:

	Click available software sites link in the message dialog.

	Click Reload.

If still no updates are shown, your Rell plugin must be already up-to-date.

Database Setup

Database Setup

Rell requires PostgreSQL 10 to be installed and set up. The IDE can work without it, but will not be able to run a node.
A console app or a remote postchain app can be run without a database, though.

Default database configuration for Rell is:

	database: postchain

	user: postchain

	password: postchain

Ubuntu (Debian)

Install PostgreSQL:

sudo apt-get install postgresql

Prepare a Postgres database:

sudo -u postgres psql -c "CREATE DATABASE postchain;" -c "CREATE ROLE postchain LOGIN ENCRYPTED PASSWORD 'postchain'; GRANT ALL ON DATABASE postchain TO postchain;"

MacOS

Install PostgreSQL:

brew install postgresql
brew services start postgresql
createuser -s postgres

Prepare a Postgres database:

psql -U postgres -c "CREATE DATABASE postchain;" -c "CREATE ROLE postchain LOGIN ENCRYPTED PASSWORD 'postchain'; GRANT ALL ON DATABASE postchain TO postchain;"

Note

If you get an error saying that peer authentication failed, you will have to change authentication method from peer to md5. this can be done inside the pg_hba.conf file of your psql database.

Docker

docker run --name postchain -e POSTGRES_USER=postchain -e POSTGRES_PASSWORD=postchain -p 5432:5432 -d postgres

Using Rell in Eclipse

Now that we have everything installed, we should try to make a simple hello world in Rell.

Hello World in Rell

	Switch to the Rell perspective, if not done already. Menu: Window - Perspective - Open Perspective - Other…, choose Rell.

	Create a project:

	Menu File - New - Rell Project.

	Enter a project name test and click Finish.

[image: ../_images/Rell-project.png]
A Rell project with a default directory structure shall be created.

	Open the module.rell file:

	click on the project folder test folder and then src - test.

	Click on the module.rell file to open the editor

	Write following code in the editor:

function main() {
 print('Hello, World!');
}

Save: File - Save or CTRL-S (⌘S).

	Run the program: right-click on the editor and choose Run As - Rell Console App.

[image: ../_images/Rell-run-as.png]

	The output “Hello, World!” should be shown in the Console view.

IDE Overview

Eclipse IDE window consists of different views. Every view has its own tab. By default, Rell IDE has following views:

	Project Explorer - shows projects and their directory trees.

	Problems - shows compilation warnings and errors.

	Console - console output (when running programs).

	Outline - shows the structure of a selected Rell file.

[image: ../_images/Eclipse-overview.png]

Running Applications

Right-click on a file (or an editor) and choose Run As. Run options available for the file will be shown.

[image: ../_images/Eclipse-running-applications.png]
Alternatively, use keyboard shortcut CTRL-F11 (⇧⌘F11).

Rell Console App

Executes a *.rell file as a stand-alone console program, not as a module in a Postchain node.

The program must contain a function (or operation, or query) called main, which will be the entry point. The output is displayed in the Console view.

The name of the main function and its arguments can be specified in a run configuration.

Database connection

By default, the program is executed without a database connection, and an attempt to perform a database operation will result in a run-time error.

To run a console app with a database connection, there must be a file called console-db.properties, db.properties or node-config.properties
in the directory of the Rell file or in the rell/config directory of the project. The file shall contain database connection settings. For example:

database.driverclass=org.postgresql.Driver
database.url=jdbc:postgresql://localhost/postchain
database.username=postchain
database.password=postchain
database.schema=rell_app

[image: ../_images/Eclipse-database.png]
When running a console app with a database connection, tables for defined classes and objects are created on start-up. If a table already exists, missing
columns are added, if necessary.

How to prepare a database is described in the Database Setup section.

Rell Postchain App

Starts a Postchain node with a configuration written in the Run.XML format.
To use this option, right-click on a *.xml file, not on a *.rell file.

Using run.xml gives you the option to run multiple blockchains in one Postchain node.

Example of a minimal run.xml:

<run>
 <nodes>
 <config src="node-config.properties" add-signers="true" />
 <test-config src="node-config-test.properties"/>
 </nodes>
 <chains>
 <chain name="test" iid="1">
 <config height="0">
 <app module="test">
 </app>
 </config>
 </chain>
 </chains>
</run>

[image: ../_images/Eclipse-runxml.png]

Wipe Database

This option is available for database properties files, *.properties (for instance, node-config.properties).
Drops all tables (and stored procedures) in the database.

[image: ../_images/wipe-database.png]

Run with a Keyboard

By default, CTRL-F11 (⇧⌘F11) shortcut runs the file of the active editor. It can be configured to run the last launched application instead, which may be more convenient,
as there is no need to choose an application type. Go to the menu Window - Preferences (macOS: Eclipse - Preferences), then Run/Debug - Launching.
In the Launch Operation box, choose Always launch the previously launched application.

[image: ../_images/Eclipse-runwithkeyboard.png]

Running Multiple Apps

It is possible to run multiple applications (e. g. multiple nodes) simultaneously.
For example, one can define two Run.XML configuration files that use the same Rell module, but different ports and database schemas.

The output of all running applications will be shown in the Console view, but on different pages.
It is possible to switch between the consoles of different applications using a button or a dropdown list.

[image: ../_images/Eclipse_multiple_apps.png]

Run Configurations

To run an application, Eclipse IDE needs a run configuration, which contains different properties, like the name of the main function, arguments or
blockchain RID.
When running an application via the Run As context menu, the IDE automatically creates a run configuration with default settings if it does not exist.

To change a run configuration, go to the menu Run - Run Configurations…. The last launched application will be selected.
Change the settings and click either Apply or Run to save the changes.

[image: ../_images/Eclipse-runconfig.png]

Features of the IDE

Outline

When a Rell editor is open, the structure of its file (tree of definitions) is shown in the Outline view (which is by default on the right side of the IDE).

[image: ../_images/Eclipse-outline.png]
There is also a Quick outline window, which is activated by the CTRL-O (⌘O) shortcut. Type a name to find its definition in the file.

[image: ../_images/outline_popup_ed.png]
[image: ../_images/outline_popup_4.png]

Problems View

Problems view shows compiler warnings and errors found in all projects in the IDE. The list is updated when saving a file.

[image: ../_images/problems_view.png]

Global Text Search

Press CTRL-H (⌘H) to open the Search dialog. It allows to search for a string in all files in the IDE. Select the File Search tab, enter the text to search for
and file name pattern.

[image: ../_images/search_dialog.png]
Results are shown in the Search view, as a tree.

[image: ../_images/search_results.png]

Git

Git operations are available via a context menu: right-click on a file and choose Team.

[image: ../_images/git_menu_ed.png]
To commit file(s), click Add to Index, then Commit...

File icon in the Project Explorer indicates whether the file is a new, changed or an unmodified file.

[image: ../_images/git_files_ed.png]
Changed files do not look very nice. To change the way how they are displayed, go to the Window - Preferences (macOS: Eclipse - Preferences) menu, then
Team - Git - Label Decorations:

	on the Text Decorations tab: delete the “>” character in all text fields

[image: ../_images/git_preferences_text_decorations_ed.png]

	on the Icon Decoartions tab: check the Dirty resources checkbox

[image: ../_images/git_preferences_icon_decorations_ed.png]

	click Apply and Close

Now files look much better:

[image: ../_images/git_files_4_ed.png]

Spaces vs. Tabs

Eclipse uses tabs instead of spaces by default. It is recommended to use spaces. A few settings have to be changed:

	Open the Preferences dialog: menu Window - Preferences (macOS: Eclipse - Preferences).

	Type “tabs” in the search box.

	Go to General - Editors - Text Editors and check Insert spaces for tabs.

[image: ../_images/preferences_text_editors_ed.png]

	Go to XML - XML Files - Editor, select Indent using spaces, specify Indentation size: 4.

[image: ../_images/preferences_xml_editor_ed.png]

Miscellaneous

	To show or hide line numbers: right-click on the left margin of an editor, click Show Line Numbers.

[image: ../_images/menu_show_line_numbers_ed.png]

	To comment a code fragment, select it and press CTRL-/ (⌘/).

	Activate the Link with Editor icon, and the IDE will automatically select a file in the Project Explorer when its editor is focused.

[image: ../_images/link_with_editor_ed.png]

	CTRL-SHIFT-R (⇧⌘R) invokes the Open Resource dialog, which allows to search project files by name. Glob patterns (with * and ?) are supported.

[image: ../_images/open_resource_dialog_ed.png]

	The Show Whitespace Characters (paragraph) icon in the main toolbar allows to distinguish tabs from spaces.

[image: ../_images/Eclipse-whitespace.png]

	To see the full list of Eclipse keyboard shortcuts, press CTRL-SHIFT-L (⇧⌘L). Some shortcuts are for the Java editor, and do nothing in Rell.

[image: ../_images/keyboard_shortcuts_ed.png]

Keyboard shortcuts

Most useful keyboard shortcuts (subjectively):

	Action

	Linux/Windows

	macOS

	Run the file shown in the active editor

	CTRL-F11

	⇧⌘F11

	

	
	

	Show the New wizard

	CTRL-N

	⌘N

	Show the New menu

	ALT-SHIFT-N

	⌥⌘N

	Save the current file

	CTRL-S

	⌘S

	Close the active editor tab

	CTRL-W

	⌘W

	Close all editor tabs

	CTRL-SHIFT-W

	⇧⌘W

	

	
	

	Quick outline

	CTRL-O

	⌘O

	Find text in the active editor

	CTRL-F

	⌘F

	Globally search for the selected text fragment

	CTRL-ALT-G

	⌥⌘G

	Show global text search dialog

	CTRL-H

	^H

	Find a file by name

	CTRL-SHIFT-R

	⇧⌘R

	

	
	

	Go to a line number

	CTRL-L

	⌘L

	Go to a previous location

	ALT-Left

	⌥⌘←

	Go to a next location (can be used after Alt-Left)

	ALT-Right

	⌥⌘→

	Go to the last edit location

	CTRL-Q

	⌘Q

	

	
	

	Comment the selected code fragment with //

	CTRL-/

	⌘/

	Convert selected text to upper case

	CTRL-SHIFT-X

	⇧⌘X

	Convert selected text to lower case

	CTRL-SHIFT-Y

	⇧⌘Y

	

	
	

	Show the full list of keyboard shortcuts

	CTRL-SHIFT-L

	⇧⌘L

Example Projects

	Chroma Chat

	Account-based token system

	UTXO-based token system

Chroma Chat

In this section we will write the Rell backend for a public chat dapp.

Requirements

The requirements we set are the following:

	There is one admin with an amount of tokens automatically assigned (say 1000000).

	The admin is the first person that registers themselves on the dapp.

	Any registered user can register a new user and transfer some tokens to them, after having paid 100 tokens to the admin as a fee.

	Users are identified by their public key.

	Channels are streams of messages belonging to the same topic, specified by the name of the channel (e.g. “showerthoughts”, where you can share thoughts you had in the shower).

	Registered users can create channels.

	When a new channel is created, only the creator is within the group. She can add any existing users. This operation costs 1 token.

Entity definition

The structure of it will be:

entity user {
 key pubkey;
 key username: text;
}

entity channel {
 key name;
 admin: user;
}

entity channel_member {
 key channel, member: user;
}

entity message {
 key channel, timestamp;
 index posted_by: user;
 text;
}

entity balance {
 key user;
 mutable amount: integer;
}

Let’s analyse it:

User

A user can be identified either by its pubkey or by its username.
Both pubkey and username are key attributes and are therefore unique.

Channel

Channels are identified by the name (which ideally reflects the topic of the channel itself) and the user who created it. Note that two channels cannot have the same name (key) and that a user can be admin of multiple channels.

Message

One message has the text and reference of the user who sent it. Additionally, the channel and timestamp of publication is recorded. Note that key channel, timestamp means that only one message can be sent within a channel at given timestamp (but of course several messages on different channels can be recorded at single timestamp).

Balance

This is kind of self explanatory: a user has an amount of tokens. Tokens can be spent (or more in general transferred), for this reason the field is marked as mutable.

Operations

Operations are necessary when some data in the database is to be modified.

Init

The module is initialized by performing the init operation. Here, an admin user is created with an account balance of 1000000.
We don’t want it to be possible to execute the operation a second time.

require((user@*{} limit 1).size() == 0); prevents that.

operation init (founder_pubkey: pubkey) {
 require((user@*{} limit 1).size() == 0);
 val founder = create user (founder_pubkey, "admin");
 create balance (founder, 1000000);
}

The operation receives a public key as input (note that it does not verify that signer of the transaction is the same specified in input field founder_pubkey, meaning you can specify a different public key).

Transfer tokens (Function)

For convenience we create a function to transfer token from one user’s balance to another’s.
We write it because we don’t want to duplicate our checks and potentially create bugs.

function transfer_balance(from:user, to:user, amount:integer){
 require(balance@{from}.amount >= amount);
 update balance@{from} (amount -= amount);
 update balance@{to} (amount += amount);
}

We also add a pay_fee function that is a transfer from one user to the admin account:

function pay_fee (user, deduct_amount: integer) {
 if(user.username != 'admin'){
 transfer_balance(user, user@{.username == 'admin'}, deduct_amount);
 }
}

Register a new user

As said, registered users should be allowed to add new users:

operation register_user (
 existing_user_pubkey: pubkey,
 new_user_pubkey: pubkey,
 new_user_username: text,
 transfer_amount: integer
) {
 require(op_context.is_signer(existing_user_pubkey));
 val existing_user = user@{existing_user_pubkey};

 require(transfer_amount > 0);

 val new_user = create user (new_user_pubkey, new_user_username);
 pay_fee(existing_user, 100);

 create balance (new_user, 0);
 transfer_balance(existing_user, new_user, transfer_amount);
}

Here we:

	Verify that the signer exists with user@{existing_user_pubkey}, which require exactly one result for the pubkey.

	Pay the fee of 100 tokens (transfer 100 tokens to ‘admin’ account)

	Then create the new user and transfer to them the specified positive amount of tokens.

Note

If at any point in the operation the conditions fail (for example, when the new username is already taken), the whole operation is rolled back and the transaction is rejected.

This is why we don’t need to check if the signer’s balance has registration_cost + transfer_amount tokens beforehand.

Create a new channel

Registered users can create new channels.
Given the public key and the name of the channel, we will verify that she is an actual registered user, transfer the fee, create the channel, and add that user as chat member.

operation create_channel (admin_pubkey: pubkey, name) {
 require(op_context.is_signer(admin_pubkey));
 val admin_usr = user@{admin_pubkey};
 pay_fee(admin_usr, 100);
 val channel = create channel (admin_usr, name);
 create channel_member (channel, admin_usr);
}

Add user to channel

The admin of a channel (the one who created the channel) can add another user after having paid a fee of 1 token.

So we check once again that the signer is the admin_pubkey specified, we have the channel admin pay 1 token, and we add a new user to the channel via channel_member.

operation add_channel_member (admin_pubkey: pubkey, channel_name: name, member_username: text) {
 require(op_context.is_signer(admin_pubkey));
 val admin_usr = user@{admin_pubkey};
 pay_fee(admin_usr, 1);
 val channel = channel@{channel_name, .admin==user@{admin_pubkey}};
 create channel_member (channel, member=user@{.username == member_username});
}

Post a new message

People in a channel will love to share their opinions. They can do so with the post_message operation.
The signer (op_context.is_signer(pubkey)) can post a message in the channel (val channel = channel@{channel_name};) if they are a member of the channel (require(channel_member@?{channel, member});).

After the payment of 1 token fee, we add the new message to the channel:

operation post_message (channel_name: name, pubkey, message: text) {
 require(op_context.is_signer(pubkey));
 val channel = channel@{channel_name};
 val member = user@{pubkey};
 require(channel_member@?{channel, member});
 pay_fee(member, 1);
 create message (channel, member, text=message, op_context.last_block_time);
}

Queries

It is useful to write data into a database in a distributed fashion, although writing would be meaningless without the ability to read.

Query all channels where a user is registered

Getting the channels one user is registered into is simple, selecting from channel_member with the given user’s public key.

query get_channels(pubkey):list<(name:text, admin: text)> {
 return channel_member@*{.member == user@{pubkey}} (name = .channel.name, admin = .channel.admin.username);
}

Other simple queries

Likewise we can get the balance from one user.

query get_balance(pubkey) {
 return balance@{ user@{ pubkey } }.amount;
}

Retrieve messages sent in one channel sorted from the oldest to newest (sort .timestamp).

query get_last_messages(channel_name: name):list<(text:text, poster:text, timestamp:timestamp)> {
 return message@*{ channel@{channel_name} }
 (.text, poster=.posted_by.username, @sort .timestamp);
}

Run it

	Browse to https://rellide-staging.chromia.dev

	Create a new project

	Enter the above code in the code section (You can copy the full code from here [https://bitbucket.org/chromawallet/chat-sample/src/master/rell/src/main.rell]).

	Click on Start Node (The green “Play” icon)

Or

	Enter the above code in a new Eclipse Rell project

	Run it as a “Rell Postchain App” from the run.xml file

Congratulations! You should now have a running node.

Client side

At this stage we should have a running node with your freshly made module.

What about interface it with a classy JS based application?

Well to do it we need the postchain-client npm package

npm i --save postchain-client

Lets open a new script in an editor of your liking and include the postchain client and crypto package.

const pcl = require('postchain-client');
const crypto = require('crypto');

Then we need to declare the address of the REST server (which is ran by the node, default is 7740) and the blockchainRID of the blockchain and the number of sockets (5).

We then get an instance of GTX Client, via gtxClient.createClient and giving the rest object and blockchainRID in input. Last parameters is an empty list of operation (this is needed if you don’t use Rell language, in fact, you can also code a module with standard SQL or as a proper kotlin/java module).

// Check the node log on rellide-staging.chromia.dev to get node api url.
const nodeApiUrl = "https://rellide-staging.chromia.dev/node/XXXXX/";
const blockchainRID = "78967baa4768cbcef11c508326ffb13a956689fcb6dc3ba17f4b895cbb1577a3"; // default RID on rellide-staging.chromia.dev
const rest = pcl.restClient.createRestClient(nodeApiUrl, blockchainRID, 5)
const gtx = pcl.gtxClient.createClient(
 rest,
 Buffer.from(
 blockchainRID,
 'hex'
),
 []
);

Note

If you are using Eclipse IDE, the configs should be:

const nodeApiUrl = "http://localhost:7740/"; //If using another port you can specify it here
const blockchainRID = "0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF"; //Blockchain RID can be seen in the console window when starting a node

Note

If you are writing your script in the web IDE, you do not have to write configs as it is already included.

Create and send a transaction with the init operation

First thing we probably want is to register and create the admin, we do so calling the init function.

function init(adminPubkey, adminPrivkey) {
 const rq = gtx.newTransaction([adminPubkey]);
 rq.addOperation('init', adminPubkey);
 rq.sign(adminPrivkey, adminPubkey);
 return rq.postAndWaitConfirmation();
}

The first thing we do is to declare a new transaction and that it will be signed by admin private key (we provide the public key, so the node can verify the veracity of transaction).

We add the operation called init and we pass as input argument the admin public key. We then sign the transaction with the private key (we specify the public key in order to correlate which private key refers to which public key in case of multiple signatures).

Finally we send the transaction to the node via the method postAndWaitconfirmation which returns a promise and resolves once it is confirmed.

Given the following keypair, we can create the admin.

const adminPUB = Buffer.from(
 '031b84c5567b126440995d3ed5aaba0565d71e1834604819ff9c17f5e9d5dd078f',
 'hex'
);
const adminPRIV = Buffer.from(
 '01',
 'hex'
);

init(adminPUB, adminPRIV);

Note

In your own project, you might want to generate the keypair using pcl.util.makeKeyPair() instead:

const user = pcl.util.makeKeyPair();
const { pubKey, privKey } = user;

Create other operations

We can also create a new channel, post a message, invite a user to dapp, invite a user in a channel

function createChannel(admin, channelName) {
 const pubKey = pcl.util.toBuffer(admin.pubKey);
 const privKey = pcl.util.toBuffer(admin.privKey);
 const rq = gtx.newTransaction([pubKey]);
 rq.addOperation("create_channel", pubKey, channelName);
 rq.sign(privKey, pubKey);
 return rq.postAndWaitConfirmation();
}

function postMessage(user, channelName, message) {
 const pubKey = pcl.util.toBuffer(user.pubKey);
 const privKey = pcl.util.toBuffer(user.privKey);
 const rq = gtx.newTransaction([pubKey]);
 rq.addOperation("nop", crypto.randomBytes(32));
 rq.addOperation("post_message", channelName, pubKey, message);
 rq.sign(privKey, pubKey);
 return rq.postAndWaitConfirmation();
}

function inviteUser(existingUser, newUserPubKey, startAmount) {
 const pubKey = pcl.util.toBuffer(existingUser.pubKey);
 const privKey = pcl.util.toBuffer(existingUser.privKey);
 const rq = gtx.newTransaction([pubKey]);
 rq.addOperation("register_user", pubKey, pcl.util.toBuffer(newUserPubKey), parseInt(startAmount));
 rq.sign(privKey, pubKey);
 return rq.postAndWaitConfirmation();
}

function inviteUserToChat(existingUser, channel, newUserPubKey) {
 const pubKey = pcl.util.toBuffer(existingUser.pubKey);
 const privKey = pcl.util.toBuffer(existingUser.privKey);
 const rq = gtx.newTransaction([pubKey]);
 rq.addOperation("add_channel_member", pubKey, channel, pcl.util.toBuffer(newUserPubKey));
 rq.sign(privKey, pubKey);
 return rq.postAndWaitConfirmation();
}

Although there is really nothing critical in these functions, there are few things worth noting:

	We expect public and private keys in hex format, and we convert them to Buffer with pcl.util.toBuffer(admin.pubKey);

	In order to protect the system from replay attacks, the blockchain does not accept transactions which hash is equal to an already existing transaction. This means that an user is not allowed to write the same message twice in a channel since if at day one he writes “hello” the transaction will be something like rq.addOperation("post_message", the_channel, user_pub, "hello");, when he will write ‘hello’ a second time the transaction will be the same and therefore rejected. To solve this problem, we add a “nop” operation with some random bytes via rq.addOperation("nop", crypto.randomBytes(32));, and create a different transaction hash.

Important

It is very important to remember this limitation imposed upon transactions. If your transaction is rejected with no obvious reason, chances are high that it is missing a “nop” operation.

Querying the blockchain from the client side

Previously we wrote the queries on blockchain side. Now we need to query from the dapp. To do so we use the previously mentioned postchain-client package.

// Rell query, reported here for easy look up
// query get_balance(user_pubkey: text) {
// return balance@{user@{byte_array(user_pubkey)}}.amount;
// }

function getBalance(user) {
 return gtx.query("get_balance", {
 user_pubkey: user.pubKey
 });
}

As you can see everything is contained into gtx.query: the first argument is the query name in the rell module, and the second argument is the name of the expected attribute in the query itself wrapped in an object. The name of the object is the one specified in module and the value, of course, the value we want to send. Please note that buffer values must before be converted into hexadecimal strings.

Other queries:

function getChannels(user) {
 return gtx.query("get_channels", {
 user_pubkey: user.pubKey
 });
}

function getMessages(channel) {
 return gtx.query("get_last_messages", {channel_name: channel});
}

Conclusion

At this point, we have created a Rell backend for the public chat, and a javascript client to communicate with it.

We encourage you to extend this sample in anyway you like, by for example adding a user interface, or maybe by adding a “transfer” operation to send tokens to another user?

Or, if you are eager to see the application in its running state, we have implemented a simple UI for it at https://bitbucket.org/chromawallet/chat-sample/src/master/.

Account-based token system

Tokens are the bread & butter of blockchains, thus it is useful to
demonstrate how a token system can be implemented in Rell. There are roughly
two different implementation strategies:

	Account-based tokens which maintain an updatable balance for each
account (which can be associated with a key or an address)

	UTXO-based ones (Bitcoin-style) deal with virtual “coins” which are
minted and destroyed in transactions

This section details the account-based implementation. For an example of a UTXO based system see UTXO-based token system.

A minimal implementation can look like this:

entity balance {
 key pubkey;
 mutable amount: integer;
}

operation transfer(from_pubkey: pubkey, to_pubkey: pubkey, xfer_amount: integer) {
 require(op_context.is_signer(from_pubkey));
 require(xfer_amount > 0);
 require(balance@{from_pubkey}.amount >= xfer_amount);
 update balance@{from_pubkey} (amount -= xfer_amount);
 update balance@{to_pubkey} (amount += xfer_amount);
}

There are a few items which should be highlighted in this code.
First, let’s note that balance@{from_pubkey}.amount is simply a
shorthand notation for balance@{from_pubkey} (amount).

update relational operator combines a relational expression specifying
objects to update with a form which specifies how to update their attributes.
Attributes are updatable only if they are market as mutable.

Note

We don’t need to worry about concurrency issues (i.e. that the
balance can change after we checked it) because Rell applies operations
within a single blockchain sequentially.

But this minimal implementation is not very useful, as there’s no
mechanism for a wallet to identify payments it receives (without somehow
scanning the blockchain, or asking the payer to share the transaction with the recipient).
Other blockchains systems might resort to third-party tools and complex
protocols to handle this (for example, the Electrum Bitcoin wallet connects
to Electrum Servers which perform blockchain indexing). Rell-based
blockchains can just use built-in indexing to keep track of payment
history. For example, by using the additional payment
class. We will be using the log annotation to add the transaction as an attribute to the entity.
This can be used to timestamp the transaction,
more about the log annotation and the transaction entity can be found under the system library chapter.
To make things more efficient, we also wrap pubkey into user
class, thus getting:

entity user { key pubkey; }

entity balance {
 key user;
 mutable amount: integer;
}

@log entity payment {
 index from_user: user;
 index to_user: user;
 amount: integer;
 timestamp;
}

operation transfer(from_pubkey: pubkey, to_pubkey: pubkey, xfer_amount: integer) {
 require(op_context.is_signer(from_pubkey));
 require(xfer_amount > 0);
 val from_user = user@{from_pubkey};
 val to_user = user@{to_pubkey};
 require(balance@{from_user}.amount >= xfer_amount);
 update balance@{from_user} (amount -= xfer_amount);
 update balance@{to_user} (amount += xfer_amount);
 create payment (
 from_user,
 to_user,
 amount=xfer_amount);
}

Note

In create payment (from_user, to_user, ...) Rell can
figure out matching attributes from names of local variables as they
match exactly. It is often the case that you can use the same name for
the same concept.)

