

rejected

Rejected is a AMQP consumer daemon and message processing framework. It allows
for rapid development of message processing consumers by handling all of the
core functionality of communicating with RabbitMQ and management of consumer
processes.

Rejected runs as a master process with multiple consumer configurations that are
each run it an isolated process. It has the ability to collect statistical
data from the consumer processes and report on it.

Rejected supports Python 2.7 and 3.4+.

[image: Version] [https://pypi.python.org/pypi/rejected] [image: Status] [https://travis-ci.org/gmr/rejected] [image: Climate] [https://codeclimate.com/github/gmr/rejected] [image: License] [https://rejected.readthedocs.org]

Features

	Automatic exception handling including connection management and consumer restarting

	Smart consumer classes that can automatically decode and deserialize message bodies based upon message headers

	Metrics logging and submission to statsd and InfluxDB

	Built-in profiling of consumer code

	Ability to write asynchronous code in consumers allowing for parallel communication with external resources

Installation

rejected is available from the Python Package Index [https://preview-pypi.python.org/project/rejected/]
and can be installed by running pip install rejected.

For additional dependencies for optional features:

	To install HTML support, run pip install rejected[html]

	To install InfluxDB support, run pip install rejected[influxdb]

	To install MessagePack support, run pip install rejected[msgpack]

	To install Sentry support, run pip install rejected[sentry]

	For testing, including all dependencies, run pip install rejected[testing]

Getting Started

	Consumer Examples

	Configuration File Syntax
	Application

	Daemon

	Logging

	Configuration Example

	Command-Line Options
	Help

API Documentation

	Consumer API
	Message Type Validation

	Republishing of Dropped Messages

	Consumer Classes

	Exceptions

	Testing Support
	Example

Issues

Please report any issues to the Github repo at https://github.com/gmr/rejected/issues

Source

rejected source is available on Github at https://github.com/gmr/rejected

Version History

See Changelog

Indices and tables

	Index

	Module Index

	Search Page

Consumer Examples

The following example illustrates a very simple consumer that simply logs each
message body as it’s received.

from rejected import consumer
import logging

__version__ = '1.0.0'

LOGGER = logging.getLogger(__name__)

class ExampleConsumer(consumer.Consumer):

 def process(self):
 LOGGER.info(self.body)

All interaction with RabbitMQ with regard to connection management and message
handling, including acknowledgements and rejections are automatically handled
for you.

The __version__ variable provides context in the rejected log files when
consumers are started and can be useful for investigating consumer behaviors in
production.

In this next example, a contrived ExampleConsumer._connect_to_database method
is added that will return False. When ExampleConsumer.process evaluates
if it could connect to the database and finds it can not, it will raise a
rejected.consumer.ConsumerException which will requeue the message
in RabbitMQ and increment an error counter. When too many errors occur, rejected
will automatically restart the consumer after a brief quiet period. For more
information on these exceptions, check out the consumer API documentation.

from rejected import consumer
import logging

__version__ = '1.0.0'

LOGGER = logging.getLogger(__name__)

class ExampleConsumer(consumer.Consumer):

 def _connect_to_database(self):
 return False

 def process(self):
 if not self._connect_to_database:
 raise consumer.ConsumerException('Database error')

 LOGGER.info(self.body)

Some consumers are also publishers. In this next example, the message body will
be republished to a new exchange on the same RabbitMQ connection:

from rejected import consumer
import logging

__version__ = '1.0.0'

LOGGER = logging.getLogger(__name__)

class ExampleConsumer(consumer.PublishingConsumer):

 def process(self):
 LOGGER.info(self.body)
 self.publish('new-exchange', 'routing-key', {}, self.body)

Note that the previous example extends rejected.consumer.PublishingConsumer
instead of rejected.consumer.Consumer. For more information about what
base consumer classes exist, be sure to check out the consumer API documentation.

Configuration File Syntax

The rejected configuration uses YAML [http://yaml.org] as the markup language.
YAML’s format, like Python code is whitespace dependent for control structure in
blocks. If you’re having problems with your rejected configuration, the first
thing you should do is ensure that the YAML syntax is correct. yamllint.com [http://yamllint.com]
is a good resource for validating that your configuration file can be parsed.

The configuration file is split into three main sections: Application, Daemon, and Logging.

The example configuration file provides a good starting
point for creating your own configuration file.