The example above can be easily extended to support multiple types of
tokens. For example:

entity asset { key asset_code; }

entity balance {
 key user, asset;
 mutable amount: integer;
}

Here we use a composite key to keep track of the balance for each
(user, asset) pair.

Client Side API

Lets see how we would call this transfer in the front-end. First of all, we need to initialize a user with some starting money. We also need a way to add more users
to the network.
So before we start writing the front-end we add an init function to our Rell module and also a register user function.

The init function:

operation init (founder_pubkey: pubkey) {

 require((user@*{} limit 1).size() == 0);
 val founder = create user(founder_pubkey);
 create balance (founder, 1000000);
}

The register user function:

operation register_user (
 existing_user_pubkey: byte_array,
 new_user_pubkey: byte_array
) {
 require(op_context.is_signer(existing_user_pubkey));
 val existing_user = user@{existing_user_pubkey};
 val new_user = create user (new_user_pubkey);
 create balance (new_user, 0);
 }

Now you can start writing a front-end in nodeJS. If you need a refresher on the installation, check out the “Client Side” chapter in Rell basics.
We start by adding the postchain package and start an instance of a GTX client.

const pcl = require('postchain-client');
const nodeApiUrl = "https://rellide-staging.chromia.dev/node/XXXXX/"; //Fill this url with where your node is.
const blockchainRID = "78967baa4768cbcef11c508326ffb13a956689fcb6dc3ba17f4b895cbb1577a3"; // default RID on rellide-staging.chromia.dev
const rest = pcl.restClient.createRestClient(nodeApiUrl, blockchainRID, 5)
const gtx = pcl.gtxClient.createClient(
 rest,
 Buffer.from(
 blockchainRID,
 'hex'
),
 []
);

Now we have all we need to start sending transactions to our backend. We start by defining a function that sends a transaction with the init operation inside.

async function initialize(admin){
 const adminPubKey = pcl.util.toBuffer(admin.pubKey);
 const tx = gtx.newTransaction([admin.pubKey]);
 tx.addOperation("init", adminPubKey);
 tx.sign(admin.privKey, admin.pubKey);
 await tx.postAndWaitConfirmation();
}

Now we can write out the function for registering a new user:

async function registerUser(newUser, oldUser){
 const newUserPubKey = pcl.util.toBuffer(newUser.pubKey);
 const oldUserPubKey = pcl.util.toBuffer(oldUser.pubKey);
 const oldUserPrivKey = pcl.util.toBuffer(oldUser.privKey);
 const tx = gtx.newTransaction([oldUserPubKey]);
 tx.addOperation("register_user", oldUserPubKey, newUserPubKey);
 tx.sign(oldUserPrivKey, oldUserPubKey);
 await tx.postAndWaitConfirmation();
}

And lastly, the transfer function:

async function transferBalance(fromUser, toUser, amount) {
 const fromUserPubKey = pcl.util.toBuffer(fromUser.pubKey);
 const fromUserPrivKey = pcl.util.toBuffer(fromUser.privKey);
 const toUserPubKey = pcl.util.toBuffer(toUser.pubKey);
 const tx = gtx.newTransaction([fromUserPubKey]);
 tx.addOperation("transfer_balance", fromUserPubKey, toUserPubKey, amount);
 tx.sign(fromUserPrivKey, fromUserPubKey);
 await tx.postAndWaitConfirmation();
}

UTXO-based token system

As an exercise, we can also implement a Bitcoin-style token system.

We first define an unspent transaction output structure:

entity utxo {
 pubkey;
 amount: integer;
}

Then define the transfer operation that roughly follows Bitcoin
transaction structure – it has a list of inputs and outputs:

operation transfer (inputs: list<utxo>, output_pubkeys: list<pubkey>, output_amounts: list<integer>) {
 var input_sum = 0;
 for (an_utxo in inputs) {
 require(op_context.is_signer(an_utxo.pubkey));
 input_sum += an_utxo.amount;
 delete utxo@{utxo == an_utxo};
 }
 var output_sum = 0;
 require(output_pubkeys.size() == output_amounts.size());
 for (out_index in range(output_pubkeys.size())) {
 output_sum += output_amounts[out_index];
 create utxo (output_pubkeys[out_index],
 output_amounts[out_index]);
 }
 require(output_sum <= input_sum);
}

There are quite a lot of new constructs used in this example:

	list<...> is, obviously, a collection. Besides lists, Rell also
supports set and map

	in list<utxo> utxo object references are physically implemented
using integer identifiers which are used internally

	an_utxo.pubkey accesses an attribute of an object, which is a
database query identical to utxo@{utxo==an_utxo} (pubkey)

	variable type is automatically inferred from expression used for
initialization. One can also write it like
var output_sum : integer = 0;

	delete operation accepts a relational expression which identifies
object(s)

	.size() method can be used get the size of a collection

	for (... in ...) works both for collections and for ranges of
integer values

	[] is used to refer to an element of a collection

Note

A front-end client together with a similar UTXO implementation to the example above can be found here. [https://bitbucket.org/chromawallet/utxo-token-example/src/main/]

Note that we perform checks as we go. This is OK because Rell is
transactional: if a requirement fails or an error is generated, the
whole operation (in fact, the whole transaction) is rolled back. Rell is
typically used with a GTX transaction format which supports multiple
signers and multiple operations per transaction. Thus it can easily
support Bitcoin-style multi-input transactions, atomic token swaps,
multi-sig etc.

Now a bit about delete operator. Isn’t it strange to enable deletion
of data from a blockchain?!

Here we aren’t deleting data “from a blockchain”, we are removing
entries from the current blockchain state. This is exactly how it works in
a Bitcoin node – once entries in an unspent transaction output set are
spent, they are deleted. A typical Bitcoin node doesn’t keep track of
spent transaction outputs.

A system based on Rell (e.g. Postchain or Chromia) works in exactly the
same way: raw information about transactions and operations is preserved
in a blockchain. The database contains both raw blockchain transactions
and processed current state. The current state is what a Rell programmer
can work with: he is allowed to do destructive updates and delete
entries. These operations do not affect the raw blockchain.

Language Features

	Types

	Module definitions

	Expressions

	Statements

	Database Operations

	System Library (Globals)

	Miscellaneous

Types

Table of Contents

	Types

	Simple types

	boolean

	integer

	decimal

	text

	byte_array

	rowid

	json

	unit

	null

	Simple type aliases

	Complex types

	entity

	struct

	enum

	T? - nullable type

	tuple

	range

	gtv

	Collection types

	list<T>

	set<T>

	map<K,V>

	Virtual types

	virtual<list<T>>

	virtual<set<T>>

	virtual<map<K,V>>

	virtual<struct>

	Subtypes

Simple types

boolean

val using_rell = true;
if (using_rell) print("Awesome!");

integer

val user_age : integer = 26;

integer.MIN_VALUE = minimum value (-2^63)

integer.MAX_VALUE = maximum value (2^63-1)

integer(s: text, radix: integer = 10) - parse a signed string representation of an integer, fail if invalid

integer(decimal): integer - converts a decimal to an integer, rounding towards 0 (5.99 becomes 5, -5.99 becomes -5),
throws an exception if the resulting value is out of range

integer.from_text(s: text, radix: integer = 10): integer - same as integer(text, integer)

integer.from_hex(text): integer - parse an unsigned HEX representation

.abs(): integer - absolute value

.max(integer): integer - maximum of two values

.max(decimal): decimal - maximum of two values (converts this integer to decimal)

.min(integer): integer - minimum of two values

.min(decimal): decimal - minimum of two values (converts this integer to decimal)

.to_text(radix: integer = 10) - convert to a signed string representation

.to_hex(): text - convert to an unsigned HEX representation

.sign(): integer - returns -1, 0 or 1 depending on the sign

decimal

Represent a real number.

val approx_pi : decimal = 3.14159;
val scientific_value : decimal = 55.77e-5;

It is not a normal floating-point type found in many other languages (like float and double in
C/C++/Java):

	decimal type is accurate when working with numbers within its range. All decimal numbers (results of decimal operations) are implicitly rounded to 20 decimal places. For instance,
decimal('1E-20') returns a non-zero, while decimal('1E-21') returns a zero value.

	Numbers are stored in a decimal form, not in a binary form, so conversions to and from a string are lossless (except when
rounding occurs if there are more than 20 digits after the point).

	Floating-point types allow to store much smaller numbers, like 1E-300; decimal can only store 1E-20,
but not a smaller nonzero number.

	Operations on decimal numbers may be considerably slower than integer operations (at least 10 times slower for
same integer numbers).

	Large decimal numbers may require a lot of space: ~0.41 bytes per decimal digit (~54KiB for 1E+131071) in memory and
~0.5 bytes per digit in a database.

	Internally, the type java.lang.BigDecimal is used in the interpreter, and NUMERIC in SQL.

	In the code one can use decimal literals:

123.456
0.123
.456
33E+10
55.77e-5

Such numbers have decimal type. Simple numbers without a decimal point and exponent, like 12345, have integer
type.

decimal.PRECISION: integer - the maximum number of decimal digits (131072 + 20)

decimal.SCALE: integer - the maximum number of decimal digits after the decimal point (20)

decimal.INT_DIGITS: integer - the maximum number of digits before the decimal point (131072)

decimal.MIN_VALUE: decimal - the smallest nonzero absolute value that a decimal can store

decimal.MAX_VALUE: decimal - the largest value that can be stored in a decimal (1E+131072 - 1)

decimal(integer): decimal - converts integer to decimal

decimal(text): decimal - converts a text representation of a number to decimal

.abs(): decimal - absolute value

.ceil(): decimal - ceiling value: rounds 1.0 to 1.0, 1.00001 to 2.0, -1.99999 to -1.0, etc.

.floor(): decimal - floor value: rounds 1.0 to 1.0, 1.9999 to 1.0, -1.0001 to -2.0, etc.

.min(decimal): decimal - minimum of two values

.max(decimal): decimal - maximum of two values

.round(scale: integer = 0): decimal - rounds to a specific number of decimal places, to a closer value

	Example: round(2.49) = 2.0, round(2.50) = 3.0, round(0.12345, 3) = 0.123.
Negative scales are allowed too: round(12345, -3) = 12000.

.sign(): integer - returns -1, 0 or 1 depending on the sign

.to_integer(): integer - converts a decimal to an integer, rounding towards 0

	Example: (5.99 becomes 5, -5.99 becomes -5)

.to_text(scientific: boolean = false): text

text

Textual value. Same as string type in some other languages.

val placeholder = "Lorem ipsum donor sit amet";
print(placeholder.size()); // 26
print(placeholder.empty()); // false

text.from_bytes(byte_array, ignore_invalid: boolean = false) - if ignore_invalid is false,
throws an exception when the byte array is not a valid UTF-8 encoded string, otherwise replaces invalid characters
with a placeholder.

.empty(): boolean - returns true if the text is empty, otherwise returns false

.size(): integer - returns the number of characters.

.compare_to(text): integer - returns 0 if texts match, otherwise a positive or negative value

.starts_with(text): boolean - returns true if it starts with the input text, otherwise returns false

.ends_with(text): boolean - returns true if it ends with the input text, otherwise returns false

.contains(text): boolean - return true if contains the given substring, otherwise returns false

.index_of(text): integer - returns position of input text and -1 if substring is not found

.index_of(text, integer): integer - same as .index_of(text) but starting search from given position

.last_index_of(text[, start: integer]): integer - returns -1 if
substring is not found (as in Java)

.sub(start: integer[, end: integer]): text - get a substring
(start-inclusive, end-exclusive)

.replace(old: text, new: text) - replaces substring with new text

.upper_case(): text - converts the text to uppercase letters

.lower_case(): text - converts the text to lowercase letters

.split(text): list<text> - strictly split by a separator (not a regular expression)

.trim(): text - remove leading and trailing whitespace

.matches(text): boolean - returns true if it matches a regular expression

.to_bytes(): byte_array - convert to a UTF-8 encoded byte array

.char_at(integer): integer - get a 16-bit code of a character

.format(...) - formats a string (as in Java):

	'My name is <%s>'.format('Bob') - returns 'My name is <Bob>'

Most of these text functions can be used within at-expressions where they will be translated to their SQL equivalents.

Special operators:

	+ : concatenation

	[] : character access (returns single-character text)

byte_array

val user_pubkey : byte_array = x"0373599a61cc6b3bc02a78c34313e1737ae9cfd56b9bb24360b437d469efdf3b15";
print(user_pubkey.to_base64()); //A3NZmmHMazvAKnjDQxPhc3rpz9Vrm7JDYLQ31Gnv3zsV

byte_array(text) - creates a byte_array from a HEX string, e.g. '1234abcd'

byte_array.from_hex(text): byte_array - same as byte_array(text)

byte_array.from_base64(text): byte_array - creates a byte_array from a Base64 string

byte_array.from_list(list<integer>): byte_array - converts list to bytearray; values must be 0 - 255

.empty(): boolean - returns true if the text is empty, otherwise returns false

.size(): integer - returns the number of characters.

.sub(start: integer[, end: integer]): byte_array - sub-array (start-inclusive, end-exclusive)

.to_hex(): text - returns a HEX representation of the byte array, e.g. '1234abcd'

.to_base64(): text - returns a Base64 representation of the byte array

.to_list(): list<integer> - list of values 0 - 255

.sha256(): byte_array - returns the sha256 digest as a byte_array

Most of these byte array functions can be used within at-expressions where they will be translated to their SQL equivalents.

Special operators:

	+ : concatenation

	[] : element access

rowid

Primary key of a database record, 64-bit integer, supports only comparison operations

json

Stored in Postgres as JSON type, and can be parsed to text;

val json_text = '{ "name": "Alice" }';
val json_value: json = json(json_text);
print(json_value);

json(text) - create a json value from a string; fails if not a valid JSON string

.to_text(): text - convert to string

unit

No value; cannot be used explicitly. Equivalent to unit type in Kotlin.

null

Type of null expression; cannot be used explicitly

Simple type aliases

	pubkey = byte_array

	name = text

	timestamp = integer

	tuid = text

Complex types

entity

The entity represents a database object. An example to visualize how relations between objects are maintained can be seen below:

entity user {
 key pubkey;
 index name;
}

entity address {
 key pubkey;
 street: text;
}

entity residence {
 key user, address;
}

//both queries will result lists of records, as it is a many-to-many relationships
//they might be of different sizes. The constraint is that the composite of the two keys are unique.
function get_addresses(user): list<address> = residence @* { user }.address;
function get_users(address): list<user> = residence @* { address }.user;

is many-to-many relation, i.e. user can have more than one residence. Many-to-one can be implemented by changing key:

entity residence {
 key user;
 index address;
}
//There is a unique constraint on the user key.
function get_addresses(user): list<address> = residence @* { user }.address; //will only return zero or one addresses
function get_users(address): list<user> = residence @* { address }.user; // will return zero to n users

And for completeness, one-to-many would be reverse of many-to-one:

entity residence {
 index user;
 key address;
}

It also works without making address an entity, e.g.:

entity user { key name; }

// allow user to have many tags
entity user_tag {
 key user, tag: text;
}

and one-to-one (optional) as:

entity residence {
 key user;
 key address; //make sure that address can be claimed by at most one user
}
There is a unique constraint on the user key and the address key.
function get_addresses(user): list<address> = residence @* { user }.address; //will only return zero or one addresses
function get_users(address): list<user> = residence @* { address }.user; // will only return zero to one users

struct

A struct is similar to an entity, but its instances exist in memory, not in a database.

struct user {
 name: text;
 address: text;
 mutable balance: integer = 0;
}

Functions available for all struct types:

T.from_bytes(byte_array): T - decode from a binary-encoded gtv
(same as T.from_gtv(gtv.from_bytes(x)))

T.from_gtv(gtv): T - decode from a gtv

T.from_gtv_pretty(gtv): T - decode from a pretty-encoded gtv

.to_bytes(): byte_array - encode in binary format (same as .to_gtv().to_bytes())

.to_gtv(): gtv - convert to a gtv

.to_gtv_pretty(): gtv - convert to a pretty gtv

enum

enum account_type {
 single_key_account,
 multi_sig_account
}

entity account {
 key id: byte_array;
 mutable account_type;
 mutable args: byte_array;
}

Assuming T is an enum type:

T.values(): list<T> - returns all values of the enum, in the order of declaration

T.value(text): T - finds a value by name, throws en exception if not found

T.value(integer): T - finds a value by index, throws an exception if not found

Enum value properties

.name: text - the name of the enum value

.value: integer - the numeric value (index) associated with the enum value

T? - nullable type

val nonexistent_user = user @? { .name == "Nonexistent Name" };
require_not_empty(nonexistent_user); // Throws exception because user doesn't exists

	Entity attributes cannot be nullable.

	Can be used with almost any type (except nullable, unit, null).

	Nullable nullable (T?? is not allowed).

	Normal operations of the underlying type cannot be applied directly.

	Supports ?:, ?. and !! operators (like in Kotlin).

Compatibility with other types:

	Can assign a value of type T to a variable of type T?, but
not the other way round.

	Can assign null to a variable of type T?, but not to a variable of type T.

	Can assign a value of type (T) (tuple) to a variable of type (T?).

	Cannot assign a value of type list<T> to a variable of type list<T?>.

Allowed operations:

	Null comparison: x == null, x != null.

	?? - null check operator: x?? is equivalent to x != null

	!! - null assertion operator: x!! returns value of x if x is not null, otherwise throws an exception

	?: - Elvis operator: x ?: y means x if x is not null, otherwise y

	?. - safe access: x?.y results in x.y if x is not null and null otherwise;
similarly, x?.y() either evaluates and returns x.y() or returns null

	require(x), require_not_empty(x): throws an exception if x is null, otherwise returns value of x

Examples:

function f(): integer? { ... }

val x: integer? = f(); // type of "x" is "integer?"
val y = x; // type of "y" is "integer?"

val i = y!!; // type of "i" is "integer"
val j = require(y); // type of "j" is "integer"

val a = y ?: 456; // type of "a" is "integer"
val b = y ?: null; // type of "b" is "integer?"

val p = y!!; // type of "p" is "integer"
val q = y?.to_hex(); // type of "q" is "text?"

if (x != null) {
 val u = x; // type of "u" is "integer" - smart cast is applied to "x"
} else {
 val v = x; // type of "v" is "integer?"
}

tuple

Examples:

	val single_number : (integer) = (16,) - one value

	val invalid_tuple = (789) - not a tuple (no comma)

	val user_tuple: (integer, text) = (26, "Bob") - two values

	val named_tuple : (x: integer, y: integer) = (32, 26) - named fields (can be accessed as named_tuple.x, named_tuple.y)

	(integer, (text, boolean)) - nested tuple

Tuple types are compatible only if names and types of fields are the
same:

	(x:integer, y:integer) and (a:integer,b:integer) are not compatible.

	(x:integer, y:integer) and (integer,integer) are not compatible.

Reading tuple fields:

	t[0], t[1] - by index

	t.a, t.b - by name (for named fields)

Unpacking tuples:

val t = (123, 'Hello');
val (n, s) = t; // n = 123, s = 'Hello'

Works for arbitrarily nested tuples:

val (n, (p, (x, y), q)) = calculate();

Special symbol _ is used to ignore a tuple element:

val (_, s) = (123, 'Hello'); // s = 'Hello'

Variable types can be specified explicitly:

val (n: integer, s: text) = (123, 'Hello');

Unpacking can be used in a loop:

val l: list<(integer, text)> = get_tuples();
for ((x, y) in l) {
 print(x, y);
}

range

Can be used in for statement:

for(count in range(10)){
 print(count); // prints out 0 to 9
}

range(start: integer = 0, end: integer, step: integer = 1) -
start-inclusive, end-exclusive (as in Python):

	range(10) - a range from 0 (inclusive) to 10 (exclusive)

	range(5, 10) - from 5 to 10

	range(5, 15, 4) - from 5 to 15 with step 4, i. e. [5, 9, 13]

	range(10, 5, -1) - produces [10, 9, 8, 7, 6]

	range(10, 5, -3) - produces [10, 7]

Special operators:

	in - returns true if the value is in the range (taking step into account)

gtv

A type used to represent encoded arguments and results of remote operation and query calls.
It may be a simple value (integer, string, byte array), an array of values or a string-keyed dictionary.

Some Rell types are not Gtv-compatible. Values of such types cannot be converted to/from gtv, and the types
cannot be used as types of operation/query parameters or result.

Rules of Gtv-compatibility

	range is not Gtv-compatible

	a complex type is not Gtv-compatible if a type of its component is not Gtv-compatible

gtv.from_json(text): gtv - decode a gtv from a JSON string

gtv.from_json(json): gtv - decode a gtv from a json value

gtv.from_bytes(byte_array): gtv - decode a gtv from a binary-encoded form

.to_json(): json - convert to JSON

.to_bytes(): byte_array - convert to bytes

.hash(): byte_array - returns a cryptographic hash of the value

gtv-related functions

Functions available for all Gtv-compatible types:

T.from_gtv(gtv): T - decode from a gtv

T.from_gtv_pretty(gtv): T - decode from a pretty-encoded gtv

.to_gtv(): gtv - convert to a gtv

null.to_gtv() - Returns the gtv equivalent of null

.to_gtv_pretty(): gtv - convert to a pretty gtv

.hash(): byte_array - returns a cryptographic hash of the value (same as .to_gtv().hash())

Examples

val g = [1, 2, 3].to_gtv();
val l = list<integer>.from_gtv(g); // Returns [1, 2, 3]
print(g.hash());

Collection types

Rell supports the following collection types:

	list<T> - an ordered list

	set<T> - an unordered set, contains no duplicates

	map<K,V> - a key-value map

Collection types are mutable, elements can be added or removed dynamically.
Only a non-mutable type can be used as a map key or a set element.

Mutable collection types

	Collection types (list, set, map) - always.

	Nullable type - only if the underlying type is mutable.

	Struct type - if the struct has a mutable field, or a field of a mutable type.

	Tuple - if a type of an element is mutable.

Creating collections

// list
val l1 = [1, 2, 3, 4, 5];
val l2 = list<integer>();

// set
val s = set<integer>();

// map
val m1 = ['Bob' : 123, 'Alice' : 456];
val m2 = map<text, integer>();

list<T>

A list is an ordered collection type that accepts duplication of elements.

var messages = message @* { } (@sort timestamp = .timestamp);
messages.add(new_message);

Constructors

list<T>() - a new empty list

list<T>(list<T>) - a copy of the given list (list of subtype is accepted as well)

list<T>(set<T>) - a copy of the given set (set of subtype is accepted)

Methods

.add(T): boolean - adds an element to the end, always returns true

.add(pos: integer, T): boolean - inserts an element at a position, always returns true

.add_all(list<T>): boolean

.add_all(set<T>): boolean

.add_all(pos: integer, list<T>): boolean

.add_all(pos: integer, set<T>): boolean

.clear()

.contains(T): boolean

.contains_all(list<T>): boolean

.contains_all(set<T>): boolean

.empty(): boolean

.index_of(T): integer - returns -1 if element is not found

.remove(T): boolean - removes the first occurrence of the value, return true if found

.remove_all(list<T>): boolean

.remove_all(set<T>): boolean

.remove_at(pos: integer): T - removes an element at a given position

.size(): integer

._sort() - sorts this list, returns nothing (name is _sort, because sort is a keyword in Rell)

.sorted(): list<T> - returns a sorted copy of this list

.to_text(): text - returns e. g. '[1, 2, 3, 4, 5]'

.sub(start: integer[, end: integer]): list<T> - returns a sub-list (start-inclusive, end-exclusive)

Special operators

	[] - element access (read/modify)

	in - returns true if the value is in the list

set<T>

Unordered collection type. Does not accept duplication.

var my_classmates = set<user>();
my_classmates.add(alice); // return true
my_classmates.add(alice); // return false

Constructors

set<T>() - a new empty set

set<T>(set<T>) - a copy of the given set (set of subtype is accepted as well)

set<T>(list<T>) - a copy of the given list (with duplicates removed)

Methods

.add(T): boolean - if the element is not in the set, adds it and returns true

.add_all(list<T>): boolean - adds all elements, returns true if at least one added

.add_all(set<T>): boolean - adds all elements, returns true if at least one added

.clear()

.contains(T): boolean

.contains_all(list<T>): boolean

.contains_all(set<T>): boolean

.empty(): boolean

.remove(T): boolean - removes the element, returns true if found

.remove_all(list<T>): boolean - returns true if at least one removed

.remove_all(set<T>): boolean - returns true if at least one removed

.size(): integer

.sorted(): list<T> - returns a sorted copy of this set (as a list)

.to_text(): text - returns e. g. '[1, 2, 3, 4, 5]'

Special operators

	in - returns true if the value is in the set

map<K,V>

A key/value pair collection type.

var dictionary = map<text, text>();
dictionary["Mordor"] = "A place where one does not simply walk into";

Constructors

map<K,V>() - a new empty map

map<K,V>(map<K,V>) - a copy of the given map (map of subtypes is accepted as well)

Methods

.clear()

.contains(K): boolean

.empty(): boolean

.get(K): V - get value by key (same as [])

.put(K, V) - adds/replaces a key-value pair

.keys(): set<K> - returns a copy of keys

.put_all(map<K, V>) - adds/replaces all key-value pairs from the given map

.remove(K): V - removes a key-value pair (fails if the key is not in the map)

.size(): integer

.to_text(): text - returns e. g. '{x=123, y=456}'

.values(): list<V> - returns a copy of values

Special operators

	[] - get/set value by key

	in - returns true if a key is in the map

Virtual types

A reduced data structure with Merkle tree. Type virtual<T> supports following types T:

	list<*>

	set<*>

	map<text, *>

	struct

	tuple

T elements constraints

Additionally, types of all internal elements of T must satisfy following constraints:

	must be Gtv-compatible

	for a map type, the key type must be text (i. e. map<text, *>)

Virtual types operations

	member access: [] for list and map, .name for struct and tuple

	.to_full(): T - converts the virtual value to the original value, if the value is full
(all internal elements are present), otherwise throws an exception

	.hash(): byte_array - returns the hash of the value, which is the same as the hash of the
original value.

	virtual<T>.from_gtv(gtv): virtual<T> - decodes a virtual value from a Gtv.