Application

The application section of the configuration is broken down into multiple top-level options:

	poll_interval

	How often rejected should poll consumer processes for status in seconds (int/float)

	sentry_dsn

	If Sentry support is installed, optionally set a global DSN for all consumers (str)

	stats

	Enable and configure statsd metric submission (obj)

	Connections

	A subsection with RabbitMQ connection information for consumers (obj)

	Consumers

	Where each consumer type is configured (obj)

stats

	stats

	

	
	log

	Toggle top-level logging of consumer process stats (bool)

	
	influxdb

	Configure the submission of per-message measurements to InfluxDB (obj)

	
	statsd

	Configure the submission of per-message measurements to statsd (obj)

influxdb

	stats > influxdb

	

	
	scheme

	The scheme to use when submitting metrics to the InfluxDB server. Default: http (str)

	
	host

	The hostname or ip address of the InfluxDB server. Default: localhost (str)

	
	port

	The port of the influxdb server. Default: 8086 (int)

	
	user

	An optional username to use when submitting measurements. (str)

	
	password

	An optional password to use when submitting measurements. (str)

	
	database

	The InfluxDB database to submit measurements to. Default: rejected (str)

statsd

	stats > statsd

	

	
	enabled

	Toggle statsd reporting off and on (bool)

	
	prefix

	An optional prefix to use when creating the statsd metric path (str)

	
	host

	The hostname or ip address of the statsd server (str)

	
	port

	The port of the statsd server. Default: 8125 (int)

	
	include_hostname

	Include the hostname in the measurement path. Default: True (bool)

	
	tcp

	Use TCP to connect to statsd (true/false). Default: false (str)

Connections

Each RabbitMQ connection entry should be a nested object with a unique name with connection attributes.

	Connection Name

	

	
	host

	The hostname or ip address of the RabbitMQ server (str)

	port

	The port of the RabbitMQ server (int)

	vhost

	The virtual host to connect to (str)

	user

	The username to connect as (str)

	pass

	The password to use (str)

	ssl_options

	Optional: the SSL options for the SSL connection socket [https://docs.python.org/3/library/ssl.html#ssl.wrap_socket]

	heartbeat_interval

	Optional: the AMQP heartbeat interval (int) default: 300 sec

ssl_options

	Connections > ssl_options

	

	
	ca_certs

	The file path to the concatenated list of CA certificates (str)

	
	ca_path

	The directory path to the PEM formatted CA certificates (str)

	
	ca_data

	The PEM encoded CA certificates (str)

	
	prototcol

	The ssl PROTOCOL_* [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] enum integer value. Default: 2 for enum PROTOCOL_TLS (int)

	
	certfile

	The file path to the PEM formatted certificate file (str)

	
	keyfile

	The file path to the certificate private key (str)

	
	password

	The password for decrypting the keyfile private key (str)

	
	ciphers

	The set of available ciphers in the OpenSSL cipher list format (str)

Consumers

Each consumer entry should be a nested object with a unique name with consumer attributes.

	Consumer Name

	

	
	consumer

	The package.module.Class path to the consumer code (str)

	connections

	The connections to connect to (list) - See Consumer Connections

	qty

	The number of consumers per connection to run (int)

	queue

	The RabbitMQ queue name to consume from (str)

	ack

	Explicitly acknowledge messages (no_ack = not ack) (bool)

	max_errors

	Number of errors encountered before restarting a consumer (int)

	sentry_dsn

	If Sentry support is installed, set a consumer specific sentry DSN (str)

	drop_exchange

	The exchange to publish a message to when it is dropped. If not specified,
dropped messages are not republished anywhere.

	drop_invalid_messages

	Drop a message if the type property doesn’t match the specified message type (str)

	message_type

	Used to validate the message type of a message before processing. This attribute
can be set to a string that is matched against the AMQP message type or a list of
acceptable message types. (str, array)

	error_exchange

	The exchange to publish messages that raise
ProcessingException to (str)

	error_max_retry

	The number of ProcessingException raised on a message
before a message is dropped. If not specified messages will never be dropped (int)

	influxdb_measurement

	When using InfluxDB, the measurement name for per-message measurements.
Defaults to the consumer name. (str)

	config

	Free-form key-value configuration section for the consumer (obj)

Consumer Connections

The consumer connections configuration allows for one or more connections to be
made by a single consumer. This configuration section supports two formats. If
a list of connection names are specified, the consumer will connect to and consume
from the all of the specified connections.