Features of virtual<T>

	it is immutable

	reading a member of type list<*>, map<*,*>, struct or tuple returns a value of
the corresponding virtual type, not of the actual member type

	cannot be converted to Gtv, so cannot be used as a return type of a query

Example

struct rec { t: text; s: integer; }

operation op(recs: virtual<list<rec>>) {
 for (rec in recs) { // type of "rec" is "virtual<rec>", not "rec"
 val full = rec.to_full(); // type of "full" is "rec", fails if the value is not full
 print(full.t);
 }
}

virtual<list<T>>

virtual<list<T>>.from_gtv(gtv): virtual<list<T>> - decodes a Gtv

.empty(): boolean

.get(integer): virtual<T> - returns an element, same as []

.hash(): byte_array

.size(): integer

.to_full(): list<T> - converts to the original value, fails if the value is not full

.to_text(): text - returns a text representation

Special operators

	[] - element read, returns virtual<T> (or just T for simple types)

	in - returns true if the given integer index is present in the virtual list

virtual<set<T>>

virtual<set<T>>.from_gtv(gtv): virtual<set<T>> - decodes a Gtv

.empty(): boolean

.hash(): byte_array

.size(): integer

.to_full(): set<T> - converts to the original value, fails if the value is not full

.to_text(): text - returns a text representation

Special operators

	in - returns true if the given value is present in the virtual set;
the type of the operand is virtual<T>> (or just T for simple types)

virtual<map<K,V>>

virtual<map<K,V>>.from_gtv(gtv): virtual<map<K,V>> - decodes a Gtv

.contains(K): boolean - same as operator in

.empty(): boolean

.get(K): virtual<V> - same as operator []

.hash(): byte_array

.keys(): set<K> - returns a copy of keys

.size(): integer

.to_full(): map<K,V> - converts to the original value, fails if the value is not full

.to_text(): text - returns a text representation

.values(): list<virtual<V>> - returns a copy of values
(if V is a simple type, returns list<V>)

Special operators

	[] - get value by key, fails if not found, returns virtual<V> (or just V for simple types)

	in - returns true if a key is in the map

virtual<struct>

virtual<R>.from_gtv(gtv): R - decodes a Gtv

.hash(): byte_array

.to_full(): R - converts to the original value, fails if the value is not full

Subtypes

If type B is a subtype of type A, a value of type B can be
assigned to a variable of type A (or passed as a parameter of type
A).

	T is a subtype of T?.

	null is a subtype of T?.

	(T,P) is a subtype of (T?,P?), (T?,P) and (T,P?).

Module definitions

Table of Contents

	Module definitions

	Entity

	Keys and Indices

	Entity annotations

	Changing existing entities

	Object

	Struct

	struct<mutable T>

	struct<operation>

	Enum

	Query

	Operation

	Function

	Default parameter values

	Named function arguments

	Using a function as a value

	Partial function application

	Extendable functions

	Namespace

	External

	External modules

	Transactions and blocks

	Mount names

Entity

Values (instances) of an entity in Rell are stored in a database, not in memory.
They have to be created and deleted explicitly using Rell create and delete expressions.
An in-memory equivalent of an entity in Rell is a struct.

A variable of an entity type holds an ID (primary key) of the corresponding database record, but not its attribute values.

entity company {
 name: text;
 address: text;
}

entity user {
 first_name: text;
 last_name: text;
 year_of_birth: integer;
 mutable salary: integer;
}

If attribute type is not specified, it will be the same as attribute name:

entity user {
 name; // built-in type "name"
 company; // user-defined type "company" (error if no such type)
}

Attributes may have default values:

entity user {
 home_city: text = 'New York';
}

An ID (database primary key) of an entity value can be accessed via the rowid implicit attribute (of type rowid):

val u = user @ { .name == 'Bob' };
print(u.rowid);

val alice_id = user @ { .name == 'Alice' } (.rowid);
print(alice_id);

Keys and Indices

Entities can have key and index clauses:

entity user {
 name: text;
 address: text;
 key name;
 index address;
}

Keys and indices may have multiple attributes:

entity user {
 first_name: text;
 last_name: text;
 key first_name, last_name;
}

Mutability can be specified within a key or index clause. Here one can also set a default value:

entity address{
 index mutable city: text = 'Rome';
}

Attribute definitions can be combined with key or index clauses,
but such definition has restrictions (e. g. cannot specify mutable):

entity user {
 key first_name: text, last_name: text;
 index address: text;
}

Entity annotations

@log entity user {
 name: text;
}

The @log annotation has following effects:

	Special attribute transaction of type transaction is added to the entity.

	When an entity value is created, transaction is set to the result of op_context.transaction (current transaction).

	Entity cannot have mutable attributes.

	Values cannot be deleted.

Changing existing entities

When starting a Rell app, database structure update is performed: tables for new entities and objects are created and tables for existing ones are altered.
There are limitations on changes that can be made in existing entities and objects.

What’s allowed:

	Adding an attribute with a default value (a column is added to the table and initialized with the default value).

	Adding an attribute without a default value - only if there are no records in the table.

	Removing an attribute (database column is not dropped, and the attribute can be read later).

What’s not allowed:

	Any changes in keys/indices, including adding a new key/index attribute, making an existing attribute into key/index, removing an attribute from an index, etc.

	Changing attribute’s type.

	Adding/removing the @log annotation.

Object

Object is similar to entity, but there can be only one instance of an object:

object event_stats {
 mutable event_count: integer = 0;
 mutable last_event: text = 'n/a';
}

Reading object attributes

query get_event_count() = event_stats.event_count;

Modifying an object

operation process_event(event: text) {
 update event_stats (event_count += 1, last_event = event);
}

Features of objects

	Like entities, objects are stored in a database.

	Objects are initialized automatically during blockchain initialization.

	Cannot create or delete an object from code.

	Attributes of an object must have default values.

Struct

Struct is similar to entity, but its values exist in memory, not in a database.

struct user {
 name: text;
 address: text;
 mutable balance: integer = 0;
}

Features of structs

	Attributes are immutable by default, and only mutable when declared with mutable keyword.

	Attributes can have

	An attribute may have a default value, which is used if the attribute is not specified during construction.

	Structs are deleted from memory implicitly by a garbage collector.

Creating struct values

val u = user(name = 'Bob', address = 'New York');

A struct-copy of an entity or object can also be created with .to_struct()

entity user{
 name;
 address: text;
}

val u = user @ {.name == 'Bob'};
val s = u.to_struct(); // returns struct <user>

Instead of specifying individual attributes in a create expression, we can pass a struct<entity>.

create user(s); // s is struct<user>

Same rules as for the create expression apply: no need to specify attribute name if it can be resolved implicitly
by name or type:

val name = 'Bob';
val address = 'New York';
val u = user(name, address);
val u2 = user(address, name); // Order does not matter - same struct value is created.

Struct attributes can be accessed using operator .:

print(u.name, u.address);

Safe-access operator ?. can be used to read or modify attributes of a nullable struct:

val u: user? = find_user('Bob');
u?.balance += 100; // no-op if 'u' is null

struct<mutable T>

struct<mutable T> has the same attributes as struct, but all attributes are mutable

To convert an entity or object to a mutable struct, one uses .to_mutable_struct()

val u = user @ { .name == 'Bob' };
val s = u.to_mutable_struct(); // will return a struct<mutable user>

To convert between struct<T> and struct<mutable T>, one instead uses .to_mutable() and .to_immutable()

val s = u.to_struct();
val mut = s.to_mutable();
val imm = mut.to_immutable();

struct<operation>

The type struct<operation> defines a struct which has same attributes as a given operations parameters:

operation add_user(name: text, rating: integer) {
 // ...
}

query can_add_user(user: struct<add_user>) {
 if (user.name == '') return false;
 if (user.rating < 0) return false;
 return true;
}

Enum

Enum declaration

enum currency {
 USD,
 EUR,
 GBP
}

Values are stored in a database as integers. Each constant has a numeric value equal to its position in the enum
(the first value is 0).

Usage

var c: currency;
c = currency.USD;

Enum-specific functions and properties:

val cs: list<currency> = currency.values() // Returns all values (in the order in which they are declared)

val eur = currency.value('EUR') // Finds enum value by name
val gbp = currency.value(2) // Finds enum value by index

val usd_str: text = currency.USD.name // Returns 'USD'
val usd_value: integer = currency.USD.value // Returns 0.

Query

	Cannot modify the data in the database (compile-time check).

	Must return a value.

	If return type is not explicitly specified, it is implicitly deducted.

	Parameter types and return type must be Gtv-compatible.

Short form

query q(x: integer): integer = x * x;

Full form

query q(x: integer): integer {
 return x * x;
}

Operation

	Can modify the data in the database.

	Does not return a value.

	Parameter types must be Gtv-compatible.

operation create_user(name: text) {
 create user(name = name);
}

Function

	Can return nothing or a value.

	Can modify the data in the database when called from an operation (run-time check).

	Can be called from queries, operations or functions.

	If return type is not specified explicitly, it is unit (no return value).

Short form

function f(x: integer): integer = x * x;

Full form

function f(x: integer): integer {
 return x * x;
}

Return type not specified

When return type is not specified, it is considered unit:

function f(x: integer) {
 print(x);
}

Default parameter values

Parameters of functions can have default values.
If no parameters are specified in the function call, the default parameters will be used.

function f(user: text = 'Bob', score: integer = 123) {...}
...
f(); // means f('Bob', 123)
f('Alice'); // means f('Alice', 123)
f(score=456); // means f('Bob', 456)

Named function arguments

One could also specify function arguments by names.

function f(x: integer, y: text) {}
...
f(x = 123, y = 'Hello');

Using a function as a value

If one would want to pass a function to another function, the function to be passed can be used as a value by using the following syntax:

() -> boolean
(integer) -> text
(byte_array, decimal) -> integer

Within the parentheses, the function input type(s) of the passed function is specified. After the arrow follows the function’s return type.

An example could look like this:

function filter(values: list<integer>, predicate: (integer) -> boolean): list<integer> {
 return values @* { predicate($) };
}

Partial function application

If one would want to create a reference to a function i. e. to obtain a value of a function, the wildcard symbol * could be used.

function f(x: integer, y: integer) = x * y;

 val g = f(*); // Type of "g" is (integer, integer) -> integer
 g(123, 456); // Invocation of f(123, 456) via "g".

Extendable functions

A function can be declared as extendable by adding @extendable in front of the function declaration.
An arbitrary number of extensions can be defined for an extendable function by expressing @extend in front of the function declaration.

In the example below, function f is a base function and functions g and h are extension functions.

@extendable function f(x: integer) {
 print('f', x);
}

@extend(f) function g(x: integer) {
 print('g', x);
}

@extend(f) function h(x: integer) {
 print('h', x);
}

When the base function is called, all its extension functions are executed, and the base function itself is executed in the end.
However, Extendable functions support a limited set of return types and this behavior depends on the return type.
The following behavior applies to the different return types:

	
	unit

	
	all extensions are executed

	base function is always executed in the end

	
	boolean

	
	extensions are executed one by one, until some of them returns “true”

	base function is executed if all extensions returned “false”

	the result of the last executed function is returned to the caller

	
	T?

	
	Similar to boolean. Extensions are executed until the first non-null result, which is returned to the caller

	
	list<T>

	
	all extensions are executed

	the base function is executed in the end

	the concatenation of all lists is returned to the caller

	
	map<K, V>

	
	similar to list<T>, the union of all maps is returned to the caller, but fails if there is a key conflict

Namespace

Definitions can be put in a namespace:

namespace foo {
 entity user {
 name;
 country;
 }

 struct point {
 x: integer;
 y: integer;
 }

 enum country {
 USA,
 DE,
 FR
 }
}

query get_users_by_country(c: foo.country) = foo.user @* { .country == c };

Features of namespaces:

	No need to specify a full name within a namespace, i.e. can use country under namespace foo directly, not as
foo.country.

	Names of tables for entities and objects defined in a namespace contain the full name, e. g. the table for entity
foo.user will be named c0.foo.user.

	It is allowed to define namespace with same name multiple times with different inner definitions.

Anonymous namespace:

namespace {
 // some definitions
}

Can be used to apply an annotation to a set of definitions:

@mount('foo.bar')
namespace {
 entity user {}
 entity company {}
}

Short nested namespace notation:

namespace x.y.z {
 function f() = 123;
}

Is equivalent to:

namespace x {
 namespace y {
 namespace z {
 function f() = 123;
 }
 }
}

Splitting namespace between files

One can split a namespace between different files in a module like so:

lib/a.rell:

 namespace ns { function f(): integer = 123; }

lib/b.rell:

 namespace ns { function g(): integer = 456; }

Which later can be accessed like so:

main.rell:

 import lib;
 // ...
 lib.f();
 lib.g();

External

The @external annotation is used to access entities defined in other blockchains.

@external('foo') namespace {
 @log entity user {}
 @log entity company {}
}

@external('foo') @log entity city {}

 query get_all_users() = user @* {};

In this example, 'foo' is the name of an external blockchain. To be used in an @external annotation, a blockchain
must be defined in the blockchain configuration (dependencies node).

Every blockchain has its chain_id, which is included in table names for entities and objects of that chain. If the
blockchain 'foo' has chain_id = 123, the table for the entity user will be called c123.user.

Features

	External entities must be annotated with the @log annotation. This implies that those entities cannot have mutable
attributes.

	Values of external entities cannot be created or deleted.

	Only entities, namespaces and imports can be annotated with @external.

	When selecting values of an external entity (using at-expression), an implicit block height filter is applied, so
the active blockchain can see only those blocks of the external blockchain whose height is lower than a specific value.

	Every blockchain stores the structure of its entities in meta-information tables. When a blockchain is started,
the meta-information of all involved external blockchains is verified to make sure that all declared external entities
exist and have declared attributes.

External modules

A module can be annotated with the @external with no arguments:

@external module;

@log entity user {}
@log entity company {}

Features

	can contain only namespaces, entities (annotated with @log) and imports of other external modules;

	can be imported as a regular or an external module.

Regular import: entities defined in the module ext belong to the current blockchain.

import ext;

External import: entities defined in the module ext are imported as external entities from the chain foo.

@external('foo') import ext;

Transactions and blocks

To access blocks and transactions of an external blockchain, a special syntax is used:

 @external('foo') namespace foo {
 entity transaction;
 entity block;
 }

function get_foo_transactions(): list<foo.transaction> = foo.transaction @* {};
function get_foo_blocks(): list<foo.block> = foo.block @* {};

	External and non-external transactions/blocks are distinct, incompatible types.

	When selecting external transactions or blocks, an implicit height filter is applied (like for external entities).

Entities transaction and block of an external chain can be accessed also via an external module:

@external('foo') import ext;

function get_foo_transactions(): list<ext.transaction> = ext.transaction @* {};
function get_foo_blocks(): list<ext.block> = ext.block @* {};

The entities are implicitly added to the module’s namespace and can be accessed by its import alias.

Mount names

Entities, objects, operations and queries have mount names:

	for entities and objects, those names are the SQL table names where the data is stored

	for operations and queries, a mount name is used to invoke an operation or a query from the outside

By default, a mount name is defined by a fully-qualified name of a definition:

namespace foo {
 namespace bar {
 entity user {}
 }
}

The mount name for the entity user is foo.bar.user.

Custom mount names

To specify a custom mount name, @mount annotation is used:

@mount('foo.bar.user')
entity user {}

The @mount annotation can be specified for entities, objects, operations and queries.

Mount for namespace

@mount('foo.bar')
namespace ns {
 entity user {}
}

The mount name of user is foo.bar.user.

Mount for module

@mount('foo.bar')
module;

entity user {}

The mount name of user is foo.bar.user.

Nested namespace mounts

A mount name can be relative to the context mount name. For example, when defined in a namespace

@mount('a.b.c')
namespace ns {
 entity user {}
}

entity user will have following mount names when annotated with @mount:

	@mount('.d.user') -> a.b.c.d.user

	@mount('^.user') -> a.b.user

	@mount('^^.x.user') -> a.x.user

Special character . appends names to the context mount name, and ^ removes the last part from the context
mount name.

A mount name can end with ., in that case the name of the definition is appended to the mount name:

@mount('foo.')
entity user {} // mount name = "foo.user"

@mount('foo')
entity user {} // mount name = "foo"

Expressions

Table of Contents

	Expressions

	Values

	Operators

	Special

	Comparison

	Arithmetical

	Logical

	If

	Other

Values

Simple values:

	Null: null (type is null)

	Boolean: true, false

	Integer: 123, 0, -456

	Text: 'Hello', "World"

	Byte array: x'1234', x"ABCD"

Text literals may have escape-sequences:

	Standard: \r, \n, \t, \b.

	Special characters: \", \', \\.

	Unicode: \u003A.

Operators

Special

	. - member access: user.name, s.sub(5, 10)

	() - function call: print('Hello'), value.to_text()

	[] - element access: values[i]

Comparison

	==

	!=

	===

	!==

	<

	>

	<=

	>=

Operators == and != compare values. For complex types (collections, tuples, structs) they compare member
values, recursively. For entity values only object IDs are compared.

Operators === and !== compare references, not values. They can be used only on types:
tuple, struct, list, set, map, gtv, range.

Example:

val x = [1, 2, 3];
val y = list(x);
print(x == y); // true - values are equal
print(x === y); // false - two different objects

Arithmetical

	+

	-

	*

	/

	%

	++

	--

Logical

	and

	or

	not

If

Operator if is used for conditional evaluation:

val max = if (a >= b) a else b;
return max;

Other

	in - check if an element is in a range/set/map

	not in - check if an element is not in a range/set/map

Statements

Table of Contents

	Statements

	Local variable declaration

	Basic statements

	If statement

	When statement

	Loop statements

Local variable declaration

Constants:

val x = 123;
val y: text = 'Hello';

Variables:

var x: integer;
var y = 123;
var z: text = 'Hello';

Basic statements

Assignment:

x = 123;
values[i] = z;
y += 15;

Function call:

print('Hello');

Return:

return;
return 123;

Block:

{
 val x = calc();
 print(x);
}

If statement

if (x == 5) print('Hello');

if (y == 10) {
 print('Hello');
} else {
 print('Bye');
}

if (x == 0) {
 return 'Zero';
} else if (x == 1) {
 return 'One';
} else {
 return 'Many';
}

Can also be used as an expression:

function my_abs(x: integer): integer = if (x >= 0) x else -x;

When statement

Similar to switch in C++ or Java, but using the syntax of when in Kotlin:

when(x) {
 1 -> return 'One';
 2, 3 -> return 'Few';
 else -> {
 val res = 'Many: ' + x;
 return res;
 }
}

Features

	Can use both constants as well as arbitrary expressions.

	When using constant values, the compiler checks that all values are unique.

	When using with an enum type, values can be specified by simple name, not full name.

A form of when without an argument is equivalent to a chain of if … else if:

when {
 x == 1 -> return 'One';
 x >= 2 and x <= 7 -> return 'Several';
 x == 11, x == 111 -> return 'Magic number';
 some_value > 1000 -> return 'Special case';
 else -> return 'Unknown';
}

	Can use arbitrary boolean expressions.

	When multiple comma-separated expressions are specified, any of them triggers the block (i. e. they are combined via OR).

Both forms of when (with and without an argument) can be used as an expression:

return when(x) {
 1 -> 'One';
 2, 3 -> 'Few';
 else -> 'Many';
}

	else must always be specified, unless all possible values of the argument are specified (possible for boolean
and enum types).

	Can be used in at-expression, in which case it is translated to SQL CASE WHEN … THEN expression.

Loop statements

For:

for (x in range(10)) {
 print(x);
}

for (u in user @* {}) {
 print(u.name);
}

The expression after in may return a range or a collection
(list, set, map).

Tuple unpacking can be used in a loop:

val l: list<(integer, text)> = get_list();
for ((n, s) in l) { ... }

While:

while (x < 10) {
 print(x);
 x = x + 1;
}

Break:

for (u in user @* {}) {
 if (u.company == 'Facebook') {
 print(u.name);
 break;
 }
}

while (x < 5) {
 if (values[x] == 3) break;
 x = x + 1;
}

Continue:

for (u in user @* {}) {
 if (u.company == 'BigCompanyCo') {
 continue;
 }
 print(u.name); // Will print every user who does not work at BigCompanyCo.
}

Database Operations

Table of Contents

	Database Operations

	At-Operator

	Cardinality

	From-part

	Where-part

	What-part

	Tail part

	Result type

	Nested At-Operators

	Aggregate functions and grouping

	Sorting

	Field names

	Create Statement

	Update Statement

	Delete Statement

At-Operator

By using the At-Operator, database records can be retrieved. The general syntax consists of five parts, some of which can be omitted:
<from> <cardinality> { <where> } [<what>] [limit N]

Simplest form

user @ { .name == 'Bob' }

Cardinality

Specifies whether the expression must return one or many objects:

	T @? {} - returns T?, zero or one, fails if more than one found.

	T @ {} - returns T, exactly one, fails if zero or more than one found.

	T @* {} - returns list<T>, zero or more.

	T @+ {} - returns list<T>, one or more, fails if none found.

From-part

The from-part is declared before @ and specifies which entity type(s) that will be retrieved.

Simple (one entity)

user @* { .name == 'Bob' }

Complex (one or more entities)

(user, company) @* { user.name == 'Bob' and company.name == 'Microsoft' and user.xyz == company.xyz }

Specifying entity aliases

(u: user) @* { u.name == 'Bob' }

(u: user, c: company) @* { u.name == 'Bob' and c.name == 'Microsoft' and u.xyz == c.xyz }

Where-part

The where-part is declared after @ and specifies which instances of the entity type that will be retrieved based on attributes.
The records are filtered by zero or more comma-separated expressions using entity attributes, local variables or system functions.

	user @* {} - returns all users

	user @ { .name == 'Bill', .company == 'Microsoft' } - returns a specific user (all conditions must match)

	Attributes of an entity can be accessed with a dot, e. g. .name or with an entity name or alias, user.name.

Entity attributes can also be matched implicitly by name or type

val ms = company @ { .name == 'Microsoft' };
val name = 'Bill';
return user @ { name, ms };

Explanation: the first where-expression is the local variable name, there is an attribute called name in the
entity user. The second expression is ms, there is no such attribute, but the type of the local variable ms
is company, and there is an attribute of type company in user.

What-part

The What-part is declared after the where-part and specifies which record attribute(s) that will be retrieved.

	user @ { .name == 'Bob' } (.company.name) - returns a single value (name of the user’s company)

	user @ { .name == 'Bob' } (.company.name, .company.address) - returns a tuple of two values

Sorting

Sorting tuples is done by using the @sort (ascending) and @sort_desc (descending) annotation.

	user @* {} (@sort .last_name, @sort .first_name) - sort by last_name first, then by first_name

	user @* {} (@sort_desc .year_of_birth, @sort .last_name) - sort by year_of_birth descending, then by last_name ascending

Result tuple fields

Returned tuples can have named fields.

	user @* {} (x = .company.name, y = .company.address, z = .year_of_birth) - returns a tuple with named fields (x, y, z)

	user @* {} (@sort x = .last_name, @sort_desc y = .year_of_birth) - field names can be combined with sorting

When field names are not specified explicitly, they can be inferred implicitly from attribute name:

val u = user @ { ... } (.first_name, .last_name, age = 2018 - .year_of_birth);
print(u.first_name, u.last_name, u.age);

By default, if a field name is not specified and the expression is a single name (e. g. an attribute of an entity),
that name is used as a tuple field name:

val u = user @ { ... } (.first_name, .last_name);
// Result is a tuple (first_name: text, last_name: text).

To have a tuple field without a name, use _ as field name:

val u = user @ { ... } (_ = .first_name, _ = .last_name);
// Result is a tuple (text, text).

To exclude a field from the result tuple, use @omit annotation:

val us = user @* {} (.last_name, @omit .first_name) ;
// Result is list<text>, since first_name is excluded, so there is only one expression to return

The possibility to exclude a field is useful, for example, when one needs to sort by some expression, but does not want
to include that expression into the result tuple:

val sorted_users = user @* {} (_ = .first_name, _ = .last_name, @omit @sort .date_of_birth);
// Returns list<(text,text)>.

Tail part

The tail part is declared after the What-part and filters the returned tuples. This is done by limiting and skipping records.

Limiting records

	user @* { .company == 'Microsoft' } limit 10 - Returns at most 10 objects.

The limit is applied before the cardinality check, so the following code can’t fail with “more than one object” error:

	val u: user = user @ { .company == 'Microsoft' } limit 1; - Returns one record

Skipping records

	user @* {}(@sort .company) offset 10- Skips the first 10 records in the table, can be used alongside limit to specify a subset within the found records.

	people @* {}(@sort .age) offset 10 limit 20 - Returns the 11th youngest up to the 30th youngest person.

Result type

The Result type depends on the cardinality, from- and what-parts.

	From- and what-parts define the type of a single record, T.

	Cardinality defines the type of the @-operator result: T?, T or list<T>.

Examples

	user @ { ... } - returns user

	user @? { ... } - returns user?

	user @* { ... } - returns list<user>

	user @+ { ... } - returns list<user>

	(user, company) @ { ... } - returns a tuple (user,company)

	(user, company) @* { ... } - returns list<(user,company)>

	user @ { ... } (.name) - returns text

	user @ { ... } (.first_name, .last_name) - returns (first_name:text,last_name:text)

	(user, company) @ { ... } (user.first_name, user.last_name, company) - returns (text,text,company)

Nested At-Operators

A nested at-operator can be used in any expression inside of another at-operator:

user @* { .company == company @ { .name == 'Microsoft' } } (...)

This is equivalent to:

val c = company @ { .name == 'Microsoft' };
user @* { .company == c } (...)

Aggregate functions and grouping

Equivalents to SQL statements GROUP BY, MIN, MAX and SUM can be expressed by using @group, @min, @max and @sum.

	To calculate an aggregated value (min/max/sum) use @min, @max or @sum.

	Grouping by an attribute (or an expression) is done by annotating it with @group

	To calculate count, use @sum 1.

Example entity

entity city {
 name;
 country: text;
 population: integer;
}

Examples

To calculate the number of cities in every country and grouping it by country, one can write:

city @*{} (@group .country, @sum 1)

The result is a list of tuples (text, integer) - (country name, number of cities)

Calculating the total population of all cities in each country can be expressed as:

city @*{} (@group .country, @sum 1, @sum .population)

Note that more than one expression can be annotated with @group in order to group by multiple values.

Sorting

Sorting can be done by using @sort with or without the @omit statement.

city @*{} (@group .country, @omit @sort_desc @sum 1)

In the example above, the countries are sorted by the number of cities in a descending order. Note that the @omit statement is included, hence the number of cities is not displayed in the result.