Consumer Name:
 connections:
 - connection1
 - connection2

If the connections list include structured values, additional settings can be
set. For example, you may want to consume from one RabbitMQ broker and publish to
another, as is illustrated below:

Consumer Name:
 connections:
 - name: connection1
 consume: True
 publisher_confirmation: False
 - name: connection2
 consume: False
 publisher_confirmation: True

In the above example, the consumer will have two connections, connection1 and
connection2. It will only consume from connection1 but can publish
messages connection2 by specifying the connection name in the
publish_message() method.

Structured Connections

When specifying a structured consumer connection, the following attributes are
available.

	Consumer Name > connections

	

	
	name

	The connection name, as specified in the Connections section of
the application configuration.

	consume

	Specify if the connection should consume on the connection. (bool)

	
	publisher_confirmation

	Enable publisher confirmations. (bool)

Daemon

This section contains the settings required to run the application as a daemon. They are as follows:

	user

	The username to run as when the process is daemonized (bool)

	group

	Optional The group name to switch to when the process is daemonized (str)

	pidfile

	The pidfile to write when the process is daemonized (str)

Logging

rejected uses logging.config.dictConfig [https://docs.python.org/3/library/logging.config.html#module-logging.config] to create a flexible method for configuring the python standard logging module. If rejected is being run in Python 2.6, logutils.dictconfig.dictConfig [https://pypi.python.org/pypi/logutils] is used instead.

The following basic example illustrates all of the required sections in the dictConfig format, implemented in YAML:

version: 1
formatters: []
verbose:
 format: '%(levelname) -10s %(asctime)s %(process)-6d %(processName) -15s %(name) -10s %(funcName) -20s: %(message)s'
 datefmt: '%Y-%m-%d %H:%M:%S'
handlers:
 console:
 class: logging.StreamHandler
 formatter: verbose
 debug_only: True
loggers:
 rejected:
 handlers: [console]
 level: INFO
 propagate: true
 myconsumer:
 handlers: [console]
 level: DEBUG
 propagate: true
disable_existing_loggers: true
incremental: false

Note

The debug_only node of the Logging > handlers > console section is not part of the standard dictConfig format. Please see the Logging Caveats section below for more information.

Logging Caveats

In order to allow for customizable console output when running in the foreground and no console output when daemonized, a debug_only node has been added to the standard dictConfig format in the handler section. This method is evaluated when logging is configured and if present, it is removed prior to passing the dictionary to dictConfig if present.

If the value is set to true and the application is not running in the foreground, the configuration for the handler and references to it will be removed from the configuration dictionary.

Troubleshooting

If you find that your application is not logging anything or sending output to the terminal, ensure that you have created a logger section in your configuration for your consumer package. For example if your Consumer instance is named myconsumer.MyConsumer make sure there is a myconsumer logger in the logging configuration.

Configuration Example

The following example will configure rejected to a consumer that connects to two
different RabbitMQ servers, running two instances per connection, for a total
of four consumer processes. It will consume from a queue named generated_messages
and provides configuration for the consumer code itself that would consist of a dict
with the keys foo and bar.

%YAML 1.2

Application:
 poll_interval: 10.0
 stats:
 log: True
 influxdb:
 host: localhost
 port: 8086
 database: rejected
 statsd:
 host: localhost
 port: 8125
 Connections:
 rabbit1:
 host: rabbit1
 port: 5672
 user: rejected
 pass: password
 ssl: False
 vhost: /
 heartbeat_interval: 300
 rabbit2:
 host: rabbit2
 port: 5672
 user: rejected
 pass: password
 ssl: False
 vhost: /
 heartbeat_interval: 300
 Consumers:
 example:
 consumer: example.Consumer
 connections:
 - rabbit1
 - name: rabbit2
 consume: False
 drop_exchange: dlxname
 qty: 2
 queue: generated_messages
 dynamic_qos: True
 ack: True
 max_errors: 100
 config:
 foo: True
 bar: baz

Daemon:
 user: rejected
 group: daemon
 pidfile: /var/run/rejected.pid

Logging:
 version: 1
 formatters:
 verbose:
 format: "%(levelname) -10s %(asctime)s %(process)-6d %(processName) -25s %(name) -30s %(funcName) -30s: %(message)s"
 datefmt: "%Y-%m-%d %H:%M:%S"
 syslog:
 format: "%(levelname)s <PID %(process)d:%(processName)s> %(name)s.%(funcName)s(): %(message)s"
 filters: []
 handlers:
 console:
 class: logging.StreamHandler
 formatter: verbose
 debug_only: false
 syslog:
 class: logging.handlers.SysLogHandler
 facility: daemon
 address: /var/run/syslog
 #address: /dev/log
 formatter: syslog
 loggers:
 example:
 level: INFO
 propagate: true
 handlers: [console, syslog]
 helper:
 level: INFO
 propagate: true
 handlers: [console, syslog]
 rejected:
 level: INFO
 propagate: true
 handlers: [console, syslog]
 sprockets_influxdb:
 level: WARNING
 propagate: false
 handlers: [console, syslog]
 root:
 level: INFO
 propagate: true
 handlers: [console, syslog]
 disable_existing_loggers: true
 incremental: false

Command-Line Options

The rejected command line application allows you to spawn the rejected process
as a daemon. Additionally it has options for running interactively (-f), which
along with the -o switch for specifying a single consumer to run and -q
to specify quantity, makes for easier debugging.

If you specify -P /path/to/write/data/to, rejected will automatically enable
cProfile [https://docs.python.org/3/library/profile.html#module-cProfile], writing the profiling data to the path specified. This can
be used in conjunction with graphviz to diagram code execution and hotspots.

Help

usage: rejected [-h] [-c CONFIG] [-f] [-P PROFILE] [-o CONSUMER]
 [-p PREPEND_PATH] [-q QUANTITY]

RabbitMQ consumer framework

optional arguments:
 -h, --help show this help message and exit
 -c CONFIG, --config CONFIG
 Path to the configuration file
 -f, --foreground Run the application interactively
 -P PROFILE, --profile PROFILE
 Profile the consumer modules, specifying the output
 directory.
 -o CONSUMER, --only CONSUMER
 Only run the consumer specified
 -p PREPEND_PATH, --prepend-path PREPEND_PATH
 Prepend the python path with the value.
 -q QUANTITY, --qty QUANTITY
 Run the specified quanty of consumer processes when
 used in conjunction with -o

Consumer API

The Consumer and
SmartConsumer classes to extend
for consumer applications.

While the Consumer class provides all
the structure required for implementing a rejected consumer,
the SmartConsumer adds
functionality designed to make writing consumers even easier. When messages
are received by consumers extending SmartConsumer,
if the message’s content_type property contains one of the supported mime-types,
the message body will automatically be deserialized, making the deserialized
message body available via the body attribute. Additionally, should one of
the supported content_encoding types (gzip or bzip2) be specified in the
message’s property, it will automatically be decoded.

Message Type Validation

In any of the consumer base classes, if the MESSAGE_TYPE attribute is set,
the type property of incoming messages will be validated against when a message is
received, checking for string equality against the MESSAGE_TYPE attribute.
If they are not matched, the consumer will not process the message and will drop the
message without an exception if the DROP_INVALID_MESSAGES attribute is set to
True. If it is False, a MessageException is raised.

Republishing of Dropped Messages

If the consumer is configured by specifying DROP_EXCHANGE as an attribute of
the consumer class or in the consumer configuration with the drop_exchange
configuration variable, when a message is dropped, it is published to that
exchange prior to the message being rejected in RabbitMQ. When the
message is republished, four new values are added to the AMQP headers
message property: X-Dropped-By, X-Dropped-Reason, X-Dropped-Timestamp,
X-Original-Exchange.

The X-Dropped-By header value contains the configured name of the
consumer that dropped the message. X-Dropped-Reason contains the
reason the message was dropped (eg invalid message type or maximum error
count). X-Dropped-Timestamp value contains the ISO-8601 formatted
timestamp of when the message was dropped. Finally, the
X-Original-Exchange value contains the original exchange that the
message was published to.

Consumer Classes

	Consumer

	SmartConsumer

Exceptions

There are three exception types that consumer applications should raise to handle
problems that may arise when processing a message. When these exceptions are raised,
rejected will reject the message delivery, letting RabbitMQ know that there was
a failure.

The ConsumerException should be
raised when there is a problem in the consumer itself, such as inability to contact
a database server or other resources. When a
ConsumerException is raised,
the message will be rejected and requeued, adding it back to the RabbitMQ it
was delivered back to. Additionally, rejected keeps track of consumer exceptions
and will shutdown the consumer process and start a new one once a consumer has
exceeded its configured maximum error count within a 60 second window. The
default maximum error count is 5.