Field names

Tuple field names can be specified after annotations:

city @*{} (@group .country, @sum city_count = 1, @sum total_population = .population)

Create Statement

Must specify all attributes that don’t have default values.

create user(name = 'Bob', company = company @ { .name == 'Amazon' });

No need to specify attribute name if it can be matched by name or type:

val name = 'Bob';
create user(name, company @ { company.name == 'Amazon' });

Can use the created object:

val new_company = create company(name = 'Amazon');
val new_user = create user(name = 'Bob', new_company);
print('Created new user:', new_user);

Update Statement

Operators @, @?, @*, @+ are used to specify cardinality, like for the at-operator.
If the number of updated records does not match the cardinality, a run-time error occurs.

update user @ { .name == 'Bob' } (company = 'Microsoft'); // exactly one
update user @? { .name == 'Bob' } (deleted = true); // zero or one
update user @* { .company.name == 'Bad Company' } (salary -= 1000); // any number

Can change only mutable attributes.

Entity attributes can be matched implicitly by name or type:

val company = 'Microsoft';
update user @ { .name == 'Bob' } (company);

Using multiple entities with aliases. The first entity is the one being
updated. Other entities can be used in the where-part:

update (u: user, c: company) @ { u.xyz == c.xyz, u.name == 'Bob', c.name == 'Google' } (city = 'Seattle');

Can specify an arbitrary expression returning a entity, a nullable entity or a collection of entities:

val u = user @? { .name == 'Bob' };
update u (salary += 5000);

A single attribute of can be modified using a regular assignment syntax:

val u = user @ { .name == 'Bob' };
u.salary += 5000;

Delete Statement

Operators @, @?, @*, @+ are used to specify cardinality, like for the at-operator.
If the number of deleted records does not match the cardinality, a run-time error occurs.

delete user @ { .name == 'Bob' }; // exactly one
delete user @? { .name == 'Bob' }; // zero or one
delete user @* { .company.name == 'Bad Company' }; // any number

Using multiple entities. Similar to update, only the object(s) of the first entity will be deleted:

delete (u: user, c: company) @ { u.xyz == c.xyz, u.name == 'Bob', c.name == 'Google' };

Can specify an arbitrary expression returning an entity, a nullable entity or a collection of entities:

val u = user @? { .name == 'Bob' };
delete u;

System Library (Globals)

Table of Contents

	System Library (Globals)

	Entities

	Namespaces

	chain_context

	op_context

	crypto

	Global Functions

	Example of a like function

	Require function

Entities

entity block {
 block_height: integer;
 block_rid: byte_array;
 timestamp;
}

entity transaction {
 tx_rid: byte_array;
 tx_hash: byte_array;
 tx_data: byte_array;
 block;
}

It is not possible to create, modify or delete values of these entities in code.

Namespaces

chain_context

chain_context.args: module_args - module arguments specified in run.xml.
The type is module_args, which must be a user-defined struct. If no module_args struct is defined in the module,
the args field cannot be accessed.

Example of module_args:

struct module_args {
 name: text;
 age: integer;
}

Corresponding module configuration:

<run wipe-db="true">
 <chains>
 <chain name="module-args-example" iid="0">
 <config height="0">
 <app module="example">
 <arg key="name"><string>Alice</string></arg>
 <arg key="age"><integer>46</integer></arg>
 </app>
 </config>
 </chain>
 </chains>
</run>

Code that reads module_args:

function f() {
 print(chain_context.args.name);
 print(chain_context.args.age);
}

Every module can have its own module_args. Reading chain_context.args returns the args for the current module, and
the type of chain_context.args is different for different modules: it is the module_args struct defined in that module.

chain_context.blockchain_rid: byte_array - blockchain RID

chain_context.raw_config: gtv - blockchain configuration object, e. g. {"gtx":{"rell":{"mainFile":"main.rell"}}}

op_context

System namespace op_context can be used only in an operation or a function called from an operation, but not in a query

	op_context.block_height: integer - the height of the block currently being built, equivalent to op_context.transaction.block.block_height

	op_context.last_block_time: integer - the timestamp of the last block, in milliseconds (like System.currentTimeMillis() in Java). Returns -1 if there is no last block (the block currently being built is the first block)

	op_context.op_index: integer - Index of the operation being executed in the transaction (0 == first operation)

	op_context.get_signers(): list<byte_array> - Returns pubkeys of the signers of the current transaction

	op_context.is_signer(pubkey: byte_array): boolean - Checks if the pubkey is one of the signers of the current transaction

	op_context.get_all_operations(): list<gtx_operation> - Returns all operations of the current transaction.

	op_context.transaction: transaction - the transaction currently being built.

crypto

Namespace used for cryptographic functions.

crypto.keccak256(byte_array): byte_array - cryptographic hash functions

crypto.sha256(byte_array): byte_array

Global Functions

	abs(integer): integer - absolute value of an integer

	abs(decimal): decimal - absolute value of a decimal

	empty(T?): boolean - returns true if the argument is null or an empty collection and false otherwise; for nullable collections checks both conditions

	empty(list<T>): boolean

	empty(set<T>): boolean

	empty(map<K, V>): boolean

	exists(T?): boolean - opposite to empty()

	exists(list<T>): boolean

	exists(set<T>): boolean

	exists(map<K, V>): boolean

	log(...) - print a message to the log (same usage as print)

	max(integer, integer): integer - maximum of two integer values

	max(decimal, decimal): decimal - maximum of two decimal value

	min(integer, integer): integer - minimum of two integer values

	min(decimal, decimal): decimal - minimum of two decimal values

	text.like(pattern): boolean - simple pattern matching function, equivalent to the SQL LIKE clause. Special character “_” matches any single character and “%” matches any string of zero or more characters.

Example of a like function

	print(name.like(% von %)) - returns all names that have a von inside

	user @* {name.like(Vi_tor)} - returns all users that have one character between Vi and tor (e.g Victor or Viktor)

	print(...) - print a message to STDOUT:

	print() - prints an empty line

	print('Hello', 123) - prints "Hello 123"

	verify_signature(message: byte_array, pubkey: pubkey, signature: byte_array): boolean - returns true if the given signature is a result of signing the message with a private key corresponding to the given public key.

Require function

Checking a boolean condition

	require(boolean[, text]) - throws an exception if the argument is false

Checking for null

	require(T?[, text]): T - throws an exception if the argument is null, otherwise returns the argument

	require_not_empty(T?[, text]): T - same as the previous one

Checking for an empty collection

	require_not_empty(list<T>[, text]): list<T> - throws an exception if the argument is an empty list, otherwise returns the list

	require_not_empty(set<T>[, text]): set<T> - throws an exception if the argument is an empty set, otherwise returns the set

	require_not_empty(map<K,V>[, text]): map<K,V> - throws an exception if the argument is an empty map, otherwise returns the map

When passing a nullable collection to require_not_empty, it throws an
exception if the argument is either null or an empty collection.

Examples

val x: integer? = calculate();
val y = require(x, "x is null"); // type of "y" is "integer", not "integer?"

val p: list<integer> = get_list();
require_not_empty(p, "List is empty");

val q: list<integer>? = try_to_get_list();
require(q); // fails if q is null
require_not_empty(q); // fails if q is null or an empty list

Miscellaneous

Comments

Single-line comment:

print("Hello"); // Some comment

Multiline comment:

print("Hello"/*, "World"*/);
/*
print("Bye");
*/

Advanced Topics

	Modules in an Application

	Chromia Vault

	FT3 Module

	Postchain REST API

	GTX

Modules in an Application

Rell application consists of modules. A module is either a single .rell file or a directory with one or multiple .rell files.

A single-file Rell module must have a module header:

module;

// entities, operations, queries, functions and other definitions

If a .rell file has no module header, it is a part of a directory-module. All such .rell files in a directory
belong to the same directory-module. An exception is a file called module.rell: it always belongs to a directory-module,
even if it has a module header. It is not mandatory for a directory-module to have a module.rell.

Every file of a directory-module sees definitions of all other files of the module. A file-module file sees only its own
definitions.

Example of a Rell source directory tree:

.
└── app
 ├── multi
 │ ├── functions.rell
 │ ├── module.rell
 │ ├── operations.rell
 │ └── queries.rell
 └── single.rell

app/multi/functions.rell:

function g(): integer = 456;

app/multi/module.rell:

module;
enum state { OPEN, CLOSED }

app/single.rell:

module;
function f(): integer = 123;

Every module has a name defined by its source directory path. The sample source directory tree given above defines
two modules:

	app.multi - a directory-module in the directory app/multi (consisting of 4 files)

	app.single - a file-module in the file app/single.rell

There may be a root module - a directory-module which consists of .rell files located in the root of the source directory.
Root module has an empty name. Web IDE uses the root module as the default main module of a Rell application.

Import

To access module’s definitions, the module has to be imported:

import app.single;

function test() {
 single.f(); // Calling the function "f" defined in the module "app.single".
}

When importing a module, it is added to the current namespace with some alias. By default, the alias is the last
part of the module name, i. e. single for the module app.single or multi for app.multi. The definitions
of the module can be accessed via the alias.

A custom alias can be specified:

import alias: app.multi;

function test() {
 alias.g();
}

It is possible to specify a relative name of a module when importing. In that case, the name of the imported module is derived
from the name of the current module. For example, if the current module is a.b.c,

	import .d; imports a.b.c.d

	import alias: ^; imports a.b

	import alias: ^^; imports a

	import ^.e; imports a.b.e

Wildcard imports

Importing all definitions of a module:

import foo.*;

All definitions are added directly to the importing namespace.

It is possible to import definitions of a specific namespace defined within a module:

import foo.{ns.*};

An import alias, if specified, creates a nested namespace and adds imported definitions there:

import sub: foo.{ns.*};

Definitions from the namespace “ns” of module “foo” will in this example be added to a new namespace “sub”.

Import of specific definitions

To import a specific definition (or a set of definitions) from a module, specify their names in braces:

import foo.{f};
import foo.{g, h};

The definitions “f”, “g” and “h” are added to the importing namespace like if they were defined there.

If an import alias is specified, a nested namespace is created:

import ns: foo.{f, g};

This creates a namespace “ns” containing definitions “f” and “g”.

One can specify an alias for individual definitions in braces:

import foo.{a: f, b: g};

Imported definitions will in this example be added to the namespace under names “a” and “b”.

Run-time

At run-time, not all modules defined in a source directory tree are active.
There is a main module which is specified when starting a Rell application.
Only the main module and all modules imported by it (directly or indirectly) are active.

When a module is active, its operations and queries can be invoked, and tables for its entities and objects are added to the
database on initialization.

Chromia Vault

Short Overview

Chromia Vault is a wallet in nature that supports asset transfers within the Chromia ecosystem. It can be used to transfer any kind of FT3 assets (Chromia equivalent of Ethereum ERC-20 and ERC-721 protocols).

However, besides just transfers, Vault has additional features like dapp account linking and browsing Chromia dapps. Dapp account linking feature allows you to Single Sign-On (SSO) into your dapp account using the Vault (same way Google or Facebook login can be used to login into different websites), and to control your dapp account assets directly from the Vault.

This section describe how an end user can perform such actions on the Chromia Vault webapp [https://vault-testnet.chromia.com/].

Accessing the Vault

Creating new account

Account creation is a 3-steps process.

[image: Enter name and password to create an account]

	First, user will have to choose the account name along with a password for it. The name and password are not public, and will only be used for accessing the account later on.

[image: The mnemonic is shown to memorize]

	After account name and password fields are filled, by clicking “Continue” user will be taken to the new screen showing 15 words (the mnemonic).

It is highly advised to print out or write down these words and store them in a safe place.

Important

Knowing these 15 words in correct order is the only way to retrieve the account if the password has been lost or the browser history is cleared for any reason.

[image: Drag the mnemonic words into place to prove you've memorized it]

	After user has safely stored the words, clicking “Continue” will take user to a screen where they will have to click (or drag&drop) the words in the correct order and thus “confirm” that they has stored the words somewhere.

[image: Drag the mnemonic words into place to prove you've memorized it]

When all words are laid down in the correct order will the “Confirm” button be enabled.

By clicking “Confirm”, the account will be stored to local browser storage and user will be taken to the Dashboard screen.

Accessing the account (Login)

All created accounts will be stored to local browser storage (on the device). Accounts are unlocked by a password that was chosen while creating an account.

[image: Chose account and enter password to login]

If the user wants to access an existing account on a device, they can use the “Import Existing Account”:

Importing existing account

Import existing account feature is used when you are trying to access your account on other devices, or when you have forgotten your password so can’t login normally.

Importing account is a 2-steps process.

[image: Enter account mnemonic to import account]

	First user will be asked to provide the 15 words mnemonic from when they created that account in correct order.

[image: Enter name and password to save on this device]

	On the next screen user will be asked to provide a name for the account and choose the password for it, which will be used to access the account on that device from now on.

Dashboard

The Dashboard page is separated into 3 different sections: Chromia Accounts, Linked Apps and Explore Apps.

Chromia accounts

[image: Chromia Accounts]

Chromia Accounts are something that we usually call “main chain” accounts. There could be multiple Chromia Accounts within one Vault Account. Gaining access to a Vault Account will allow access to all Chromia Accounts beneath it.

Explore Apps

[image: Explore Apps]

Explore Apps section is basically app explorer (Google play / App store equivalent) where one can browse and explore all the apps built in Chromia ecosystem.

Linked Apps

[image: Linked Apps]

Linked Apps section contains all the apps that user has created an account for, which this Vault Account has control over.

Each dapp in Chromia ecosystem has its own blockchain. Every account (that little “Tile”) on the dashboard represents a combination of blockchain and specific account on that particular blockchain. These “Tile” are composed of 2 parts:

	Automatically generated squared image created from Blockchain ID, and

	Automatically generated robo-icon created from the Account ID.

That means if you have multiple accounts on the same Blockchain, they will have the same squared image, while robo-icon will be the same for the one accountId on different dapps.

Clicking on any of the accounts in the dashboard is taking to the “wallet” functionality of the Vault, used to send/receive assets from/to that specific account.

Asset Transfer (Wallet features)

In order to access the wallet section, one needs to select the account from the dashboard first:

[image: Asset Transfer Section]

Assets

[image: Assets Panel]

Assets section is showing the list of all the available assets in that specific Account.

Sending assets

[image: Sending an Asset]

Assets are sent from the “Send Tokens” tab of the transfer section.

You can either enter the address manually (copy/paste) or use a QR scanner to scan the QR code containing recipient address info. The address is composed of 2 parts - blockchain id and account id, separated by the semicolon. So, address format is <blockhainId;accountId>.

Once address field is populated, “Application” and “Account” will be filled with appropriate hash icons automatically generated from the input address.

After address is populated, select an appropriate Asset and Amount to send, and click “Send”.

Receiving assets

[image: Receiving an Asset]

On the “Receive Tokens” tab of transfer section, the address for this specific account is shown.

There is also a QR code shown next to the address. Instead of providing the address itself, it’s possible to provide QR code which someone can scan and send assets.

Furthermore, besides holding just address info, QR code can also hold “Amount” and “Asset” information. Whenever “Amount” or “Asset” fields are changed, QR code is being updated.

When such a QR code (containing asset or amount info) is scanned from the “Send Tokens” tab, those fields will be auto-populated on the UI as well.

Transaction history

[image: Transaction History]

Transaction history is a table showing account’s transactional activities.

It contains info about transaction type (sending or receiving), the account to which we have sent or from which we have received the assets (sender/recipient), along with some other information like which Assets were transferred, the amount, timestamp, etc.

SSO and app linking

Chromia Vault offers Single Sign-On (SSO) service for the dapps in Chromia ecosystem. This allows users to login to different systems (apps) using single account. In order to take advantage of it, the application needs to integrate with Chromia Vault SSO service. Similarly to “Login with Facebook” or “Login with Google” features, once Chromia Vault has been used for SSO, user will have to authorize the app in the system. That looks like on the image below:

[image: SSO And App Linking]

FT3 Module

FT3 is the recommended standard to handle accounts and tokens in the Chromia ecosystem. It allows dapps to make full use of Chromia Vault, including Single Sign-On (SSO), asset transfers and visibility on the Vault’s dapp explorer.

FT3 consists of a Rell module that contains blockchain logic, and a client side library that provides a JS API for interaction with the module.

	Features

	Project Setup

	Javascript library

	Rell Integration

	Single Sign-on (SSO)

	How to update a dapp chain

Features

FT3 supports the following features:

	Account management

	Asset management and transaction history

	Single Sign-on (SSO) from the Vault

Account Management

The central entity of FT3 module is account. An account is uniquely identified by an id:

entity account {
 key id: byte_array;
}

Account can be controlled by multiple users with different level of access rights. The authentication descriptors defines who can control an account and what he can do with it:

entity account_auth_descriptor {
 descriptor_id: byte_array;
 key account, descriptor_id;
 index descriptor_id;
 auth_type: text;
 args: byte_array;
}

At the moment, the module defines two types of authentication descriptors: SingleSig and MultiSig and two authorization types: Authentication ("A") and Transfer ("T"). The A flag specifies who can edit an account (and thus has all privileges to the account), and the T can only transfer assets.

Although there are only two predefined authorization flags, dapp developers are free to add more flag types to create a custom access control for his dapp.

SingleSig authentication descriptor is used to provide access to a single user. The descriptor accepts user’s public key and authorization flags which specify what access rights the user has:

struct single_sig_args {
 flags: set<text>;
 pubkey;
}

MutliSig authentication descriptor provides M of N control of an account. It accepts a list of N public keys, of which a minimum number M of signatures are required to authorize an operation and a set of authorization flags:

struct multi_sig_args {
 flags: set<text>;
 signatures_required: integer;
 pubkeys: list<pubkey>;
}

Asset Management

FT3 provides support for multiple assets. The asset table contains list of registered assets:

entity asset {
 id: byte_array;
 key id;
 key name;
 issuing_chain_rid: byte_array;
}

Note

Although we can only transfer within the same chain for now. issuing_chain_rid is kept in preparation for coming release when FT3 support cross-chain asset transfer.

The balance table keeps track of an account’s assets:

entity balance {
 key account, asset;
 mutable amount: integer = 0;
}

Single Sign-on (SSO)

SSO allows a user to login to different applications with a single account (similar to how “Login with Google/Facebook” work).

The Vault is an SSO service of the Chromia ecosystem: any FT3 dapp can be configured to allow users to login using their Vault account.

Project Setup

In this section, we explain how to setup a project to use FT3.

First let’s clone FT3’s bootstrap project repository:

git clone https://bitbucket.org/chromawallet/develop-chromia.git

Create a new directory for your project, and copy the postchain and Rell directories over to your project. The remaining client contains an example for Single Sign-On feature, so we will come back to it later.

Blockchain side setup

Config dapp description

	Go to postchain/config/nodes/, you will find a dev directory. This is our postchain config directory. You can rename it to whichever name matching your convention (e.g. prod or dapp_name)

	Inside dev directory, open the file blochains/app/config.template.xml, and change the settings for your chain:

<run wipe-db="true">
 <nodes>
 <config src="../../node-config.properties" add-signers="true" />
 </nodes>
 <chains>
 <chain name="YOUR_CHAIN_NAME" iid="0">
 <config height="0">
 <app module="">
 <args module="lib.ft3.core">
 <arg key="my_blockchain_name"><string>YOUR_DAPP_NAME</string></arg>
 <arg key="my_blockchain_website"><string>YOUR_DAPP_WEBSITE</string></arg>
 <arg key="my_blockchain_description"><string>YOUR_DAPP_DESCRIPTION</string></arg>
 <arg key="rate_limit_active"><int>1</int></arg>
 <arg key="rate_limit_max_points"><int>10</int></arg>
 <arg key="rate_limit_recovery_time"><int>30000</int></arg>
 <arg key="rate_limit_points_at_account_creation"><int>1</int></arg>
 </args>
 </app>
 </config>
 </chain>
 </chains>
</run>

	my_blockchain_name

	Name of your chain.

	my_blockchain_website

	“Main page” url of your dapp.

	my_blockchain_description

	Description of your dapp.

The following arguments is settings for the rate limiter (spam prevention). The client will accumulate one “operation point” every rate_limit_recovery_time milliseconds, up to rate_limit_max_points. One point is spent for each operation.

	rate_limit_active

	0 for not active (no spam prevention) or 1 to activate the rate limit.

Note that even if rate limiter is not active, you must set some values in the following args.

	rate_limit_max_points

	Maximum amount of operation points that is possible to accumulate (and therefore the maximum number of transactions that can be made at once)

	rate_limit_recovery_time

	(In milliseconds) period of cool down before an account can receive one operation point.

	rate_limit_points_at_account_creation

	How many points an account have at the moment of creation (0 is min)

Note

Please note that if you use Single Sign-On, an account need to perform 1 operation immediately at the moment of creation to add disposable auth_descriptor (eg. SSO need rate_limit_points_at_account_creation at minimum of 1).

Refer to the SSO Section for more information.

Database setup

We have provided a docker image of the database for ease of use:

cd postchain
docker image pull chromaway/postgres:2.4.0-beta
docker-compose up

Note

If you don’t want to use Docker, or want to setup your own database, please follow the instructions in Database Setup.

Update the postchain/config/nodes/dev/node-config.properties file to match your database settings.

Running the chain

(From root directory) start your chain:

./postchain/bin/run-node.sh dev

Replace dev with the name of your postchain config directory if you have renamed it.

If everything is properly configured, you will soon see a success message printed to the console:

Postchain node launching is done

Above that line you will find the generated blockchain ID of the blockchain that looks like this:

INFO 2120-01-01 23:59:59.999 [main] BaseConfigurationDataStore - Creating initial configuration for chain 1 with BC RID: B61EFF348B43D7C93F67F6D2ABE17391D709A77F9A040D6309984665082DFE8A

Note down the blockchain ID, we will use it to connect to the chain.

Important

Postchain will generate a blockchain ID for dapp based on the dapp’s codebase.

Whenever you change blockchain code of dapp, you will need to wipe database by adding the -W option, in order to get new blockchainID:

postchain/bin/run-node.sh dapp_name -W

If you missed the log in console, you can always check previous log in logs/logfile.log file.

Verify the chain is working

Go to the Chain Explorer [https://explorer-testnet.chromia.com/]. Click the dropdown next to “Vault”, then choose “add custom chain”:

[image: Chain Explorer 1]

In the following popup, enter your chain’s information, using information you entered in config.template.xml and the chain BRID:

[image: Chain Explorer 2]

If you see the chain’s information displayed, then your chain is working properly:

[image: Chain Explorer 3]

If chain explorer can’t connect to your chain, it indicates something is wrong with your settings from previous steps. Verify that the host and ports are correct (7743 is the default port from node-config.properties), and also your blockchainID.

With that the blockchain side is ready, we can go on to the client side.

Client side setup

The client directory you use in the bootstrap project is an example client, which will work with our current chain. In this section, we will discuss how to create our own client that connects to the chain.

Create a client directory for your project, run npm init (or bootstrap a project using a generator, e.g. create-react-app).

Add dependencies to the nodejs project:

npm i --save ft3-lib
npm i --save postchain-client

Add other libraries to your liking.

Set config variables

Choose your own method to set these important config variables:

export const blockchainRID = "<YOUR CHAIN BRID>";
export const blockchainUrl = "http://localhost:7743/"; // This is default value in node-config.properties file
export const vaultUrl = "https://dev.vault.chromia-development.com"; // Vault's url for SSO

That concluded the project setup process. In next section, we will continue working with the client library and discuss the features of ft3-lib npm package.

Javascript library

In this section, we explain how to use the client side library (ft3-lib node package).

Initialize Blockchain object

The first thing that has to be done before a blockchain can be accessed is to initialize the Blockchain object used to interact with the blockchain:

// /client/index.js
import { Postchain } from 'ft3-lib';
import { blockchainRID, blockchainUrl } from './configs/constants'; // these configs are set in previous section

const chainId = Buffer.from(blockchainRID, 'hex');
const blockchain = await new Postchain(blockchainUrl).blockchain(chainId);

Details of the initialized chain can be accessed from info property which has name, website and description properties:

console.log(`-------------- Blockchain Info --------------`);
console.log(`name : ${blockchain.info.name} `);
console.log(`website : ${blockchain.info.website} `);
console.log(`description : ${blockchain.info.description} `);

These fields have the values which we previously set in the config.template.xml file.

The User class

The User class represents a logged in user, and is used to keep the user’s key pair and authentication descriptor.

Any method that require transaction signing will need an object of this class.

import { SingleSignatureAuthDescriptor, User, FlagsType } from 'ft3-lib';

...

const authDescriptor = new SingleSignatureAuthDescriptor(
 keyPair.pubKey,
 [FlagsType.Account, FlagsType.Transfer]
);
const user = new User(keyPair, authDescriptor);

Many functions provided by Blockchain class require User object, for example:

const authDescriptor = ...;
const user =;

// gets all accounts where this authDescriptor has control over
const accounts = await blockchain.getAccountsByAuthDescriptorId(
 authDescriptor.id,
 user
);

In most of the cases the same User instance is used throughout an app (the “current user”). In order to avoid passing both Blockchain and User objects around in an app, the BlockchainSession class is introduced.

It has many of the same functions as Blockchain class, but with a difference that functions provided by the BlockchainSession don’t require User parameter:

const authDescriptor = ...;
const user =;

const session = blockchain.newSession(user);
const accounts = await session.getAccountsByAuthDescriptorId(authDescriptor.id);

AuthDescriptor Rules

Both AuthDescriptor constructors accept an optional 3rd parameter of type Rules, which define constraint for the descriptor’s “valid period”.