The MessageException should be
raised when there is a problem with the message. When this exception is raised,
the message will be rejected on the RabbitMQ server without requeue, discarding
the message. This should be done when there is a problem with the message itself,
such as a malformed payload or non-supported properties like content-type
or type.

If a consumer raises a ProcessingException, the
message that was being processed will be republished to the exchange
specified by the error exchange configuration value or the
ERROR_EXCHANGE attribute of the consumer’s class. The message will be
published using the routing key that was last used for the message. The
original message body and properties will be used and two additional
header property values may be added:

	X-Processing-Exception contains the string value of the exception that was

raised, if specified.
- X-Processing-Exceptions contains the quantity of processing exceptions
that have been raised for the message.

In combination with a queue that has x-message-ttl set
and x-dead-letter-exchange that points to the original exchange for the
queue the consumer is consuming off of, you can implement a delayed retry
cycle for messages that are failing to process due to external resource or
service issues.

If ERROR_MAX_RETRY is set on the class, the headers for each method
will be inspected and if the value of X-Processing-Exceptions is
greater than or equal to the ERROR_MAX_RETRY value, the message will
be dropped.

Note

If unhandled exceptions are raised by a consumer, they will be caught by rejected, logged, and turned into a ConsumerException.

	
class rejected.consumer.RejectedException(*args, **kwargs)

	Base exception for Consumer related
exceptions.

If provided, the metric will be used to automatically record exception
metric counts using the path
[prefix].[consumer-name].exceptions.[exception-type].[metric].

Positional and keyword arguments are used to format the value that is
passed in when providing the string value of the exception.

	Parameters

	
	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional value used in string representation

	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional value for auto-instrumentation of exceptions

New in version 3.19.0.

	
class rejected.consumer.ConsumerException(*args, **kwargs)

	May be called when processing a message to indicate a problem that the
Consumer may be experiencing that should cause it to stop.

	Parameters

	
	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional value used in string representation

	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional value for auto-instrumentation of exceptions

	
class rejected.consumer.MessageException(*args, **kwargs)

	Invoke when a message should be rejected and not re-queued, but not due
to a processing error that should cause the consumer to stop.

	Parameters

	
	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional value used in string representation

	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional value for auto-instrumentation of exceptions

	
class rejected.consumer.ProcessingException(*args, **kwargs)

	Invoke when a message should be rejected and not re-queued, but not due
to a processing error that should cause the consumer to stop. This should
be used for when you want to reject a message which will be republished to
a retry queue, without anything being stated about the exception.

	Parameters

	
	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional value used in string representation

	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional value for auto-instrumentation of exceptions

Consumer

	
class rejected.consumer.Consumer(settings, process, drop_invalid_messages=None, message_type=None, error_exchange=None, error_max_retry=None, drop_exchange=None)

	Base consumer class that defines the contract between rejected and
consumer applications.

In any of the consumer base classes, if the message_type is specified
in the configuration (or set with the MESSAGE_TYPE attribute), the
type property of incoming messages will be validated against when a
message is received. If there is no match, the consumer will not
process the message and will drop the message without an exception if the
drop_invalid_messages setting is set to True in the configuration
(or if the DROP_INVALID_MESSAGES attribute is set to True).
If it is False, a MessageException is raised.

If DROP_EXCHANGE is specified either as an attribute of the consumer
class or in the consumer configuration, if a message is dropped, it is
published to the that exchange prior to rejecting the message in RabbitMQ.
When the message is republished, four new values are added to the AMQP
headers message property: X-Dropped-By, X-Dropped-Reason,
X-Dropped-Timestamp, X-Original-Exchange.

The X-Dropped-By header value contains the configured name of the
consumer that dropped the message. X-Dropped-Reason contains the
reason the message was dropped (eg invalid message type or maximum error
count). X-Dropped-Timestamp value contains the ISO-8601 formatted
timestamp of when the message was dropped. Finally, the
X-Original-Exchange value contains the original exchange that the
message was published to.

If a consumer raises a ProcessingException, the
message that was being processed will be republished to the exchange
specified by the error exchange configuration value or the
ERROR_EXCHANGE attribute of the consumer’s class. The message will be
published using the routing key that was last used for the message. The
original message body and properties will be used and two additional
header property values may be added:

	
	X-Processing-Exception contains the string value of the

	exception that was raised, if specified.

	
	X-Processing-Exceptions contains the quantity of processing

	exceptions that have been raised for the message.

In combination with a queue that has x-message-ttl set
and x-dead-letter-exchange that points to the original exchange for the
queue the consumer is consuming off of, you can implement a delayed retry
cycle for messages that are failing to process due to external resource or
service issues.

If error_max_retry is specified in the configuration or
ERROR_MAX_RETRY is set on the class, the headers for each method
will be inspected and if the value of X-Processing-Exceptions is
greater than or equal to the specified value, the message will
be dropped.

As of 3.18.6, the MESSAGE_AGE_KEY class level attribute contains the
default key part to used when recording stats for the message age. You can
also override the message_age_key()
method to create compound keys. For example, to create a key that includes
the message priority:

class Consumer(consumer.Consumer):

 def message_age_key(self):
 return 'priority-{}.message_age'.format(self.priority or 0)

Note

Since 3.17, Consumer and
PublishingConsumer have been combined
into the same class.

As of 3.19.13, the ACK_PROCESSING_EXCEPTIONS class level attribute
allows you to ack messages that raise a
ProcessingException instead of rejecting them,
allowing for dead-lettered messages to be constrained to
 Defaults to `False.

	
app_id

	Access the current message’s app-id property as an attribute of
the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
body

	Access the opaque body from the current message.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
content_encoding

	Access the current message’s content-encoding AMQP message
property as an attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
content_type

	Access the current message’s content-type AMQP message property
as an attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
correlation_id

	Access the current message’s correlation-id AMAP message
property as an attribute of the consumer class. If the message does not
have a correlation-id then, each message is assigned a new UUIDv4
based correlation-id value.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
exchange

	Access the AMQP exchange the message was published to as an
attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
expiration

	Access the current message’s expiration AMQP message property as
an attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
finish()

	Finishes message processing for the current message. If this is
called in prepare(), the
process() method is not invoked
for the current message.

	
headers

	Access the current message’s headers AMQP message property as an
attribute of the consumer class.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
initialize()

	Extend this method for any initialization tasks that occur only when
the Consumer class is created.

	
io_loop

	Access the tornado.ioloop.IOLoop [https://www.tornadoweb.org/en/latest/ioloop.html#tornado.ioloop.IOLoop] instance for the
current message.

New in version 3.18.4.

	Return type

	tornado.ioloop.IOLoop [https://www.tornadoweb.org/en/latest/ioloop.html#tornado.ioloop.IOLoop]

	
message_age_key()

	Return the key part that is used in submitting message age stats.
Override this method to change the key part. This could be used to
include message priority in the key, for example.

New in version 3.18.6.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
message_id

	Access the current message’s message-id AMQP message property as
an attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
message_type

	Access the current message’s type AMQP message property as an
attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
name

	Property returning the name of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
on_blocked(name)

	Called when a connection for this consumer is blocked.

Override this method to respond to being blocked.

New in version 3.17.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The connection name that is blocked

	
on_finish()

	Called after a message has been processed.

Override this method to perform cleanup, logging, etc.
This method is a counterpart to
prepare(). on_finish may
not produce any output, as it is called after all processing has
taken place.

If an exception is raised during the processing of a message,
prepare() is not invoked.

Note

Asynchronous support: Decorate this method with
tornado.gen.coroutine() [https://www.tornadoweb.org/en/latest/gen.html#tornado.gen.coroutine] to make it asynchronous.

	
on_unblocked(name)

	Called when a connection for this consumer is unblocked.

Override this method to respond to being blocked.

New in version 3.17.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The connection name that is blocked

	
prepare()

	Called when a message is received before
process().

Note

Asynchronous support: Decorate this method with
tornado.gen.coroutine() [https://www.tornadoweb.org/en/latest/gen.html#tornado.gen.coroutine] to make it asynchronous.

If this method returns a Future [https://www.tornadoweb.org/en/latest/concurrent.html#tornado.concurrent.Future], execution
will not proceed until the Future has completed.

	
priority

	Access the current message’s priority AMQP message property as
an attribute of the consumer class.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
process()

	Extend this method for implementing your Consumer logic.

If the message can not be processed and the Consumer should stop after
n failures to process messages, raise the
ConsumerException.