Supported constrains are:

	Rules.operationCount

	Number of operations this authDescriptor can perform:

import { SingleSignatureAuthDescriptor, FlagsType, Rules } from 'ft3-lib';

const authDescriptor = new SingleSignatureAuthDescriptor(
 keyPair.pubKey,
 [FlagsType.Account, FlagsType.Transfer],
 Rules.operationCount.lessOrEqual(2) // This authDescriptor is only valid for 2 operations
);

	Rules.blockTime

	Time period during which the authDescriptor has effect:

import { SingleSignatureAuthDescriptor, FlagsType, Rules } from 'ft3-lib';

const authDescriptor = new SingleSignatureAuthDescriptor(
 keyPair.pubKey,
 [FlagsType.Account, FlagsType.Transfer],
 Rules.blockTime.greaterThan(Date.now() + 12 * 60 * 60 * 1000) // This authDescriptor will start working 12 hours from now
);

	Rules.blockHeight

	Block heigh limitation of the authDescriptor:

import { SingleSignatureAuthDescriptor, FlagsType, Rules } from 'ft3-lib';

const authDescriptor = new SingleSignatureAuthDescriptor(
 keyPair.pubKey,
 [FlagsType.Account, FlagsType.Transfer],
 Rules.blockHeight.equal(0) // This authDescriptor is only valid when the chain was just created (0 block is in the chain)
);

Supported operators are:

	lessThan

	lessThanOrEqual

	equal

	greaterThan

	greaterOrEqual

Is it also possible to build composite rules:

import { SingleSignatureAuthDescriptor, FlagsType, Rules } from 'ft3-lib';

// This authDescriptor will start working 12 hours from now and is only valid for 24 hours
const startDate = Date.now() + 12 * 60 * 60 * 1000;
const endDate = Date.now() + 36 * 60 * 60 * 1000;
const authDescriptor = new SingleSignatureAuthDescriptor(
 keyPair.pubKey,
 [FlagsType.Account, FlagsType.Transfer],
 Rules.blockTime.greaterThan(startDate).and.blockTime.lessThanOrEqual(endDate)
);

The Account class

An Account object contains:

	assets: an array of AssetBalance instances.

	authDescriptor: an array of AuthDescriptor instances.

	session: the BlockchainSession that returned it.

Account registration

const ownerKeyPair = ...;
const authDescriptor = new SingleSignatureAuthDescriptor(
 ownerKeyPair.pubKey,
 [FlagsType.Account, FlagsType.Transfer]
);

const account = await blockchain.registerAccount(authDescriptor, user);

More commonly the current user will be creating an account for themselves. In those cases we can simply pass user.authDescriptor into the operation:

const account = await blockchain.registerAccount(user.authDescriptor, user);

Searching accounts

Accounts can be searched by account ID:

const account = await session.getAccountById(accountId);

by authentication descriptor ID:

const accounts = await session.getAccountsByAuthDescriptorId(authDescriptorId);

or by participant ID:

const accounts = await session.getAccountsByParticipantId(user.keyPair.pubKey);

For SingleSig and MultiSig account descriptors, participant ID is pubKey. Therefore this function allows to search for accounts by pubKey.

Important

The difference between getAccountsByParticipantId and getAccountsByAuthDescriptorId is:

	getAccountsByParticipantId returns all accounts where user is participant, no matter which access rights user has or which type of authentication is used to control the accounts

	while getAccountsByAuthDescriptorId returns only accounts where user has access with specific type of authentication and authorization.

Adding authentication descriptor

const newAuthDescriptor = new SingleSignatureAuthDescriptor(
 pubKey,
 [FlagsType.Account, FlagsType.Transfer]
);
const account = await session.getAccountById(accountId);
await account.addAuthDescriptor(newAuthDescriptor);

Assets Management

AssetBalance

Each account when queried comes with an account.assets array of AssetBalance.

An AssetBalance contain information about an Asset the account own (assetBalance.asset), and the amount owned (assetBalance.amount).

You can also get asset balance of an account by calling AssetBalance.getByAccountId:

const balances = await AssetBalance.getByAccountId(accountId, blockchain);

or if you are interested in only one specific asset:

const balance = await AssetBalance.getByAccountAndAssetId(accountId, assetId, blockchain);

Asset

Each Asset has a name and a chainId, which is the id of the chain where the asset come from.

The unique identifier of asset (asset.id) is generated from the hash of name and chainId, so asset name is unique within a chain but different chains can have asset with the same name.

An Asset must be registered on a chain to be recognized:

await Asset.register(assetName, blockchainId, blockchain);

Registered assets can be queried by name:

const assets = await blockchain.getAssetsByName(assetName);

or by id:

const asset = await blockchain.getAssetById(assetId);

You can also get all assets of a chain by calling getAllAssets:

const assets = await blockchain.getAllAssets();

Transferring assets

const account = await session.getAccountById(accountId);
await account.transfer(recipientId, assetId, amount);

Note

Here we see that the Account class retains the same characteristic as BlockchainSession: we don’t need to provide an User object to sign the transaction.

Transfer History

const history = await account.getPaymentHistory();

getPaymentHistory return an array of PaymentHistoryEntryShort:

class PaymentHistoryEntryShort {
 readonly isInput: boolean; // true if account is the sender, false in case of receiver
 readonly delta: number; // amount transferred: negative for sender (e.g. -10), positive for receiver (e.g. 12)
 readonly asset: string;
 readonly assetId: string;
 readonly entryIndex: number;
 readonly timestamp: Date;
 readonly transactionId: string;
 readonly transactionData: Buffer;
 readonly blockHeight: number;
}

Calling operations

Single operation

FT3 operations and other blockchain operations can also be directly called using the Blockchain and BlockchainSession classes.

For instance, the same “adding auth descriptor” operation above can be done using:

import { op } from 'ft3-lib';

const account = ...
const user = ...
const newAuthDescriptor = ...

await blockchain.call(
 op(
 'ft3.add_auth_descriptor',
 accountId,
 user.authDescriptor.id,
 newAuthDescriptor
),
 user
)

Multiple operations

The transaction builder can be used if multiple operations have to be called in a single transaction:

await blockchain.transactionBuilder()
 .add(op('foo', param1, param2))
 .add(op('bar', param))
 .buildAndSign(user)
 .post();

Previous statement creates a single transaction with both foo and bar operations, adds signers from user’s auth descriptor and signs it with user’s private key.

If more control is needed over signers and signing then build and sign functions could be used instead:

await blockchain.transactionBuilder()
 .add(op('foo', param1, param2))
 .add(op('bar', param))
 .build(signersPublicKeys)
 .sign(keyPair1)
 .sign(keyPair2)
 .post();

Instead of immediately sending a transaction after building it, it is also possible to get a raw transaction:

const rawTransaction = blockchain.transactionBuilder()
 .add(op('foo', param1, param2))
 .buildAndSign(user)
 .raw();

which can be sent to a blockchain node later:

await blockchain.postRaw(rawTransaction);

The nop operation

To prevent replay attack postchain rejects a transaction if it has the same content as one of the transactions already stored on the blockchain. For example if we directly call ft3.transfer operation two times, the second call will fail.

const inputs = ...
const outputs = ...
const user = ...

// first will succeed
await blockchain.call(op('ft3.transfer', inputs, outputs), user);

// second will fail
await blockchain.call(op('ft3.transfer', inputs, outputs), user);

To avoid transaction failing, nop operation can be added to a second transaction in order to make it differ from the first transaction.

import { op, nop } from 'ft3-lib';

await blockchain.transactionBuilder()
 .add(op('ft3.transfer', inputs, outputs))
 .add(nop())
 .buildAndSign(user)
 .post();

nop() function returns nop operation with a random number as argument.

GtvSerializable interface

In typescript, op function is defined as:

function op(name: string, ...args: GtvSerializable[]): Operation {
 return new Operation(name, ...args);
}

It expects arguments to implement GtvSerializable interface, i.e. to have implemented toGTV() function.

Array, Buffer, String and Number are already extended with toGTV function.

If user defined object wants to be passed to an operation, it has to implement GtvSerializable interface, e.g.

class Player {
 constructor(firstName, lastName) {
 this.firstName = firstName;
 this.lastName = lastName;
 }

 toGTV() {
 return [this.firstName, this.lastName],
 }
}

await blockchain.call(
 op('some_op', new Player('John', 'Doe')),
 user
)

To be able to handle the Player object, on blockchain side, some_op would have to be defined as either:

operation some_op(player: list<gtv>) {
 ...
}

or

struct player {
 first_name: text;
 last_name: text;
}

operation some_op(player) {
 ...
}

Rell Integration

In the bootstrap project, rell/src directory is configured to be the Rell project’s root module. rell/src/lib/ft3 directory contains the FT3 module.

We also provided a rell/src/module.rell file with some template code which could serve as an entry point for your dapp, although you are free to choose any module structure to your liking.

Defining dapp_account entity

The account entity provided by .lib.ft3.account module can be used for account management. But your dapp might need to record more information about the user, like username, email address, etc. We can add an an entity to record those information.

An example dapp’s account could be defined as:

import acc: .lib.ft3.account;

entity dapp_account {
 key account: acc.account;
 key username: text;
}

In this user model, there is no public key or user ID. Those details are provided by acc.account.

acc.account has an id property which uniquely identifies an account, and access is controlled by acc.account_auth_descriptor which include user’s public key.

The underlying structure of acc.account and acc.account_auth_descriptor is explained in Account Management.

After dapp_account entity is defined, the next step is to define operation used to create an instance of dapp_account:

operation create_dapp_account(
 username: text,
 user_auth: acc.auth_descriptor
) {
 val account_id = acc.create_account_with_auth(user_auth);
 create dapp_account (
 username,
 acc.account @ { account_id }
);
}

query get_dapp_accounts() {
 return dapp_account @? {} (id = dapp_account.account.id, first_name = .first_name, last_name = .last_name, age = .age);
}

Restart the node for changes to take effect. Because we have changed database structure, we need to add -W option to delete the database and add new dapp_account table:

postchain/bin/run-node.sh <dapp_name> -W

Important

Make sure to update your client’s blockchainRID config with the newly generated blockchainRID

On the client side, operation can be called using ft3-lib (or postchain-client):

import DirectoryService from './lib/directory-service';
import { util } from 'postchain-client';
import { blockchainRID } from '../configs/constants';

import {
 op,
 Blockchain,
 SingleSignatureAuthDescriptor,
 FlagsType,
 User
} from 'ft3-lib';

const keyPair = util.makeKeyPair();
const user = new User(
 keyPair,
 new SingleSignatureAuthDescriptor(
 keyPair.pubKey,
 [FlagsType.Account, FlagsType.Transfer]
)
);

const blockchain = await Blockchain.initialize(
 blockchainRID,
 new DirectoryService()
);
const session = blockchain.newSession(user);

await session.call(op(
 'create_dapp_account',
 'John',
 'Doe',
 30,
 user.authDescriptor
));

We can check if create_dapp_account operation is executed successfully using get_dapp_accounts query we created:

const rest = pcl.restClient.createRestClient(nodeApiUrl, blockchainRID, 5)

const gtx = pcl.gtxClient.createClient(
 rest,
 Buffer.from(
 blockchainRID,
 'hex'
),
 []
);

const allDappAccoounts = await gtx.query('get_dapp_accounts');

Modules

In this section, we will go through some of the built-in utilities that FT3 modules provide.

It should be noted that the built-in operations and queries all have matching interface in ft3-lib javascript library.

Account Module

import acc: .lib.ft3.account;

Functions:

function create_account_with_auth (auth_descriptor): byte_array

Create a new FT3 account using the provided ft3.account.auth_descriptor

	auth_descriptor: The auth_descriptor used to create this account.

	return: account.id (equal to auth_descriptor.hash())

function auth_and_log(account_id: byte_array, auth_descriptor_id: byte_array, required_flags: list<text>): account

Authorize given auth_descriptor for required authorization flags, and apply the rate limiter constrains configurated in config.template.xml. This is meant to be the default authorization mechanism for operations.

	account_id: id of the account

	auth_descriptor_id: is equal to auth_descriptor.hash()

	required_flags: list of required authorization flags (see Account Management)

	return: the account instance

function require_auth (account, descriptor_id: byte_array, required_flags: list<text>)

Authorize given auth_descriptor, but does not apply rate limiter’s constrains.

function _add_auth_descriptor (account, auth_descriptor)
function _delete_auth_descriptor(auth_descriptor: account_auth_descriptor)
function _delete_all_auth_descriptors_exclude(account, auth_descriptor_id: byte_array)

Utilities for managing auth_descriptors.

Operations:

operation delete_auth_descriptor (account_id: byte_array, auth_descriptor_id: byte_array, delete_descriptor_id: byte_array)

operation delete_all_auth_descriptors_exclude(account_id: byte_array, auth_descriptor_id: byte_array)

operation add_auth_descriptor (account_id: byte_array, auth_id: byte_array, new_desc: acc.auth_descriptor)

Queries:

query get_account_auth_descriptors(id: byte_array)

query get_account_by_id(id: byte_array)

query get_account_by_auth_descriptor(auth_descriptor)

query get_accounts_by_participant_id(id: byte_array)

query get_accounts_by_auth_descriptor_id(descriptor_id: byte_array)

Core Module

import core: .lib.ft3.core;

Functions:

function register_asset (name, issuing_chain_rid: byte_array): asset

Register a new asset on the chain.

function _get_asset_balances(account_id: byte_array): list<(id:byte_array,name:text,amount:integer,chain_id:byte_array)>

Get asset balance of an account.

function ensure_balance(acc.account, asset): balance

Get account’s balance of an asset, or create one if it doesn’t exist.

struct xfer_input {
 account_id: byte_array;
 asset_id: byte_array;
 auth_descriptor_id: byte_array;
 amount: integer;
 extra: map<text, gtv>;
}

struct xfer_output {
 account_id: byte_array;
 asset_id: byte_array;
 amount: integer;
 extra: map<text, gtv>;
}

function _transfer (inputs: list<xfer_input>, outputs: list<xfer_output>)

Perform an asset transfer from accounts described in xfer_input to accounts in xfer_output.

If xfer_output.extra map contains a reg_auth_desc key, then the value will be used as auth_descriptor to create a new account (meaning you can create a new account then transfer asset to it immediately in one transaction).

Operations:

operation transfer (inputs: list<ft3.xfer_input>, outputs: list<ft3.xfer_output>)

Queries:

query get_asset_balances(account_id: byte_array)

query get_asset_balance(account_id: byte_array, asset_id: byte_array)

query get_asset_by_name(name)

query get_asset_by_id(asset_id: byte_array)

query get_all_assets()

query get_payment_history(account_id: byte_array, after_block: integer)

Single Sign-on (SSO)

SSO allows user to login to different dapps with a single account. It is similar to how you can click a “Login with Facebook/Google” buttons to login to different services using a single Facebook/Google account.

In order for SSO to work, dapp must be integrated with a SSO service. Chromia Vault is the main SSO service in Chromia ecosystem, though a custom SSO service can be easily implemented thanks to FT3 module’s flexible authentication model.

As discussed in previous sections, access to a FT3 account is controlled with authentication descriptors (See Account Management). So if we use a Vault account’s public key to create an authDescriptor with 'A' flag, and add it to a dapp account, Vault will have control over the dapp account.

The actual process is done in 3 steps:

	User login to their Vault account, and approve of the SSO request.

	Vault’s keyPair is used to create a new account for dapp (so dapp account and Vault account will have the same accountId). A second authDescriptor with only 'T' flag is created on-the-fly and added to this new dapp account.

	The user can now use the second keyPair to perform transactions for the account.

This keyPair is meant to be disposable and can safely be discarded or replaced at user’s discretion.

This might sound rather complicated to implement, but fortunately ft3-lib library already handle all of the heavy works, and dapps only have to config the SSO Class a bit for it to work.

The bootstrap project already contain a client directory that implement the SSO flow. Let’s go through how to set up the flow using bootstrap client, then we will discuss how to config SSO flow for your own client.

SSO flow with bootstrap client

Backup your client directory somewhere safe, and replace it with the client directory from bootstrap project.

Set config variables

Bootstrap client use dotenv npm package to set config variables. In client directory you can see a .env.sample file. Duplicate the file and rename it to .env. Update the file with your chain’s settings, be sure to uncomment those lines (remove leading #):

REACT_APP_VAULT_URL=https://vault-testnet.chromia.com
REACT_APP_BLOCKCHAIN_RID=DAPP_BLOCKCHAIN_RID
REACT_APP_NODE_ADDRESS=http://localhost:7743

Setup the dapp on Vault

Because our dapp is not public on Chain Explorer yet, we need to config it for testing as a Custom DApp.

Go to the Vault page [https://vault-testnet.chromia.com] and login to your account (Follow the instruction at Chromia Vault section if you are unsure).

Scroll down to the “All DApps” section, and click “Add Custom DApp”. Fill in information of your chain (similar to how you did with Chain Explorer during project setup).

[image: Vautl SSO]

You will see your dapp tile added to the Vault’s dapp list.

Now the SSO flow is ready to use. Go back to your dapp (click the tile in Vault’s dapp list), and you will see a login screen. Clicking the login button will redirect you to Vault to login to your Vault account.

If everything was setup correctly, Vault will ask you to authorize dapp. Clicking “Authorize” button will redirect you back to your client, with the newly created account’s information displayed.

If the Authorize page is not displayed, it indicates a problem with your configs. Verify that the BRID and host is correct and try again.

We got the bootstrap client to work with SSO. You can use the bootstrap client as a base to build your own client. But if you want to implement SSO in your own client, the next part discuss how to do exactly that.

SSO Class

FT3 provides SSO functionality through SSO class. The first step in integrating SSO into a dapp is to initialize SSO class on the app launch:

import { Blockchain, SSO } from 'ft3-lib';
import { blockchainRID, blockchainUrl, vaultUrl } from './configs/constants'; // these configs are set in project-setup section

const chainId = Buffer.from(blockchainRID, 'hex');
const blockchain = await new Postchain(blockchainUrl).blockchain(chainId);

SSO.vaultUrl = vaultUrl;
const sso = new SSO(blockchain);

Initiate login

When user click the “Login with Vault” button, dapp should call initiateLogin:

const { SSO } from 'ft3-lib';

const successUrl = `${window.location.origin}/success`;
const cancelUrl = `${window.location.origin}/cancel`;

sso.initiateLogin(successUrl, cancelUrl);

initiateLogin navigates a user to the Vault, where they have to select one of their accounts in order to create a new dapp account or login to existing dapp account. After the user logs in to their vault account and authorizes login or account creation, they will be redirected back to the dapp to finalize login.

	successUrl: where to redirect to after a successful login

	cancelUrl: where to redirect to when user cancels the login

Finalize login

If there were no errors, Vault will redirect the user to the location of successUrl.

Vault will add query parameters containing raw transaction - which needs to be signed by the dapp and posted to the blockchain.

Singing and posting is handled by the finalizeLogin method:

import { parse } from 'query-string';

const { rawTx } = parse(search); // extract rawTx query parameter

try {
 const [account, user] = await sso.finalizeLogin(rawTx);
} catch (error) {
 // handle error
}

finalizeLogin returns a tuple which contains ft3 account (Account instance) and ft3 user (User instance).

If an account doesn’t already exist, call to finalizeLogin will create it, and if it was already created, only auth descriptor would be added to the account. Returned user object contains a key pair used to sign the transactions and an auth descriptor to authorize operations.

This same flow is used both for registering new dapp account and login to existing account.

Auto-login (Remember Me)

By default, SSO uses an instance of SSOStoreDefault to keep track of account (account id) and user (key pair) details in memory. As soon as SSO instance is destroyed (e.g. page refresh), account and user details are lost.

But it is also possible to persist them to local storage. Details will be stored to local storage if SSO is initialized with SSOStoreLocalStorage:

import { SSO, SSOStoreLocalStorage } from 'ft3-lib';

const sso = new SSO(blockchain, new SSOStoreLocalStorage());

On app launch, the auto-login feature can be used to auto login user if they have already logged in previously:

const [account, user] = await sso.autoLogin();

if (account === null) {
 // redirect to login page
}

Like finalizeLogin method, autoLogin returns account and user objects.

Auto login will only work if SSO can find account id and keypair in LocalStorage, and if the authDescriptor which corresponds to stored key pair didn’t expire.

If autoLogin returns null for account and user, then user should be redirected to a normal login page, where initiateLogin should be called to login using the Vault.

Warning

Storing the key pair inside LocalStorage is potentially a security risk, therefore SSOStoreLocalStorage should only be used if dapp doesn’t require a high level of security.

In high security cases, dapp should implement its own method of preserving user.keyPair for future use.

Logout

Call logout method to delete local cache and auth descriptor:

await sso.logout();

Note

Make sure you are using the same SSO instance which was used when calling finalizeLogin, because account and user details are stored in that object instance.

Low level details

As briefed in the beginning, SSO flow creates an ft3 account on a dapp’s chain which has the same accountId as the user’s Vault account.

In the flow, Vault is responsible for building a transaction which creates the account and adds an authDescriptor to it. Once Vault passes the transaction to the dapp (via request parameters), dapp signs it and posts it to the blockchain by calling finalizeLogin.

This transaction will perform 2 operations, which add two auth descriptors to the account. One is added with a call to register_account operation and second is added with add_auth_descriptor operation.

	First authDescriptor is created using Vault public key and has 'A' and 'T' flags

	The second is created using a disposable public key (generated by initializeLogin method) with only “T” flag.

If an account with the same accountId as Vault’s account already exists on the blockchain, SSO will only add the second authDescriptor with disposable public key.

Important

Because the new account need to add the disposable auth descriptor immediately at creation time, it is required that you set a value equal or greater than 1 for rate_limit_points_at_account_creation in config.template.xml as we have noted during Project Setup.

If you also need to record additional user information (as discussed below), the minimum value will need to be increased further.

Dapp Account when using SSO

SSO can only create a ft3 account, but in most cases that is not enough to store dapp account details.

Using the same example dapp_account entity in Rell Integration:

entity dapp_account {
 key account: ft3.account;
 key username: text;
}

We can make some changes to support the SSO flow:

operation create_dapp_account(
 username: text,
 account_id: byte_array,
 auth_descriptor_id: byte_array
) {
 val account = auth_and_log(
 account_id,
 auth_descriptor_id,
 list<text>()
);

 create dapp_account (account, username);
}

query get_dapp_account(account_id: byte_array) {
 return dapp_account @? { .account.id == account_id } (
 account_id = .account.id,
 username = .username
);
}

And then on the client side the login flow would look like this:

const [account, user] = await blokchain.finalizeLogin(tx);

const dapp_account = await blockchain.query(
 'get_dapp_account',
 { account_id: account.id }
);

const username = 'john_doe'; // Fake username

if (!dapp_account) {
 await blockchain.call(
 op('create_dapp_account', username, account.id, user.authDescriptor.id),
 user
);
}

On the login success page, we check if the dapp account exists by calling get_user query. If null is returned, that means the account doesn’t exist yet, so we have to create it.

In this oversimplified example, it is done by calling create_user operation with hard-coded info. In a real dapp, we would need a form where user can enter those account details.

Next time the user logs in, get_user query will return the dapp account, so the dapp account creations step will be skipped.

How to update a dapp chain

Dapps evolve over time. And in this section, we discuss what to do in order to seamlessly update a dapp’s chain to new version.

There are 2 approaches to update a chain:

	Specify different config entry points for old and new versions, or

	Reference compiled configuration of old version

Project structure before update

For both approaches, we will use an example project with a basic ft3 structure.

We have all of our chain’s code within rell/src folder:

rell/src
 ├── lib
 │ ├── ft3
 │ └── … (other optional libraries)
 └── module.rell

And our config.template.xml should look like the following:

<run wipe-db="true">
 <nodes>
 <config src="../../node-config.properties" add-signers="true" />
 </nodes>
 <chains>
 <chain name="YOUR_CHAIN_NAME" iid="0">
 <config height="0">
 <app module="">
 <args module="lib.ft3.core">
 <!-- ... (your chain configs) -->
 </args>
 </app>
 </config>
 </chain>
 </chains>
</run>

Contents

	How to update a dapp chain

	Project structure before update

	Update by specifying different entry points

	Restructure the code

	Adding new codes

	Set the migration to new module

	Test the chain

	Update by referencing old configuration

	What does run-node.sh do?

	Backup old configuration

	Adding new codes

	Set the migration to new module

Update by specifying different entry points

Use this approach when you want to have a clear overview of old version’s code.

Note

An example project to demonstrate this approach is available at branch example/update-chain-keep-old-code of develop-chromia:

git clone https://bitbucket.org/chromawallet/develop-chromia.git
git checkout example/update-chain-keep-old-code

Restructure the code

As mentioned earlier, the target of this approach is to have clear overview of old code after several updates. So it might be considered good procedure to create different entry module for each chain version.

We will name each module with the current version tag, so that it will be clear what has been run in the past. After that, we will update the config.template.xml file by adding each version configuration and the height at which the changes will become effective.

The rell structure will then look like:

rell/src
 └── v0_0_1
 ├── lib
 │ ├── ft3
 │ └── … (other optional libraries)
 └── module.rell

So essentially we just created a folder v0_0_1 inside src and moved the all the previous files there.

We will need to update the config.template.xml file to reflect this change. Note the change at <app> and <arg> tags:

<run wipe-db="true">
 <nodes>
 <config src="../../node-config.properties" add-signers="true" />
 </nodes>
 <chains>
 <chain name="YOUR_CHAIN_NAME" iid="0">
 <config height="0">
 <app module="v0_0_1">
 <args module="v0_0_1.lib.ft3.core">
 <!-- ... (your chain configs) -->
 </args>
 </app>
 </config>
 </chain>
 </chains>
</run>

Note

As a matter of information, the project’s entry path is specified under postchain/config/nodes/dev/blockchains/app/entry-file.txt.

Confirm the new configuration is working properly by starting the chain:

./postchain/bin/run-node.sh dev

Adding new codes

Now that we have restructured the code, we can upgrade the code. To do that we copy v0_0_1 folder and rename it v0_0_2.

rell/src
 ├── v0_0_1
 │ ├── lib
 │ │ ├── ft3
 │ │ └── … (other optional libraries)
 │ └── module.rell
 │
 └── v0_0_2
 ├── lib
 │ ├── ft3
 │ └── … (other optional libraries)
 └── module.rell

For easy testing, we can add one new query in the module.rell file of v0_0_2:

module;

import lf: .lib.ft3.ft3_basic_dev;

query get_version() {
 return "0.0.2";
}

If everything works correctly we will not receive any response when running the module v0_0_1 but we will receive 0_0_2 when running the module v0_0_2.

Set the migration to new module

To migrate to the new module, we need to update the config.template.xml file.

We will add a new <config> tag inside our <chain>, and set it to be enabled at a certain (block) height:

<run wipe-db="true">
 <nodes>
 <config src="../../node-config.properties" add-signers="true" />
 </nodes>
 <chains>
 <chain name="YOUR_CHAIN_NAME" iid="0">
 <config height="0">
 <app module="v0_0_1">
 <args module="v0_0_1.lib.ft3.core">
 <!-- ... (your chain configs) -->
 </args>
 </app>
 </config>
 <config height="20">
 <app module="v0_0_2">
 <args module="v0_0_2.lib.ft3.core">
 <!-- ... (your chain configs) -->
 </args>
 </app>
 </config>
 </chain>
 </chains>
</run>

In this example, after 20 blocks the chain will change app module to v0_0_2.

Important

Ensure that the block height for the new configuration is safely higher than current height.

Setting a block height that is lower than current height might cause problems to nodes that want to sync by re-applying all the transactions.

Test the chain

Start our chain with

./postchain/bin/run-node.sh dev

Recall the new query get_version() we created earlier. We can test the chain’s version with a simple script such as:

const pcl = require('postchain-client');
const node_api_url = "http://localhost:YOUR_NODE_PORT";

// default blockchain identifier used for testing
const blockchainRID = YOUR_NODE_BRID;

const rest = pcl.restClient.createRestClient(node_api_url, blockchainRID, 5);
const gtvHash = pcl.gtv.gtvHash;

const gtx = pcl.gtxClient.createClient(
 rest,
 Buffer.from(blockchainRID, 'hex'),
 []);

const gtv = pcl.gtv;
const gtxU = pcl.gtx;

(async () => {
 try {
 const version = await gtx.query("get_version", {});
 } catch (e) {
 console.log("New version not yet implemented");
 } finally {
 if(version) {
 console.log(`New version running: ${version}`)
 }
 }

})();

We can monitor the blockchain by linking it to the Explorer [https://explorer-testnet.chromia.com/] :

[image: Update A Chain]

At block 20 we will start getting a result back from the chain. It will return something like:

POST URL http://localhost:7743/query/A54320E7D063AB94513467806FE800A1B95B26BF65C4F11D30C5D65859E4025C

0.0.2

Update by referencing old configuration

The second approach that can be used is to specify previous compiled configurations in the config tag.

Use this approach if you want cleaner code structure.

Note

An example project to demonstrate this approach is available at branch feature/CCD210-update-chain-tutorial of develop-chromia:

git clone https://bitbucket.org/chromawallet/develop-chromia.git
git checkout feature/CCD210-update-chain-tutorial

What does run-node.sh do?

In order to discuss this approach, we must first explain what happened when you execute ./postchain/bin/run-node.sh dev in the console.

This command does 3 things.

	First it creates a target folder where the compiled blockchain configuration will be placed, something like:

mkdir -p ./postchain/runtime/nodes/dev

	Then it generates the blockchain configuration by compiling the Rell code with the config.template.xml file.

If it is a new chain (e.g. started with the -W option), the BRID is also generated at this step. Since we are discussing updating a chain here, we don’t want the BRID to change, so -W option should never be called while updating.

./postchain/lib/multigen.sh ./postchain/config/nodes/dev/blockchains/app/config.template.xml -d ./rell/src -o ./postchain/runtime/nodes/dev/

It should create the following architecture inside postchain/runtime/nodes/dev:

postchain/runtime/nodes/dev
├── blockchains
│ └── 0
│ ├── 0.gtv (creates a one file rell module)
│ ├── 0.xml (creates the configuration that will be run, also by using the just created 0.gtv)
│ └── brid.txt (just a file where is output the brid of the chain, n.b. it will remain constant nevertheless the updates)
│
├── node-config.properties
└── private.properties

	Finally, it runs the new configuration with

./postchain/lib/postchain.sh run-node-auto -d ./postchain/runtime/nodes/dev

Backup old configuration

Compile the current code (by executing ./postchain/bin/run-node.sh dev or only step 1 and 2 described above).

In the generated configuration folder, copy runtime/nodes/dev/0.xml into postchain/config/nodes/dev/blockchains/app, and rename it 0.0.1.xml

Adding new codes

In the previous approach, we were keeping track from a code point of view of previous versions. This time we will not do that, so we can change the current code directly without copying anything.

Let’s just add the query into the module.rell file:

module;

import lf: .lib.ft3.ft3_basic_dev;

query get_version() {
 return "0.0.2";
}

Set the migration to new module

Update the config.template.xml file to config the migration.

Note that unlike the other approach, this time we don’t have to change the <app> and <args> tags:

<run wipe-db="true">
 <nodes>
 <config src="../../node-config.properties" add-signers="true" />
 </nodes>
 <chains>
 <chain name="YOUR_CHAIN_NAME" iid="0">
 <config height="0">
 <gtv src="0.0.1.xml"/>
 </config>
 <config height="20">
 <app module="">
 <args module="lib.ft3.core">
 <!-- ... (your chain configs) -->
 </args>
 </app>
 </config>
 </chain>
 </chains>
</run>

Important

Ensure that the block height for the new configuration is safely higher than current height.

Setting a block height that is lower than current height might cause problems to nodes that want to sync by re-applying all the transactions.

Compile the new configuration and start the chain:

./postchain/bin/run-node.sh dev

We can now Test the chain as before. If we try to query for get_version() after block 20 we will see 0.0.2.

Postchain REST API

Postchain is the blockchain framework that Chromia is built on. In the Chromia ecosystem, Providers
run Postchain nodes that form the infrastructure for the network. Sometimes it makes sense to run
your own node or set of nodes, such as for testing, development, or even for setting up your own
consortium blockchain network.

Postchain nodes expose a REST API that allows for submitting transactions, posting queries, fetching
block info, reading node status, etc. You can read the full API documentation here.

GTX

GTX is a protocol that Postchain uses for sending and receiving transactions.
GTX is encoded into the base protocol GTV.

It’s not recommended to use GTV directly, even though it is possible to construct various Rell
types directly into GTV.

GtxMessages DEFINITIONS ::= BEGIN

IMPORTS RawGtv FROM GtvMessages;

 -- All types are using the same tags as RawGtv to make gtv<->gtx encoding equivalent

 -- Gtx operation
 -- [string, [gtv]]
 RawGtxOp ::= [5] EXPLICIT SEQUENCE {
 name [2] EXPLICIT UTF8String, -- RawGtv { string } --
 args [5] EXPLICIT SEQUENCE OF RawGtv -- RawGtv { array } --
 }

 -- Gtx Body
 -- [bytearray, [gtxOp], [bytearray]]
 RawGtxBody ::= [5] EXPLICIT SEQUENCE {
 blockchainRid [1] EXPLICIT OCTET STRING, -- RawGtv { bytearray } --
 operations [5] EXPLICIT SEQUENCE OF RawGtxOp,
 signers [5] EXPLICIT SEQUENCE OF [1] EXPLICIT OCTET STRING -- RawGtv { bytearray} --
 }

 -- Gtx
 -- [gtxBody, [bytearray]]
 RawGtx ::= [5] EXPLICIT SEQUENCE {
 body RawGtxBody,
 signatures [5] EXPLICIT SEQUENCE OF [1] EXPLICIT OCTET STRING -- RawGtv { bytearray } --
 }
END

	GTV

	Type conversions

GTV

GTV is a general purpose protocol, used to express data in;

	Primitive types (integers, strings, byte arrays, etc)

	Complex types (only Array and Dictionary)

GTV is converted to ASN when it’s sent.

GtvMessages DEFINITIONS ::= BEGIN

 DictPair ::= SEQUENCE {
 name UTF8String,
 value RawGtv
 }

 RawGtv ::= CHOICE {
 null [0] NULL,
 byteArray [1] OCTET STRING,
 string [2] UTF8String,
 integer [3] INTEGER,
 dict [4] SEQUENCE OF DictPair,
 array [5] SEQUENCE OF RawGtv,
 bigInteger [6] INTEGER
 }
END

Type conversions

Below here is a table to visualize the type conversions that happens in the the Rell backend to its corresponding Gtv types when inserting into, and querying the types.

	Types

	Input

	Output

	Remark

	entity

	GtvInteger

	GtvInteger

	

	enum

	GtvInteger

	GtvInteger

	Can be GtvString as input to query

	struct

	GtvArray

	GtvDict

	Can be GtvDict as input to query

	decimal

	GtvString

	GtvString

	

	boolean

	GtvInteger

	GtvInteger

	

	rowid

	GtvInteger

	GtvInteger

	

	json

	GtvString

	GtvString

	

	nullable

	GtvNull or type

	GtvNull or type

	

	collection

	GtvArray

	GtvArray

	Both set and list

	map

	GtvDict

	GtvDict

	If key is text

	map

	GtvArray

	GtvArray

	If key is not text [[k1, v1], [k2, v2], …]

	tuple

	GtvDict

	GtvDict

	If named “(x = 1, y = 2, z = 3)”

	tuple

	GtvArray

	GtvArray

	If not named “(1, 2, 3)”

Run.XML

Run.XML format is used to define a run-time configuration of a Rell node. The configuration consists of two key parts:

	The list of Postchain nodes (the target node is one of those nodes).

	The list of blockchains, each having an associated configuration(s) and a Rell application.

The format is used:

	By Rell command-line utilities multirun.sh and multigen.sh.

	By the Eclipse IDE (which internally uses multirun.sh to launch Postchain applications).

The Format

Example of a Run.XML file:

<run wipe-db="true">
 <nodes>
 <config src="config/node-config.properties" add-signers="false" />
 </nodes>
 <chains>
 <chain name="user" iid="1">
 <config height="0">
 <app module="user" />
 <gtv path="gtx/rell/moduleArgs/user">
 <dict>
 <entry key="foo"><bytea>0373599a61cc6b3bc02a78c34313e1737ae9cfd56b9bb24360b437d469efdf3b15</bytea></entry>
 </dict>
 </gtv>
 </config>
 <config height="1000">
 <app module="user_1000">
 <args module="user_1000">
 <arg key="foo"><bytea>0373599a61cc6b3bc02a78c34313e1737ae9cfd56b9bb24360b437d469efdf3b15</bytea></arg>
 </args>
 </app>
 <gtv path="path" src="config/template.xml"/>
 </config>
 </chain>
 <chain name="city" iid="2">
 <config height="0" add-dependencies="false">
 <app module="city" />
 <gtv path="signers">
 <array>
 <bytea>0350fe40766bc0ce8d08b3f5b810e49a8352fdd458606bd5fafe5acdcdc8ff3f57</bytea>
 </array>
 </gtv>
 <dependencies>
 <dependency name="user" chain="user" />
 </dependencies>
 </config>
 <include src="config/city-include-1.xml"/>
 <include src="config/city-include-2.xml" root="false"/>
 </chain>
 </chains>
</run>

Top-level elements are:

	nodes - defines Postchain nodes

	chains - defines blockchains

Nodes

Node configuration is provided in a standard Postchain node-config.properties format.

Specifying a path to an existing node-config.properties file (path is relative to the Run.XML file):

<nodes>
 <config src="config/node-config.properties" add-signers="false" />
</nodes>

Specifying node configuration properties directly, as text:

<nodes>
 <config add-signers="false">
 database.driverclass=org.postgresql.Driver
 database.url=jdbc:postgresql://localhost/postchain
 database.username=postchain
 database.password=postchain
 database.schema=test_app

 activechainids=1

 api.port=7740
 api.basepath=

 node.0.id=node0
 node.0.host=127.0.0.1
 node.0.port=9870
 node.0.pubkey=0350fe40766bc0ce8d08b3f5b810e49a8352fdd458606bd5fafe5acdcdc8ff3f57

 messaging.privkey=3132333435363738393031323334353637383930313233343536373839303131
 messaging.pubkey=0350fe40766bc0ce8d08b3f5b810e49a8352fdd458606bd5fafe5acdcdc8ff3f57
 </config>
</nodes>

Chains

A chain element can have multiple config elements and a dependencies element inside.

A single chain may have specific configurations assigned to specific block heights.

<config height="0" add-dependencies="false">
 <app module="city" />
 <gtv path="signers">
 <array>
 <bytea>0350fe40766bc0ce8d08b3f5b810e49a8352fdd458606bd5fafe5acdcdc8ff3f57</bytea>
 </array>
 </gtv>
</config>

An app element specifies a Rell application used by the chain. Attribute module is the name of the main module of the app.
The source code of the main module and all modules it imports will be injected into the generated blockchain XML configuration.

Elements gtv are used to inject GTXML fragments directly into the generated Postchain blockchain XML configuration.
Attribute path specifies a dictionary path for the fragment (default is root). For example, the fragment

<gtv path="gtx/rell/moduleArgs/user">
 <dict>
 <entry key="foo"><bytea>0373599a61cc6b3bc02a78c34313e1737ae9cfd56b9bb24360b437d469efdf3b15</bytea></entry>
 </dict>
</gtv>

will produce a blockchain XML:

<dict>
 <entry key="gtx">
 <dict>
 <entry key="rell">
 <dict>
 <entry key="moduleArgs">
 <dict>
 <entry key="user">
 <dict>
 <entry key="foo">
 <bytea>0373599A61CC6B3BC02A78C34313E1737AE9CFD56B9BB24360B437D469EFDF3B15</bytea>
 </entry>
 </dict>
 </entry>
 </dict>
 </entry>
 </dict>
 </entry>
 </dict>
 </entry>
</dict>

GTXML contents to be injected shall be either specified as a nested element of a gtv element, or placed in an XML file
referenced via the src attribute.

Included files

Other XML files can be included anywhere in a Run.XML using include tag. Included files may include other XML files
as well.

Including a file with its root element replacing the include element:

<include src="config/city-include-1.xml"/>

Including a file without its root element, the include is replaced by the child elements of the root element
of the file:

<include src="config/city-include-2.xml" root="false"/>

Utilities

These utilities are a part of the Rell language [https://bitbucket.org/chromawallet/rellr].

multirun.sh

Runs an application described by a Run.XML configuration.

Usage: RellRunConfigLaunch [-d=SOURCE_DIR] RUN_CONFIG
Launch a run config
 RUN_CONFIG Run config file
 -d, --source-dir=SOURCE_DIR
 Rell source code directory (default: current directory)

multigen.sh

Creates a Postchain blockchain XML configuration from a Run.XML configuration.

Usage: RellRunConfigGen [--dry-run] [-d=SOURCE_DIR] [-o=OUTPUT_DIR] RUN_CONFIG
Generate blockchain config from a run config
 RUN_CONFIG Run config file
 --dry-run Do not create files
 -d, --source-dir=SOURCE_DIR
 Rell source code directory (default: current directory)
 -o, --output-dir=OUTPUT_DIR
 Output directory

Example of a generated directory tree:

out/
├── blockchains
│ ├── 1
│ │ ├── 0.gtv
│ │ ├── 0.xml
│ │ ├── 1000.gtv
│ │ ├── 1000.xml
│ │ └── brid.txt
│ └── 2
│ ├── 0.gtv
│ ├── 0.xml
│ ├── 1000.gtv
│ ├── 1000.xml
│ ├── 2000.gtv
│ ├── 2000.xml
│ ├── 3000.gtv
│ ├── 3000.xml
│ └── brid.txt
├── node-config.properties
└── private.properties

Testing module

To write unit tests for Rell code, use test modules. A test module is defined using the @test annotation:

@test module;

function test_foo() {
 assert_equals(2 + 2, 4);
}

function test_bar() {
 assert_equals(2 + 2, 5);
}

All functions in a test module that start with test_ (and a function called exactly test) are test functions and
will be executed when the test module is run.

Tests are executed using a postchain node with the following signer key:

val signer_privkey = x"42";
val signer_pubkey = x"0324653EAC434488002CC06BBFB7F10FE18991E35F9FE4302DBEA6D2353DC0AB1C";

To run a test module, use the command-line interpreter:

rell.sh -d my_src_directory --test my_test_module

or right-click on the run.xml file and run as Rell Unit Test

Each test function will be executed independently of others, and a summary will be printed in the end:

TEST RESULTS:

my_test_module:test_foo OK
my_test_module:test_bar FAILED

SUMMARY: 1 FAILED / 1 PASSED / 2 TOTAL

***** FAILED *****

Transactions in test module

Instead of writing tests in a frontend, we write the transactions in rell like this:

rell.test.block - a block, contains a list of transactions

rell.test.tx - a transaction, has a list of operations and a list of signers

rell.test.op - an operation call, which is a (mount) name and a list of arguments (each argument is a gtv)

Keys used for signing transactions can also be created like this:

rell.test.keypairs.{bob, alice, trudy}: rell.test.keypair - test keypairs
rell.test.privkeys.{bob, alice, trudy}: byte_array - same as rell.test.keypairs.X.priv
rell.test.pubkeys.{bob, alice, trudy}: byte_array - same as rell.test.keypairs.X.pub

Example of a operation signed with the alice keypair:

rell.test.tx().op(main.exampleOp(parameter1,parameter2)).sign(rell.test.keypairs.alice).run();

And if if nop is necessary for making a transaction unique, one can use ´ŕell.test.nop() to implement it.

rell.test.nop(x: integer): rell.test.op
rell.test.nop(x: text): rell.test.op
rell.test.nop(x: byte_array): rell.test.op

Creates a “nop” operation with a specific argument value.

Building and running a block

operation foo(x: integer) { ... }
operation bar(s: text) { ... }

...

val tx1 = rell.test.tx()
 .op(foo(123)) // operation call returns rell.test.op
 .op(bar('ABC')) // now the transaction has two operations
 .sign(rell.test.keypairs.bob) // signing with the "Bob" test keypair
 ;

val tx2 = rell.test.tx()
 .op(bar('XYZ'))
 .sign(rell.test.keypairs.bob)
 .sign(rell.test.keypairs.alice) // tx2 is signed with both "Bob" and "Alice" keypairs
 ;

rell.test.block()
 .tx(tx1)
 .tx(tx2)
 .run() // execute the block consisting of two transactions: tx1 and tx2
 ;

If we our module has the “_test” suffix it will become a test module
for the module that bears the same name without the suffix. For example,
if our modules name is program, the test module would be called
program_test.

Production and test modules

Production module (file data.rell):

module;

entity user {
 name;
}

operation add_user(name) {
 create user(name);
}

Test module (file data_test.rell):

@test module;
import data;

function test_add_user() {
 assert_equals(data.user@*{}(.name), list<text>());

 val tx = rell.test.tx(data.add_user('Bob'));
 assert_equals(data.user@*{}(.name), list<text>());

 tx.run();
 assert_equals(data.user@*{}(.name), ['Bob']);
}

Functions of rell.test.block

rell.test.block() - create an empty block builder

rell.test.block(tx: rell.test.tx, ...) - create a block builder with some transaction(s)

rell.test.block(txs: list<rell.test.tx>) - same

rell.test.block(op: rell.test.op, ...) - create a block builder with one transaction with some operation(s)

rell.test.block(ops: list<rell.test.op>) - same

.tx(tx: rell.test.tx, ...) - add some transaction(s) to the block

.tx(txs: list<rell.test.tx>) - same

.tx(op: rell.test.op, ...) - add one transaction with some operation(s) to the block

.tx(ops: list<rell.test.op>) - same

.copy(): rell.test.block - returns a copy of this block builder object

.run() - run the block

.run_must_fail() - same as .run(), but throws exception on success, not on failure

Functions of rell.test.tx:

rell.test.tx() - create an empty transaction builder

rell.test.tx(op: rell.test.op, ...) - create a transaction builder with some operation(s)

rell.test.tx(ops: list<rell.test.op>) - same

.op(op: rell.test.op, ...) - add some operation(s) to this transaction builder

.op(ops: list<rell.test.op>) - same

.nop() - same as .op(rell.test.nop())

.nop(x: integer) - same as .op(rell.test.nop(x))

.nop(x: text) - same

.nop(x: byte_array) - same

.sign(keypair: rell.test.keypair, ...) - add some signer keypair(s)

.sign(keypairs: list<rell.test.keypair>) - same

.sign(privkey: byte_array, ...) - add some signer private key(s) (a private key must be 32 bytes)

.sign(privkeys: list<byte_arrays>) - same

.copy(): rell.test.tx - returns a copy of this transaction builder object

.run() - runs a block containing this single transaction

.run_must_fail() - same as .run(), but throws exception on success, not on failure

Functions of rell.test.op:

rell.test.op(name: text, arg: gtv, ...) - creates an operation call object with a given name and arguments

rell.test.op(name: text, args: list<gtv>) - same

.tx(): rell.test.tx - creates a transaction builder object containing this operation

.sign(...): rell.test.tx - equivalent of .tx().sign(…)

.run() - equivalent of .tx().run()

.run_must_fail() - equivalent of .tx().run_must_fail()

Functions assert_* for unit tests

Other functions:

assert_equals(actual: T, expected: T) - fail (throw an exception) if two values are not equal

assert_not_equals(actual: T, expected: T) - fail if the values are equal

assert_true(actual: boolean) - assert that the value is “true”

assert_false(actual: boolean) - assert that the value is “false”

assert_null(actual: T?) - assert that the value is null

assert_not_null(actual: T?) - assert that the value is not null

assert_lt(actual: T, expected: T) - assert less than (actual < expected)

assert_gt(actual: T, expected: T) - assert greater than (actual > expected)

assert_le(actual: T, expected: T) - assert less or equal (actual <= expected)

assert_ge(actual: T, expected: T) - assert greater or equal (actual >= expected)

assert_gt_lt(actual: T, min: T, max: T) - assert (actual > min) and (actual < max)

assert_gt_le(actual: T, min: T, max: T) - assert (actual > min) and (actual <= max)

assert_ge_lt(actual: T, min: T, max: T) - assert (actual >= min) and (actual < max)

assert_ge_le(actual: T, min: T, max: T) - assert (actual >= min) and (actual <= max)

Same functions are also available in the rell.test namespace.

Running unit tests via run.xml

With the help of run.xml we can run tests with module arguments included(constants we define in the run xml file).
To define a test in xml, we will use the test tag like this:

<run>
 <nodes>
 <config src="node-config.properties" />
 <test-config src="node-config-test.properties" />
 </nodes>

 <chains>
 <chain name="foo" iid="1">
 <config height="0">
 <app module="foo.app" />
 </config>
 <test module="foo.tests" />
 </chain>

 <test module="lib.tests" />
 </chains>
</run>

We will run the test like this in the terminal: ./multirun.sh -d rell/src --test rell/config/run.xml

Example of a Test Module

Here is an example of a test module implemented for the Chroma-Chat example that can be found in the Example Projects section.

@test module;
import main;

function test_init(){

 assert_equals((main.user@*{}(.username)).size(),0);
 assert_equals((main.balance@*{}(.user)).size(),0);
 rell.test.tx().op(main.init(rell.test.pubkeys.alice)).run();
 assert_equals(main.user@*{}(.username).size(),1);
 assert_equals(main.balance@{.user == main.user@{ .pubkey == rell.test.pubkeys.alice}}(.amount),1000000);

}

function test_register_user(){

 rell.test.tx().op(main.init(rell.test.pubkeys.alice)).run();
 assert_equals(main.user@*{}(.username).size(),1);
 rell.test.tx().op(main.register_user(rell.test.pubkeys.alice,rell.test.pubkeys.bob,"bob",100)).sign(rell.test.keypairs.alice).run();
 assert_equals(main.user@*{}(.username).size(),2);
 assert_equals(main.user@{.pubkey == rell.test.pubkeys.bob}(.username),"bob");
 assert_equals(main.balance@{.user == main.user@{.pubkey == rell.test.pubkeys.bob}}(.amount),100);
}

function test_blocks(){

 val tx1 = rell.test.tx().op(main.init(rell.test.pubkeys.alice));
 val tx2 = rell.test.tx().op(main.register_user(rell.test.pubkeys.alice,rell.test.pubkeys.bob,"bob",100)).sign(rell.test.keypairs.alice);
 val tx3 = rell.test.tx().op(main.create_channel(rell.test.pubkeys.alice,"channel 1")).sign(rell.test.keypairs.alice);
 rell.test.block().tx(tx1).tx(tx2).tx(tx3).run();
 val tx4 = rell.test.tx().op(main.add_channel_member(rell.test.pubkeys.alice,"channel 1","bob")).sign(rell.test.keypairs.alice);
 rell.test.block().tx(tx4).run();
}

Running tests in docker

If one is running their program from a docker instance, testing will be slightly different. Tests will run through a script that will run the tests specified in the test module.

Note

For new projects, this project template [https://bitbucket.org/chromawallet/rell-project-template/src/origin/] can be built upon that has existing docker files needed and the script that runs tests.

Implementing docker test functionality into an already existing project means pasting this [https://bitbucket.org/chromawallet/rell-project-template/src/origin/scripts/rell-tests.js] script manually into your project folder.
Alongside the script, a docker compose file that specifies from where and how the tests will run will also be needed.

The docker-compose.yaml file will look something like this:

version: '3.3'
services:
 test_postgres:
 image: postgres:14.1-alpine
 container_name: test_postgres
 restart: always
 environment:
 POSTGRES_DB: postchain
 POSTGRES_USER: postchain
 POSTGRES_PASSWORD: postchain
 test_blockchain:
 image: registry.gitlab.com/chromaway/postchain-distribution/chromaway/postchain-test-dapp:3.5.0
 container_name: test_blockchain
 command:
 - ${COMMAND}
 depends_on:
 - test_postgres
 volumes:
 - ./rell:/opt/chromaway/rell
 environment:
 POSTCHAIN_DB_URL: jdbc:postgresql://test_postgres/postchain
 CHAIN_CONF: /opt/chromaway/rell/config/run.xml
 NODE_CONF: /opt/chromaway/rell/config/node-config.properties

to run your tests, simply run the script by writing the following inside the folder rell-tests.js is inside:

node rell-tests.js

Upgrading to Rell 0.10.x

There are two kinds of breaking changes in Rell 0.10.x:

	Rell Language:

	Module System; include is deprecated and will not work.

	Mount names: mapping of entities and objects to SQL tables changed.

	class and record renamed to entity and struct, the code using old keywords will not compile.

	Previously deprecated library functions are now unavailable; the code using them will not compile.

	Configuration and tools:

	Postchain blockchain.xml: now needs a list of modules instead of the main file name; module arguments are
per-module.

	Run.XML format: specifying module instead of main file; module arguments are per-module.

	Command-line tools: accept a source directory path and main module name combination instead of the main .rell file path.

Step-by-step upgrade

	Read about the Module System.

	Read about mount names.

	Use the migrate-v0.10.sh tool to rename class, record and deprecated function names (see below).

	Manually update the source code to use the Module System instead of include.

	Use @mount annotation to set correct mount names to entities, objects, operations and queries
(recommended to apply @mount to entire modules or namespaces, not to individual definitions).

	Update configuration files, if necessary (see the details below).

	The Web IDE users the root module as the main module, so make sure you have it and import all required modules there.

Details

migrate-v0.10.sh tool

The tool can be found in the postchain-node directory of a Rell distribution.
It renames class, record and most of deprecated functions, e. g. requireNotEmpty() -> require_not_empty.

Usage: migrator [--dry-run] DIRECTORY
Replaces deprecated keywords and names in all .rell files in the directory (recursively)
 DIRECTORY Directory
 --dry-run Do not modify files, only print replace counts

Specify a Rell source directory as an argument, and the tool will do renaming in all .rell files in that
directory and its subdirectories.

NOTE. UTF-8 encoding is always used by the tool; if files use a different encoding, some characters
may be broken. It is recommended to not run the tool if there are uncommitted changes in the directory.
After running it, review the changes it made.

blockchain.xml

New blockchain.xml Rell configuration looks like this (only changed parts shown):

<dict>
 <entry key="gtx">
 <dict>
 <entry key="rell">
 <dict>
 <entry key="moduleArgs">
 <dict>
 <entry key="app.foo">
 <dict>
 <entry key="message">
 <string>Some common message...</string>
 </entry>
 </dict>
 </entry>
 <entry key="app.bar">
 <dict>
 <entry key="x">
 <int>123456</int>
 </entry>
 <entry key="y">
 <string>Hello!</string>
 </entry>
 </dict>
 </entry>
 </dict>
 </entry>
 <entry key="modules">
 <array>
 <string>app.foo</string>
 <string>app.bar</string>
 </array>
 </entry>
 </dict>
 </entry>
 </dict>
 </entry>
</dict>

What was changed:

	gtx.rell.moduleArgs is now a dictionary, specifying module_args for multiple modules
(in older versions there was only one module_args for a Rell application, now there can be one module_args
per module).

	gtx.rell.modules is an array of module names

run.xml

An example of a new run.xml file:

<run wipe-db="true">
 <nodes>
 <config src="node-config.properties" add-signers="false" />
 </nodes>
 <chains>
 <chain name="test" iid="1" brid="01234567abcdef01234567abcdef01234567abcdef01234567abcdef01234567">
 <config height="0">
 <app module="app.main">
 <args module="app.bar">
 <arg key="x"><int>123456</int></arg>
 <arg key="y"><string>Hello!</string></arg>
 </args>
 <args module="app.foo">
 <arg key="message"><string>Some common message...</string></arg>
 </args>
 </app>
 </config>
 </chain>
 </chains>
</run>

What was changed:

	module tag replaced by app, which has module attribute

	there can be multiple args elements, each must have a module attribute

Index

NFA Module

Non-Fungible Assets (NFA) is the Chromia standard used to create unique and trackable assets.

NFAs can be dynamically created on both client and blockchain side. We will explain each part after the basic structures:

	NFA Basic Structures

	Blockchain Side

	Client Side

Converting Chromia-Chat to FT3

In this section, we will “upgrade” the Chromia Chat Example Project into a version that use FT3.

NFA Basic Structures

Table of Contents

	NFA Basic Structures

	Source repository

	Overview

	The nfa entity

	The component entity

	The property entity

	The entitee entity

	Next step

Source repository

NFA Module can be cloned from its repository:

git clone https://bitbucket.org/chromawallet/nfa.git
git checkout rell-0.10.0

Within repository root you will find:

	The rell directory which contains blockchain module,

	And client directory which contains javascript client.

Overview

The NFA module involves 4 main entities:

	nfa

	The nfa entity is used to define one class of assets:

	nfa-human

	nfa-shoe

	nfa-spaceship, etc.

	entitee

	The entitee entity is one instance of a nfa:

	“Cloud Strife” entite of type nfa-human.

	“Apollo 8” entitee of type nfa-spaceship.

	component

	The component entity is used to define the data structure of a nfa’s property:

	component-color is a text in hex format e.g. “#00BFFF”.

	component-month is an integer ranging from 1 to 12.

	property

	The property entity is the characteristic of a nfa.

From ECS perspective, property is the name given to a component in an entitee:

	entitee that belong to nfa-human have property-hair-color of type component-color.

	entitee that belong to nfa-car have property-warranty-period of type component-month.

Note

The property entity only define which property entitees of an nfa will have.

Actual values are stored in other entities that are not mentioned in this document (we will access these values via utility functions).

The nfa entity

entity nfa {
 name: text;
 key id: byte_array,
 desc: text;
 index max_entities: integer;
}

	name

	Is the name of the nfa. name should be unique within a single blockchain, but different chains can define different nfa with the same name.

	id

	Is used as a unique key, formed by the hash of the name and the blockchain_rid:

(name, chain_context.blockchain_rid).hash()

	desc

	Is just the textual description of the nfa.

	max_entities

	Is the maximum number of asset that can be created for this nfa. Minimum amount is 1 and max is integer.MAX_VALUE.

The component entity

entity component {
 key id: byte_array;
 name: text;
 type: supported_types.type;
 extra: byte_array;
}

	id

	Same as in nfa, the id is hash of name and blockchain_rid

	name

	Name of the structure (“color”, “month”, etc)

	type

	Must be one of the following supported structure types:

enum type {
 TEXT,
 INTEGER,
 DECIMAL,
 BYTE_ARRAY,
 ENUM,
 NFA
}

	The first 4 are basic rell types.

	enum is a mimic of enum type although internally it stores the value as text (and of course only accepts a subset of values).

	Type nfa is a reference to another nfa item, this is particularly useful to introduce the concept of composition. eg nfa-human can own nfa-shoe or even a nfa-spaceship, who knows?

	extra

	For each of the above types there is an extra struct used to further describe accepted values.

The extra attribute is saved as byte_array, and can be converted back into struct with <struct_name>.from_bytes(extraByteArray)

(e.g. extra_decimal_component_structure.from_bytes(extraByteArray) for type.DECIMAL)

struct extra_decimal_component_structure {
 min_val: integer; // minimum value allowed (e.g. negative numbers not allowed)
 max_val: integer; // max value allowed or byte_length
 decimals: integer; // how many decimals?
}

struct extra_nfa_component_structure {
 nfa_id: byte_array; // nfa id
}

struct extra_enum_component_structure {
 // this class is only used with enum types, assume enum are all text
 enums: list<text>;
}

Note

For extra struct of other types, please check the corresponding file in nfa/core/supported_types.

The property entity

entity property {
 nfa: nfa;
 component;
 name;
 is_required: boolean;
 is_mutable: boolean;

 key name, nfa;
}

	nfa

	Link to the nfa. Entitee``s of specified ``nfa will have this property.

	component

	Link to the component. This property value will have data structure respecting the rule of linked component.

	name

	Name of the property.

	is_required

	Is this component compulsory in the entitee?

	is_mutable

	Can this value be changed once set?

The entitee entity

And finally the entitee is the nfa asset representation. So if nfa defines the family one asset belongs to, the entitee is the asset itself.

Entitees have one index mainly for fashion reason (e.g. claiming to have the first ever entity of a specific nfa).

You can mine entitees over time, or create them all at the same time. But there can only ever be maximum nfa.max_entities entitees of one nfa.

entity entitee {
 idx: integer;
 key id: byte_array;
 nfa: nfa;

 key idx, nfa;
}

	idx

	index of creation (incremental starting from 0).

	id

	id is passed by the creator of the entity. It’s fine as long as it is unique. It’s made for easy retrieval of a specific entitee.

	nfa

	The nfa this entitee belongs to.

Next step

Above we have described the main structures of NFA Module, in next sections we will explain how to work with nfas.

As mentioned previously, NFA can be manipulated on both blockchain side and client side. Depending on specific needs Dapps can choose either or both methods:

	NFA on blockchain

	NFA on client side

Blockchain Side

Table of Contents

	Blockchain Side

	Integrating NFA Module

	Creating nfa

	Functions

	Operations

	Creating component

	Functions

	Operations

	Handling entitee

	Operations

	Queries

	Functions

	Handling property

	Operations

	Queries

	Functions

	Ownership

	Queries

	Functions

Integrating NFA Module

For project setup, please refer to Project setup for FT3.

From the cloned NFA repository, copy rell/src/lib/nfa directory into your project’s lib directory (same location as ft3 lib). Include the module in your project main file (main.rell):

include "config/ft3_config";
include "lib/ft3/ft3_xc_basic_dev";
include "lib/nfa/core";
include "lib/nfa/ft3/ownership";

The remaining of This section cover features of NFA module (i.e. code snippets in this section are quoted from above repository).

Creating nfa

nfa can be created via built-in operation (nfa creation from client side) or functions (on blockchain side).

We do not recommend exposing NFA creation to client side. It it preferable to create dapp-managed operations (with own validation and authorization) and call functions to create nfa from these operations.

Functions

Create a simple nfa class:

function createNFAClass(
 name,
 desc: text,
 max_entities: integer
): nfa

Create nfa with some properties:

struct component_req {
 is_required: boolean = false;
 is_mutable: boolean = true;
}

struct component_def {
 component;
 component_req;
}

createNFA(
 name,
 desc: text,
 max_entities: integer,
 components: map<name, component_def> // map of component_structures with the name of the property as a key
): nfa

… or using tuple:

easyCreateNFA(
 name,
 desc: text,
 max_entities: integer,
 components: map<
 name,
 (
 byte_array, // component id
 boolean, // is_required
 boolean // is_mutable
)
 >
): nfa

Operations

operation easy_create_nfa(
 name,
 desc: text,
 max_entities: integer,
 propertiesI: list<component_iface>
)

struct component_iface {
 id: byte_array;
 name;
 blockchain_rid: byte_array;
 type: supported_types.type;
 extra: gtv;
}

Note

easy_create_nfa will create nfa, properties and also components described in propertiesI if they don’t exist.

If the component already exists, we can use register_nfa:

// internally calls createNFA() function
operation register_nfa(
 name,
 desc: text,
 max_entities: integer,
 properties: map<name, component_def>
)

Creating component

Functions

function createComponent(
 name: text,
 type: supported_types.type,
 extra: gtv? // extra_*_component_structure encoded in gtv
): component

ensureComponent return the component if the specified component_id exists, otherwise create a new component with the given parameters:

function ensureComponent(
 component_name: text,
 component_bc_rid: byte_array, // will use current blockchain_rid if creating component
 component_type: supported_types.type, // type supported by this component
 extra: gtv // extra_*_component_structure encoded in gtv
): component

Operations

// internally call createComponent
operation create_component_structure(new_c: component_iface)

Handling entitee

Operations

Create one entity programmatically. The idx is automatically generated.

Note that new_id must be specified by creator, this is done on purpose to help the frontend software to keep track of different entitees

operation create_entitee(
 nfa_name: text,
 new_id: byte_array,
 properties: list<property_value>
)

struct property_value {
 name; // name of the property
 value: gtv; // value for named property
}

Queries

Returns the entity by id and its properties:

struct entity_obj {
 id: byte_array;
 idx: integer;
 nfa_id: byte_array;
 nfa_name: text;
}

struct entity_description {
 entitee: entity_obj;
 properties: map<text, gtv>;
}

query get_entity (
 entity_id: byte_array
): entity_description

Functions

Create:

function createEntitee(
 nfa,
 id: byte_array,
 entity_components: map<text, gtv> // property name with value encoded in gtv.
): entitee

Read:

getEntitee(
 e: entitee
): entity_description

Update:

modifyEntitee(
 auth_descriptor_id: byte_array?,
 entitee,
 entity_properties: map<name, gtv?>
)

	auth_descriptor_id is optional (e.g. the entitee does not have an owner). If the entitee has an owner, the function will check for such authorization from FT3

	entity_properties: map<name, gtv?> is the map of properties to modify. If instead of gtv, null` is specified, the property will be removed from the entity (``is_required must be false).

Handling property

Operations

operation update_property(
 entitee_id: byte_array,
 property_name: text,
 value: gtv
)

Queries

query get_property_value(
 entity_id: byte_array,
 property_name: text
)

Functions

function modifyProperty(
 e: entitee,
 property,
 gtvValue: gtv
)

function removeProperty(
 e: entitee,
 property
)

function getPropertyValue(
 e: e.entitee,
 property_name: text
): gtv

Ownership

Ownership is an integration with FT3 module. It allows to express the ownership of one ft3.account of one or more nfa.entitee.

entity ownership {
 key entitee, account: ft3.acc.account;
}

Queries

Returns the account.id of the entitee’s owner:

query get_owner(
 e: e.entitee
)

Functions

A “require” function that check if provided auth_descriptor_id is the owner of the entitee. If auth_descriptor_id is null it mean the entitee is not expected to have an owner:

function require_ownership(
 e: entitee,
 auth_descriptor_id: byte_array?
)

Set the owner of one entitee to the specified account. Can be used only if the entitee has no owner:

function setOwner(
 e: entitee,
 account: ft3.acc.account
)

Note

setOwner performs no check over authenticity (so anybody could assign an entitee to any account). The check should be beared inside the operation that calls such function.

Remove the owner from one entitee, transaction needs to be signed by the current owner.

function removeOwner(
 e: entitee,
 account: ft3.acc.account,
 auth_descriptor_id: byte_array
)

Client Side

Table of Contents

	Client Side

	Integrating NFA Module

	NFA class

	Registering new NFA

	Loading NFA from blockchain

	NFA property and component

	Creating and updating assets

	The Context class

	Querying NFA entities

	Property types API

	Integer

	Decimal

	Text

	Enum

	Byte Array

	Class (NFA)

	NFA Class API

	NFA Asset API

	Context API

Integrating NFA Module

For project setup, please refer to Project setup for FT3.

From the cloned NFA repository, copy client directory into your client’s lib directory.

NFA JS client library provides seamless integration with NFA Rell module. Instead of calling low level blockchain operations (e.g. register_nfa, update_property, create_entity, …), it allows working with NFA assets as if they are plain JavaScript objects.

In the document, NFA class or simply NFA are interchangeably used to represent a type of an asset (the nfa entity), while NFA asset or entity are used to represent an instance of an NFA (the entitee entity).

Furthermore, looking from the perspective of Javascript, the component entity is usually referred as “property type” for ease-of-understanding.

NFA class

NFA class can either be registered on client side, or loaded from blockchain.

Once loaded (or registered), it is a Javascript class that can be instantiated or extended as we see fit.

Registering new NFA

The simplest NFA without any properties can be defined like:

const Planet = nfa.class('Planet', {});

and registered on the blockchain:

await Planet.register(100, blockchain, user, accountId)

Note

This function defines new NFA class for the dapp.

In most cases, NFA class will be defined on the blockchain side (we will soon add options to prevent exposing NFA definition to client side altogether).

In those case we need to load NFA classes from the blockchain:

Loading NFA from blockchain

NFA classes can be loaded by name:

const Planet = await nfa.loadClass('Planet', blockchain);

or by id which is equal to hash of nfa name and blockchain id:

const classId = gtv.gtvHash(['planet', blockchainId]);
const Planet = await nfa.loadClassById(classId, blockchain);

NFA property and component

NFA can have one or more properties. A property can be one of the following types:

	integer

	decimal

	text

	enum

	byte array

	class (NFA)

Note

These types are the property’s component on blockchain side.

Property types come with restrictions. When value is assigned to a property, validation will be performed against these restrictions and throw error if these requirements are not met:

const Planet = nfa.class('Planet', {
 x: nfa.integerDef({
 min: 0,
 max: 100
 })
});

const planet = new Planet({ x: 200 }); // throws an error because 200 is greater than max (100)

const Planet = nfa.class('Planet', {
 x: nfa.integerDef({
 required: true
 })
});

const planet = new Planet({}); // initializes planet with x == 0 (default value)

planet.x = null; // throws an error because x is required

If typeof value and property differ, the lib will try to convert it to expected type. If conversion fails an error will be thrown.

const Color = nfa.enum('red', 'green', 'blue'); // define a new enum type

const Car = nfa.class('Car', {
 color: Color
});

const car = new Car({ color: Color.red });

car.color = Color.red; // assigns Color.red enum value to color property

car.color = 'red'; // converts 'red' to Color.red and assigns it to color property

car.color = 'gray'; // throws an error because 'gray' string cannot be converted to Color component

Note

We will go into through the details of each supported type in the Property types API section below.

Creating and updating assets

The save function is used to create new asset or persist asset changes on the blockchain.

Depending on the state of an asset, save will automatically add operations from the following list to the transactions:

	create_entity - create new asset

	update_property - update property value

	delete_property - delete property (when property value is set to null)

For example, if asset is created on the client side it can be persisted on the blockchain by calling save:

const planet = new Planet({ ... });

await planet.save(blockchain, user, accountId);

Because this asset doesn’t exist on the blockchain yet, save function will call create_entity operation, and an account with id equal to accountId will be set as the owner of the asset.

Note

Similar to register_nfa operation, create_entity operation is not protected and can be called by any user. Therefore it can be used for DOS attacks. So, in order to make a dapp more secure, it is important to protect the operation by adding rate limit (e.g. user is able call it only once), or completely disable it and have a dapp specific logic which creates assets and assigns them to accounts.

The update_property and delete_property operations are added by the save function when an asset is updated. save function checks every asset property if it is updated and then for each updated property adds corresponding update_property or delete_property operation to the transaction. If property is not updated, it will be ignored.

update_property and delete_property operations are protected and can only be called by entity owner, otherwise the transaction will be rejected.

The Context class

Calling save on an object should be enough if we are working with a single object or if objects are interconnected. Calling save on the top level object in the object hierarchy will save all the changes:

const Engine = nfa.class('Engine', {
 ...
});

const SpaceShip = nfa.class('SpaceShip', {
 engine: Engine
});

const ship = new SpaceShip({ engine: new Engine({ ... }) });

await ship.save(blockchain, user, accountId);

In this example, save will persist both SpaceShip and Engine assets, because Engine is child of the SpaceShip asset.

If we have unrelated assets, then save has to be called on every updated asset:

const Dog = nfa.class('Dog', {
 name: nfa.text
});

const Cat = nfa.class('Cat', {
 name: nfa.text
});

const dog = new Dog({ name: 'Snoopy' });
const cat = new Cat({ name: 'Garfield' });

await dog.save(blockchain, user, accountId);
await cat.save(blockchain, user, accountId);

Updates are executed independently for each entitee, i.e. dog will be updated in one transaction and cat in the other.

In some cases it is important to execute all updates in a single transaction, e.g. if one of the transactions fail for some reason the dapp will end up in an inconsistent state.

If multiple unrelated assets need to be created/updated in a single transaction then Context should be used instead.

Context is initialized in the following way:

const context = new Context(
 blockchain, // FT3 Blockchain object
 user, // FT3 User object for transaction signing
 ft3account // FT3 Account object of the assets owner
);

If we have two nfa classes Foo and Bar, then we can use Context to save both entities in one transaction as follow:

const Bar = nfa.class('Bar', {
 x: nfa.integer
});

const Foo = nfa.class('Foo', {
 y: nfa.integer
});

const b = new Bar({ x: 10 });
const f = new Foo({ y: 20 });

context.add(b);
context.add(f);
await context.save();

Querying NFA entities

Assets can be queried by their id or owner id, where owner id is FT3 account id.

There are two ways to perform query. The first is to call findById method on an NFA class:

const Car = await nfa.loadClass('Car', blockchain);
const car = await Car.findById(carId, blockchain);

and the other way is using Context class. When using context class to query assets, type can be passed as the first argument:

const car = await context.findById(Car, carId);

or using only class name as string:

const car = await context.findById('Car', carId);

Passing asset type as first argument ensures that we are loading an asset of correct type, but usually we will only have asset id and don’t know the type.

In this case null can be passed as first argument:

const someAsset = await context.findById(null, assetId);

From the response, context will check asset type and then load corresponding class from the blockchain (or from cache if class is already loaded), and instantiate it with asset data.

In our example game Planetary [https://bitbucket.org/chromawallet/nfa_planetary/src/rell-0.10.1/], null is passed in when querying for an asset which planet has found while exploring the space, because type of found asset is not known until it is loaded by id from the blockchain.

Property types API

In this section, we cover all supported types of nfa property and their options.

Integer

integer is used to define integer properties on a nfa:

const Planet = nfa.class('Planet', {
 x: nfa.integer,
 y: nfa.integer,
});

await Planet.register(10, blockchain, user, accountId);

const planet = new Planet({ x: 100, y: 200 });

Integer property can be customized, e.g. setting default value, making the property readonly, etc using nfa.integerDef function:

	nfa.integerDef(options)

	readonly – defines if property is readonly

default – value which property will have if property is not initialized in constructor.

required – defines if property is required i.e. can be null

min – sets property min value

max – sets property max value

const Planet = nfa.class('Planet', {
 x: nfa.integerDef({
 default: 100
 readonly: true
 });
});

const planet = new Planet({});

console.log(planet.x); // prints 100

planet.x = 200; // throws an error because x is defined as readonly

const planet2 = new Planet({ x: 200 }); // A value can be assigned to x only in constructor

	nfa.integer

	Is equal to calling nfa.integerDef with default values:

// default values
nfa.integerDef({
 readonly: false,
 required: false,
 default: 0,
 min: Number.MIN_SAFE_INTEGER,
 max: Number.MAX_SAFE_INTEGER
});

Decimal

decimal type is used to represent arbitrary precision decimal numbers. It internally uses decimal.js library.

const Planet = nfa.class('Planet', {
 x: nfa.decimal,
 y: nfa.decimal
});

const planet = new Planet({
 x: new Decimal(10.5),
 y: '5.0006',
});

	nfa.decimalDef(options)

	readonly – defines if property is readonly

default – sets default property value, which is used if property is not initialized in constructor

required – defines if property is required i.e. can be null

min – sets property min value. Error is thrown when value less then min is assigned to property

max – sets property max value. Error is thrown when value greater than is assigned to property

decimals – sets decimal precision

	nfa.decimal

	Is equal to calling nfa.decimalDef with default values:

// default values
nfa.decimalDef({
 readonly: false,
 required: false,
 default: new Decimal(0.0),
 min: new Decimal(-Infinity),
 max: new Decimal(Infinity)
});

Text

text is used to define string property on a nfa:

const Dog = nfa.class('Dog', {
 name: nfa.text
});

const dog = new Dog({ name: 'Snoopy' });

	nfa.textDef(options)

	default – sets default property value, which is used if property is not initialized in constructor

readonly – defines if property is readonly

required – defines if property is required i.e. can be null

	nfa.text

	Is equal to calling nfa.textDef with default values:

// default values
nfa.textDef({
 readonly: false,
 required: false,
 default: null
});

Enum

enum is used to define enum types.

const PetType = nfa.enum('dog', 'cat', 'parrot');

const Pet = nfa.class('Pet', {
 type: PetType
 name: nfa.text
});

const cat = new Pet({
 type: PetType.cat,
 name: 'Garfield'
});

	nfa.enum(elements)

	elements - An array of enum values as string

Byte Array

byteArray type is used to store binary data. Internally it uses Buffer.

const Car = nfa.class('Car', {
 image: nfa.byteArray
});

const car = new Car({ image: imageData });

Hexadecimal strings and Buffers can be assigned to a byteArray property:

car.image = '0123456789abcdef'; // valid assignment

car.image = Buffer.from('some string'); // valid assignment

car.image = 'some string'; // throws an error because string is not a hexadecimal value

	nfa.byteArrayDef(options)

	default

readonly

required

	nfa.byteArray

	Is equal to calling nfa.byteArrayDef with default values:

nfa.byteArrayDef({
 readonly: false,
 required: false,
 default: null
})

Class (NFA)

NFA can have other NFA as a child. This can be used to compose complex nfa structures.

const Engine = nfa.class('Engine', { ... });
const Car = nfa.class('Car', {
 engine: Engine,
});

NFA Class API

	register(maxCount, blockchain, user)

	Register a new NFA class to the chain

maxCount - maximum number of instances which can be created

blockchain - FT3 Blockchain object

user - FT3 User object

const Box = nfa.class('Box', {
 height: nfa.integer,
 width: nfa.integer,
});

await Box.register(100, blockchain, user);

	findById(assetId, blockchain)

	Loads an asset by id.

assetId - id of an asset

blockchain - instance of a Blockchain class

const Planet = await nfa.loadClass('Planet', blockchain);
const planet = await Planet.findById(planetId, blockchain);

	findByOwner(accountId, blockchain)

	Returns an array of assets.

accountId - id of a FT3 account which owns the asset

blockchain - instance of a Blockchain class used to communicate with the blockchain

const Sword = await nfa.loadClass('Sword', blockchain);
const swords = await Sword.findByOwner(accountId, blockchain);

NFA Asset API

	save(blockchain, user, accountId)

	Updates or creates a new entity on a blockchain.

blockchain - FT3 Blockchain object

user - FT3 User object

accountId - id of a FT3 account

const planet = await Planet.findById(planetId, blockchain);
planet.x = 123;
await planet.save(blockchain, user);

Context API

Context is responsible for keeping track of nfa entity updates and persisting them to the blockchain in a single transaction.

	Context(blockchain, user, account)

	blockchain - FT3 Blockchain object

user - FT3 User object for transaction signing

account - FT3 Account object of the assets owner

import { util } from 'postchain-client';
import { User, Blockchain, SingleSignatureAuthDescriptor, FlagType } from 'ft3-lib';
import DirectoryService from './lib';

const keyPair = util.makeKeyPair();
const user = new User(
 keyPair,
 new SingleSignatureAuthDescriptor(
 keyPair.pubKey,
 [FlagType.Account, FlagType.Transfer]
)
)
const blockchain = await Blockchain.initialize(
 Buffer.from('01234....', 'hex'),
 new DirectoryService()
)
const session = blockchain.newSession(user);
const account = await session.findAccountById(accountId);
const context = new Context(blockchain, user, account);

	add(entity)

	Adds a nfa entity to context. Adding an entity to context ensures any changes made to the entity will persist the change to the blockchain on the next call to save method.

entity - nfa entity

	findById(class, id)

	class - name of the class as string, or the class itself (loaded with nfa.loadClass or created with nfa.class), or null (auto detection)

id - the id of the entity

const planet = await context.findById('Planet', planetId);

const Planet = await nfa.loadClass('Planet', blockchain);
const planet = await context.findById(Planet, planetId);

If null is passed as the first argument then context will query for any asset with id provided as second argument.

Returned entities are added to the context, so in case one of the entities is updated, on next call to context’s save method that change will be persisted on the blockchain.

	save()

	Iterates through all the entities added to the context to find the properties which are updated, then builds a transaction with update operations for those properties. When transaction is built and signed it is sent to the blockchain node.

Note

Only assets added to the context previously via context.findById will be updated.

const Planet = await nfa.loadClass('Planet', blockchain);
const planet1 = await context.findById(Planet, planet1Id);
const planet2 = await context.findById(Planet, planet2Id);

planet1.x = 10;

// update planet1
await context.save();

planet2.x = 20
planet1.x = 20;

update both planet1 and planet2
await context.save();

 _images/Eclipse-update.png
& Information

No updates found.
Configure available software stes to reach more content.

_images/Eclipse-whitespace.png
File Edit Navigate Search Project Run Window Help

OvEG@:O]n

AvifvFHeD D

[}

([i Project Explorer X

E
e
> &% > develop-chromia [develop-chromia master]
> & laboration
> 15 testlab
> & token_account
> & utxo_token

1 // Main module

2
3 entity user { key pubkey; }

n

5 entity balance {

6 key user;

7 mutable amount: integer;
8}

9

10=@log entity payment {

1 index from_user: user
12 index to_user: user;

13 amount: integer;

14 }

_images/Eclipse-runxml.png
S eclipse-workspace - testrell/config/unxmi - Ecipse IDE
Fie Edt Navigate Seach Project Rum Window Help

CO-EB@ie

% Projct Explorer

B8Y7 3§ % Sk

BET -0 Qs

= B [node-configproperties

B oo
@) runxml X

5 26 <nodes>
Vg 3 <config src="node-config.properties” add-sig
vl s <test-config src="node-config-test. propertie:
~ & config 5 /nodes>
node-config propertes 65 <chains>
. 7o <chain nane="test"
k. H <app modul
M=E3 o Priite
v test 1 </configs
modulerell 12 </chain>
13 <chains>
14 </run>
1

- o x

Q ml g
Outline X =8

~B2-8v=8

O Console x [£] Problems [Postchain Agent
st e

_images/Eclipse-software_sites.png
S prefers [
type filter text Available Software Sites. - - §
> General
s [pefitetes]
ertext
> Gradle e
> Help Neme Locsti | Add..
~ Instal/Update 4
" 2022.06 https:/|
Automatic Updates] 2022-06 P Edit
- = - https:/)
Aveltleseftare] Latest Eclpse IDE Packages Reease. hitps| | funane
> Java] Latest Eclipse Simultaneous Release https:/)
o sevrs] Comph Latest Mistone ntpe| | Relead
i Arel i/
+ Oomph e clpse Project Updates itpsy| | MERSEIS
Rl 4 itps)
> Run/Debug e
> Terminal e
> TextMate
> Version Control (Team)
> XML (Wild Web Developer)
< >
[Apply and Close| | Cancel

_images/Rell-run-as.png
MEAS B A LR R A= 1)
2 modulerell X =8

1 /7 vain module
2

function main()f
a print(*Hello, World!");
s
5

i

& Undo Typing cuez
RevertFile
save cues

Open Declaration &
Quick Outline o

Open With >
Showin Al ShiftsW >

cut Curlex
Copy culec
Copy Qualfed Name

[paste Cuiey
Rename Element AeshifteR

B Console Validate
Noconsolesti Quick Fix Ctrle1

Source. >
Find References Ctrl+Shift+G.

Q@ Coverage As >

% Debughs , = 2RelREPL
Source. > Run Configurations...

[w FndRefeences
Refactorings >
Code Actons >
Team >
Compare With >
Replace With >

Preferences..

_images/access-an-account.png
Access Account

Previously used accounts

MyFirstAccount
C9093687BD3426930C696FAOEB63COFBFA2889954189A262895D2090112080..

Password

_images/Eclipse_multiple_apps.png
5 Console [$] Problems [Postchain Agent B Console X =X %|
<terminated> test - run.xml App [Rell Postchain App] C:\Users\Bjorm\.p2\pool\plugins\org.eclipse justj.openjdk.hotspot.
022-07-04 17:45:06.571 INFO Postchainipp - STARTING POSTCHAIN AP A
2022-07-04 17:45:06.576 INFO Postchaindpp - source directory: C:\Users\Bjorn\eclipse-workspace\test\rell
2022-07-04 17:45:06.577 INFO Postchaindpp - run config file: C:\Users\Bjorn\eclipse-workspace\testirell\
2022-07-04 17:45:06.577 INFO Postchainapp -

2022-67-04 17:45:05.913 INFO RelICLiUtils - rell: 0.10.10; postchain: 3.6.0; time: 2022-06-30T19:55:36+0000; v
< >

Q

_images/Rell-project.png
© New Template Project o x

Rell Project
Create a new Rell project.

Prject nome: [t

Use default location

Location: | CAUsers\Bjorn\eclipse-workspaceltest Browse...

® <Bak

_images/asset-transfer-assets.png
Assets
Name Amount

CHROMA 227

_images/asset-transfer-receive.png
Send Tokens Receive Tokens I8 Show QR-Code

78967BAA4T68CBCEF11C508326FFBI3A956689FCBODCIBATTF
4BB95CBBI577A3;EDA4BE221CD74411FAOBIIACI297FD2COTEY
AB3TFBE1228845F635C8F6B1028

@ ciick to copy the address

Amount Asset

15 CHROMA -

_images/asset-transfer-send.png
Send Tokens Receive Tokens

Address

78967BAA4768CBCEF11C508326FFB13A956689FCB6
DC3BA17F4B895CBB1577A3;EDA4B8221CD74411FAO8

91AC1297FD2CO7E9AB37FBE1228845F635C8F6BI102
8

Paste the recipient address in the input above

Amount Asset

Application

ChromaToken

Account

EDA4-1028

nav.xhtml

 Table of Contents

 		
 Welcome to the Rell SDK!

_images/chain-explorer-1.png
;;;g Vault »

Launch dapp [Z' Add custom chain

Q Search chains

Chromia

EXPLORER

Q Search block, transaction or account hash

;o Vault

(J Latest Blocks

Heaiaht

7

AVG BLOCK TIME CURRENT LOAD
~29.5s ~0.034 tx/s

Rilack |Id

Trancacrtinne

_images/chain-explorer-2.png
Add chain X

Chain Name

My dapp

Host Port
http://localhost 7743
DApp website

http://localhost:3000

Chain ID (RID)
2C6AC2C607912185AD9775F9BFD8809F61FA235D0EB89910EAFE25465

_images/asset-transfer-transaction-history.png
Transaction History

e TorFrom naset amount Timestamp cony T
O receven @ cHRomA 2 18/11/2019,09:0025 ®
O recenen Lo crrouA ® 111201, 085%:08 ®
D sen Lo crrouA o 111201, 085847 ®

Rowsperpage: 5 v 1-30f3

_images/asset-transfer.png
Assets
Name

CHROMA

Transaction History
Type
O receven
O receven

© sent

Chromia

VAULT

ChromaToken

Chromaway

Send Tokens

Receive Tokens

Amount
Address
227
Paste the reciplent address n the Input above
- Rsset
Amount ‘ CHROMA -
To/From Asset Amount Timestamp
@ CHROMA 2 18/11/2019,09:00:25
i é CHROMA 15 18/11/2019, 08:59:04
i é CHROMA -10 18/11/2019,08:58:47
Rowsperpage: 5 v 1-30f3

Scan QR-Code.

Application
Account

SEND B>

Copy Tx

_images/create-an-account-step2.png
Create New Account

Please carefully write down these 15 words and safely store it

celery armed major still spike coconut weasel dignity
episode script llegal cradle often room title

_images/create-an-account-step3.png
Create New Account

Please verify backup phrase by selecting the words in correct order

Click the words below In correct order. You can use drag-and-drop feature to re-order
them if necessary.

major cradle dignity still armed spike
coconut title often celery. episode illegal

room weasel script

_images/chain-explorer-3.png
575 Mydapp w

LA

Q Search block, transaction or account hash

HEIGHT

AVG BLOCK TIME

CURRENT LOAD

@) LatestBlocks <7

Height Block Id

10e9 - 2f47

Transactions

0

Age
less than a minute

VIEW MORE

_images/create-an-account-step1.png
O Create New Account

% Account will be stored on your device

Account name

MyFirstAccount

Password

_images/create-an-account-step4.png
Create New Account

Please verify backup phrase by selecting the words in correct order

_images/dashboard-accounts.png
Chromia Accounts

ChromaToken
Chromaway

_images/dashboard-explore.png
Explore Apps

AV
2
E i~
Chromunity Planetary

Chromaway Chromaway

_images/git_files_ed.png
@ Project Explorer 3 | £/ o ¥ = 0

&> gitdemo [eclipse-workspace maste

[> changed.rell
3 new.rell
Bold.rell

» Srunxml

» Stest

_images/git_menu_ed.png
¥ 5> gitdemo [ex
v rell
v gi>sic

» runxml
> Stest

= 2items selected

L 22 Problems 2 | [Postchain Agent
Import..

Export..
Refresh

Coverage As

Run As -3 Commit.
Debug As Advanced

Compare With

Replace With

¥ validate
Add to Index
Ignore.
showin History

_images/dashboard-linked-apps.png
Linked Apps £’ Scan §S0 QR-Code

*

Chromunity

Chromaway

_images/git_files_4_ed.png
& Project Explorer 53

v & gitdemo [eclipse-workspace master]|

Fachanged.rell

B new.rell
Bold.rell
» Srunxml
» Stest

_images/import-an-account-step1.png
Import Account

Import your backup phrase by typing the words in the right order

Your wallet seed

detect public tide test manual boil hobby meat digital relax victory
predict season toward

_images/import-an-account-step2.png
Create New Account

Account will be stored on your device

Account name

MylmportedAccount

Password

_images/git_preferences_icon_decorations_ed.png
Preferences

("type filter text | Label Decorations GvDv
» General Shows Git specific information on resources in projects under version control.
» Ant General Text Decorations | Icon Decorations | Other
Gradle
» help @ Tracked resources @ Untracked resources
» Install/Update @ Staged resources @ Conflicting resources
» Java @ Assumed unchanged resources
» Maven
» Mylyn
» comph
> Rell Preview:
» Run/Debug
- Team v &3> Project [repository|Conflicts master 12 41]
File Content @3> folder
-ait > submodule [master 5bef90d] Commit message text

Committing tracked.txt

Configuration 3 untracked.txt

Confirmations and Wa ignored.txt

Date Format > dirty.txt

» History Fastaged.txt

s s nartiallvctaned bt

Projects Restore Defaults Apply
(O %] Cancel Applyand Close

_images/git_preferences_text_decorations_ed.png
Preferences

("type filter text | Label Decorations Eos oo
» General Shows Git specific information on resources in projects under version control.
» Ant General | Text Decorations | Icon Decorations Other
Gradle
» Help Files: Add Variables...
»
nstal/update Folders Add Variables..
» Java add Varlables..,
» Maven Projects: Add Variables.
» Mylyn E—
» Gomph Submodl Add Variables...
> Rell Preview:
» Run/Debug
- Team v &3> Project [repository|Conflicts master 12 11]
File Content @3> folder
vait > submodule [master Sbef90d] Commit message text
Committing tracked.txt
Configuration untracked.txt
Confirmations and Wa ignored.txt
Date Format > dirty.txt
» History Bastaged.txt
e Gecors s R nartiallvctanad
Projects Restore Defaults Apply
(O %] Cancel Applyand Close

_images/kiev-success.png
Hello (XD Hello

const tx = gtx.newTransaction([user.pubKey]);
tx.addOperation('insert_city', "Kiev");
tx.sign(user.privKey, user.pubKey);

return tx.postAndWaitConfirmation();

coONOUIPDWNPE

Session JS tests XML tests Log * Console
& Testspassed <

Output:
null

_images/link_with_editor_ed.png
DEHE -0 -Arics i~ ooyo

{5 Project Explorer 3 = 00

» Srunxml
v &Stest
vrell
» & config
vesic
[¥ city_test.xml
city.rell
outline.rell
problems.rell
simple_node.rell

users.rell

test.rell 32

© function main() {
print(‘Hello, Wor
}

= function secondary(na
print(‘Name:', na
print(score:, s

_images/keyboard_shortcuts_ed.png
Editor F

Activate Task Crl+F9.

© console {2 Problems &2 | (1 Postchain

Add Javadoc Comment Shift+Alt+)

oitems
Description

AllInstances shiftsCtrlsN
Backward History AltsLeft
Build All ctrlss
Change Method Signature Shift+Alt+C
close CtrlsFa
Close All shiftsctrlsFa
Collapse CtrlsNumpad_Subtract
Collapse All ShiftsCtrl+Numpad_Di
Commit... Cerl+#

Content Assist ctrlsspace
Context Information Shift+CtrlsSpace
copy Ctrlsinsert
CoovLines CtrlsAlt+Down

Writable

Insert

s

Press Shift+Ctrl+L to open the preference page

_images/outline_popup_4.png
¥ £ outline.rell

v O state

© SOLID

Press 'Esc’ to exit the quick outline.

_images/outline_popup_ed.png
‘addres:

3

enum state {
soLID,
LIQuID,
oS,

3

function sqr(x
return x *
3

namespace ns {
object glol

nutabl
}
operation
}

: text;

~ [outline.rell
@ foo_company
© foo_user
© get_globals
» @memrec
» ns

o sqr
» @ state
» @ user

Press Esc' to exit the quick outline.

__ . (S

_images/menu_show_line_numbers_ed.png
6 print('Name:', name);
7 print(*Score:", score);
8

Add Bookmark...

Add Task...

¥ validate
Quick Diff

Folding

Preference

_images/open_resource_dialog_ed.png
printl HeLlo, Wor.(

& te:
Open Resource

Enter resource name prefix, path prefix or pattern (2, * or camel case): -

[T*rett
Matching items:
city.rell - test/rell/src

main.rell - runxml/rell/src

new.rell - gitdemo/rell/src

ert |2 old.rell-gitdemo/rell/src

problems.rell - test/rell/src

outline.rell -test/rell/src F
2 simple_node.rell -test/rell/src

B toct oall_tacts
& gitdemo/rell/src
| ®@ | showin~v || openwith~ | [cancel |[open

-

_images/problems_view.png
li/src/problems.rell

Eclipse IDE

DR T -0~Qvicsvidivilvaardrid

(5 Project Explorer 3 = 00
B8 ¥
» Srunxml
viStest
vgsrell
» & config
vt
[¥ city_test.xml
city.rell
outline.rell
simple_node.rell
test.rell
users.rell

["quick Access |

& problems.rell 2 | =a
1= function warnings(t: text, i: integer?) {

8 2 print(t.encode()); =
3
45 if (1 1= L) {

85 print(itt); =
6 ¥
71
8
9= function errors() {

010 val x: integer = 'Hello'; =
1}
2

B console i Problems 53 | [Postchain Agent
1 error, 2 warnings, 0 others.
Description Resource Path
v © Errors (1item)
© Type mismatch for 'x': text instead of integer
v & Warnings (2items)
& Function text.encode is deprecated, use 'to_by problems.rell /test/rell/src

problems.rell | /test/rell/src

problems.rell /test/rell/src

& variable 'i’ cannot be null at this location

Writable

Insert 12:1

BHOE

=8

YT B2
v problems.rell

o warnings
o errors

8= outline 5

Pev=0o

Location Type

line: 10 /test/re Rell Problei

line: 2 /test/rel Rell Problei
line: 5 /test/rel Rell Problei

_images/preferences_text_editors_ed.png
Preferences

(tab @) TextEditors GvDv
v General Some editors may not honor all of these settings.
Appearance SeeColors and Fonts' to configure the font.
~ Editors
Text Editors Undo history size: (200)
v Java .
v Codestyle Displayed tab widtt 3
Formatter
 editor 'ghlight current
Typing Show print margin
v XML Print margin column: 80
v XML Files oo . .
Editor Allow editors to override the margin column

@ Show line numbers

@ Show range indicator
@ Show whitespace characters (configure visibility)
@ showaffordance in hover on how to make it sticky

When mouse moved into hover: Enrichafter delay

@ Enable drag and drop of text
@ warn before editing a derived file
1 Smart caret positioning at line start and end

Appearance color options:
————————

cancel Applyand Close

_images/preferences_xml_editor_ed.png
Preferences

("type filter text Editor EvDdv -
» General XML editing preferences. Note that some preferences may
» Ant be set on the Structured Text Editors preference page.
Gradle
» Help Formatting:
» Install/Update Linewidth: (72 |
» Java e . .
split multiple attributes each on a new line
» Maven — ———
o Align final bracket in multi-ine element tags
Mybyn Preserve whitespace in tags with PCDATA content.
» comph N
Clear all blank lines
» Rell
@ Format comments
» Run/Debug
@ Joinlines
» Team) i b losi nd.
Validation Insert wi !te‘spa(e efore closing empty end-tags
- XL Indent using tabs
» DTDFiles O Indent using spaces.
XML Catalog Indentation size: | 4
¥ XML Files —
» Editor Grammar Constraints
Validation @ Use inferred grammar in absence of DTD/Schema

» XML Schema Files

Restore Defaults Apply

cancel Applyand Close

_images/sso.png
o0 2

4
®.®
‘ ‘ ‘ Chromunity
“" by Chromaway

Do you want to authorize the dapp “Chromunity” to act on your behalf -

such as lorem ipsum dolor sit amet?

@ Application

Chromunity

£ Account ID
247BAFEBA27A463D5F457F9DCT0BT1A6A365FCCBIOFIB39EA273A
6B637BD6095

* Chain ID

88967BAA4768CBCEF11C508326FFB13A956689FCB6DC3BA17F4B8

95CBB1577A3

CANCEL

_images/structure.png
Chromia Node

Client Side

_images/search_dialog.png
37 File Search| 5 Task Search| 47 Git Search| % Java Search
Containing text:

3 Case sensitive

Regular expression
anystring, ? = any character, \ = escape for literals: *?\)) whole word

File name patterns (separated by comma):

[eret =

(+=anystring, 2 =any character, i = excluding x)
Searchin
Derived resources] Binary files

Scope
© Workspace Resourceinactive editor) Enclosing project
Workingset: [][choose...

@ | customize. Replace.. cancel Search

_images/search_results.png
Eclipse IDE

O EHRTiH-0~Qvicsvidivilvaardvid

[Project Explorer 2 EE « ¥ =8
v @igitdemo [eclipse-workspace master]
v Garell
v gasrc
Fichanged.rell
3 new.rell
Bold.rell
» &runxml
v Stest
virell
¥ @ config
node-config.properties
testnode-config properties
vesrc
[¥ city_test.xml
city.rell
outline.rell
problems.rell
simple_node.rell

users.rell

test.rell X | =0
1= function main() {
2 print('Hello, World!);
3}
3
56 function secondary(name: text, score: integer) {
e print(‘Name: ', name);
> 7 print('Score H
8 }
9
& console [£ Problems [Postchain Agent | 57 Search 2 OO R%

“print' -6 matches in workspace (*.rell)
test
vrell
v Esrc
problems.rell (2 matches)
 2:// prift(t.encode());
 5:// pint
v B test.rell (3 matches)
 2: Biint(Hello, World!);
© 6: prink('Name:', name);
© 7: prink('Score:', score);
v Blusers.rell
© 6: prink('Existing users:', users);
Writable

Insert 9:1

[QuickAccess |i| m&@
£ outline 52 =0
a8 Y

» Etestrell

$EP~-te v=0o

_images/wipe-database.png
5] nod
2 nod
iy rn.

v s

v test

Bir

node-config.pro

New

Open
Open With
Showin
Show in Local Terminal
Copy
Paste
Delete.

x

Rename...

Import.

Export..

Refresh

P eELE

Coverage As

AltsShifteW >
>

ctisC
Ctrlav
Delete.

Fs

#I

Debug As
Team
Compare With
Replace With

Properties

Alt+Enter

fin name="test"

config heigh
<app modu:
</app>

/config>

jain>

>

roblems [Postchain Agent

1 Wipe Database
Run Configurations.

this time,

_static/ajax-loader.gif

_images/update-chain.png
chromia-develop w

Chromia

EXPLORER

Q Search block, transaction or account hash

HEIGHT AVG BLOCK TIME CURRENT LOAD
22 ~28.7s ~0.000 tx/s
@) LatestBlocks ¢
Height Block Id Transactions Age
22 d265 - e851 0 less than a minute
21 02dc - 65e3 0 1minute
20 5e5c - bbe2 0 1minute
19 9b50 - Ocdb 0 2 minutes
18 1945 - c4df 0 2 minutes
17 623c - clc7 0 3 minutes
VIEW MORE
= Latest Transactions <7
Transaction Id Signers Age

VIEW MORE

_images/vault-sso.png
Save changes X

DApp Name

Some Name

Host Port
http://localhost 7743

Website
http://localhost:3000

Chain ID (RID)
1D0212D01C93F69DB465F37703A5A96C7C806EE865588A60A566BDF3

_static/chromia-favicon.png

_images/Eclipse-runconfig.png
S Run Configurations

Create, manage, and run configurations

CEeRXBY

Nome: [1ttt App

v Rell Console App

test - test App.
> RellPostchain App.
> RellREPL
Rel Unit Test
Wipe Database
<
Fiter matched 17 of 17 items.

Rel Blockehain Configur

>

[opefiterton]| [setings

@ Gradle Task Project =]
@ Gradle Test

e Sourceolder [rvsc]
5] sovs Appication Module: =]
Jo it)

% Lounch Group Functon: [rcondoy J
2 Maven Bitd Arguments [bob 128]

Database ropertes e [el confg/mode-configpropeties

@

_images/Eclipse-running-applications.png
v & sic
v test
]

New
Open
Open With
Showin
Show in Local Terminal

Copy
Paste
Delete.
Move...

x

Rename...

Import...
Export...

®LE

Refresh

modulerell - test/rell o Coverage As

45 Debug As
Team
Compare With
Replace With

Properties

&
>
Al ShiftsW >
>
ctilec
ctsv
Delete

Fs

Alt+Enter

ms [Postchain Agent

= 1Rell Console App.
= 2RelREPL

Run Configurations...

_images/Eclipse-overview.png
& eclipse-workspace - Eclipse IDE
Fle Edt Navigate Seach Project Rum

ORI~ R igd i~ Fl-or e

3 Project Explorer X = @
57 ¢

‘There are no projects in your workspace.
To add a project:

28 Rellpugiect
I Creste s prject.
£ Import prject..

 items selected

Window Help

o
‘

© Console . [£] Problems [Postchain Agent
No consoles to display a ths time.

- o X

Q s g\
8= Outiine X =8
There i no sctive editor that
provides an outline.

~B2-8v=8

_images/Eclipse-perspective.png
& eclipse-workspace - Eclipse IDE - o x
Fle Edt Souce Refacor Navigste Seach Project Run | Window | Help

e D 8 4 O Q- i@ G NewWindow DD
18 Package Explorer X S E > =8
B% 8 ee There i no active editorthat
rovides an outline.
There are no projects in your workspace. ShowViej B
s —— & ouns

Y
€ CresteaJava project Nevigation Customize Perspectiv... W almm

S p—— . Seropene, o
[Sfm— | SR

Close Perspective.
Close All Perspectives

2] Problems X @ Javadoc [3} Declaration ¥ E=no
Oitems

Description Resource Path Location Tpe

_images/Eclipse-runwithkeyboard.png
S Preferences

type filtertext

Launching

General Save required dirty editors before launching
- Otiways ONever @
ole ways r @ Prompt
Help e @ R
Install/Update @Aways ONever O Prompt
Java
Language Servers Launch in debug mode when workspace contains breakpoints
Maven OAlways @ Never O Prompt
Oomph) o)
bt Continue launch i project contains errors
v Run/Debug OAiways @ Prompt

Comele General Options

~ Launching ; .
1d (f required) before launchir
Defautt Launchers TE=rsD "o .
Louneh Configuratior Remove terminated launches when a new launch is created

Perspectives rompt for confirmation when removing a configuration from the launch history

String Substitution Size o recently launched applications lst:

View Management
Terminal Launch Operation
TextMate
Version Control Team) © Launch the selected resource or active editor, If not launchable:
XML (Wild Web Developer) O Launch the associated project

® Launch the previously launched application
[Terminate and relaunch while launching (Press Shift to toggle during launch from menu and toolbar)
. N Restore Defaults| | Apply
[Apply and Close| | Cancel

_static/comment.png

_static/comment-bright.png

_static/comment-close.png

_images/Eclipse-database.png
S eclipse-workspace - test/rel/config/node-config propeties - Eclipse IDE - o x

Fle Edt Nevigate Seach Project Run Window Help
O -HRRRPET: % -0 -~ ®@F - H-fl- O e 0| aQ Bl&E

2 Project Explorer X = @

57 &
v test
v el
~ & config
node-config.properties
node-config-test properties
& runxml
v s
v test
modulerell

node-config properties X = 8 5 Outine X =B

1} Database A Thereis no active editor that
2 database.driverclass=org. postgresql.Driver e,

3 database.url=jdbe:postgresql://localhost/postchain
4 database. username=postehain

5 database. password=postehain

5 database. schema=rell_app

7

8# List of chains’ id to launch

9 activechainid:
10

11# The Rest API will listen on this port.

12# ynsef: Default port 7740 will be used

13# -1: no API will be started

13# 0: Assign any free port. Check the console output to find the actual port
15# >0: Force a certain port

16 api.port=7740

17

18# The APT will be attached under the basepath. Don't append a trailing slas
19# the basepath. To run on root, leave this empty.

20 api.basepat!

< >

© Console X [$] Problems [Postchain Agent #B-08-=C
No consoles to isplay at this time.

Writable Insert 1:1:0 ¢

_static/down.png

_images/Eclipse-outline.png
- module.rell x = B |2 outline x e

1 // Main module ~ [module.rell
2

3 entity user { key pubkey; } ~ © user

4 pubkey
s entity balance { @ balance

6 key user;

7 mutable amount: integer; @ user

5) amount
9 ~

10=@log entity payment { © payment
1 index from user: user; » from_user
12 index to_user: user; 2 to_user
13 amount: integer; » amount
14 } 2

s Oliensiar
16° operation transfer(from pubkey: pubkey, to_pubkey: pubkey, xfer amount: integer) { o init

7 require(op_context.is signer(from pubkey));
18 require(xfer_amount > 0);

o register_user

19 val from user = user@{from_pubkey}; © get_balance
20 val to_user = user@{to_pubkey};|

21 require(balance@{fron user}.amount >= xfer amount);

2 update balance@{from_user} (amount -= xfer_amount);

23 update balance@{to_user} (amount += xfer_amount);

248 create payment (

25 from_user,

26 to_user,

27 amount=xfer_amount);

28 }

29

36 operation init (founder pubkey: pubkey) {

31 /* in order to initialize, database cannot already have a user */
32 require((user@*{} limit 1).size() =0);

33 val founder = create user(founder pubkey);

34 create balance (founder, 1000000);

35}

_static/down-pressed.png

_static/file.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/images/chromia-favicon.png

_static/minus.png