Note

Asynchronous support: Decorate this method with
tornado.gen.coroutine() [https://www.tornadoweb.org/en/latest/gen.html#tornado.gen.coroutine] to make it asynchronous.

	Raises

	rejected.consumer.ConsumerException

	Raises

	rejected.consumer.MessageException

	Raises

	rejected.consumer.ProcessingException

	
properties

	Access the current message’s AMQP message properties in dict form as
an attribute of the consumer class.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
publish_message(exchange, routing_key, properties, body, channel=None)

	Publish a message to RabbitMQ on the same channel the original
message was received on.

	Parameters

	
	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exchange to publish to

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The routing key to publish with

	properties (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The message properties

	body (str [https://docs.python.org/3/library/stdtypes.html#str]) – The message body

	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The channel/connection name to use. If it is not
specified, the channel that the message was delivered on is used.

	
redelivered

	Indicates if the current message has been redelivered.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
reply(response_body, properties, auto_id=True, exchange=None, reply_to=None)

	Reply to the received message.

If auto_id is True [https://docs.python.org/3/library/constants.html#True], a new UUIDv4 value will be generated
for the message_id AMQP message property. The correlation_id
AMQP message property will be set to the message_id of the
original message. In addition, the timestamp will be assigned the
current time of the message. If auto_id is False [https://docs.python.org/3/library/constants.html#False], neither
the message_id and the correlation_id AMQP properties will be
changed in the properties.

If exchange is not set, the exchange the message was received on
will be used.

If reply_to is set in the original properties,
it will be used as the routing key. If the reply_to is not set
in the properties and it is not passed in, a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] will be
raised. If reply to is set in the properties, it will be cleared out
prior to the message being republished.

	Parameters

	
	response_body (any) – The message body to send

	properties (rejected.data.Properties) – Message properties to use

	auto_id (bool [https://docs.python.org/3/library/functions.html#bool]) – Automatically shuffle message_id &
correlation_id

	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – Override the exchange to publish to

	reply_to (str [https://docs.python.org/3/library/stdtypes.html#str]) – Override the reply_to AMQP property

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

	
reply_to

	Access the current message’s reply-to AMQP message property as
an attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
returned

	Indicates if the message was delivered by consumer previously and
returned from RabbitMQ.

New in version 3.17.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
routing_key

	Access the routing key for the current message.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
send_exception_to_sentry(exc_info)

	Send an exception to Sentry if enabled.

	Parameters

	exc_info (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – exception information as returned from
sys.exc_info() [https://docs.python.org/3/library/sys.html#sys.exc_info]

	
sentry_client

	Access the Sentry raven Client instance or None

Use this object to add tags or additional context to Sentry
error reports (see raven.base.Client.tags_context() [https://raven.readthedocs.io/en/latest/usage.html#raven.base.Client.tags_context]) or
to report messages (via raven.base.Client.captureMessage() [https://raven.readthedocs.io/en/latest/usage.html#raven.base.Client.captureMessage])
directly to Sentry.

	Return type

	raven.base.Client [https://raven.readthedocs.io/en/latest/usage.html#raven.base.Client]

	
set_sentry_context(tag, value)

	Set a context tag in Sentry for the given key and value.

	Parameters

	
	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – The context tag name

	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – The context value

	
settings

	Access the consumer settings as specified by the config section
for the consumer in the rejected configuration.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
shutdown()

	Override to cleanly shutdown when rejected is stopping the consumer.

This could be used for closing database connections or other such
activities.

	
stats_add_duration(key, duration)

	Add a duration to the per-message measurements

New in version 3.19.0.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to add the timing to

	duration (int|float) – The timing value in seconds

	
stats_add_timing(key, duration)

	Add a timing to the per-message measurements

New in version 3.13.0.

Deprecated since version 3.19.0.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to add the timing to

	duration (int|float) – The timing value in seconds

	
stats_incr(key, value=1)

	Increment the specified key in the per-message measurements

New in version 3.13.0.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to increment

	value (int [https://docs.python.org/3/library/functions.html#int]) – The value to increment the key by

	
stats_set_tag(key, value=1)

	Set the specified tag/value in the per-message measurements

New in version 3.13.0.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to increment

	value (int [https://docs.python.org/3/library/functions.html#int]) – The value to increment the key by

	
stats_set_value(key, value=1)

	Set the specified key/value in the per-message measurements

New in version 3.13.0.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to increment

	value (int [https://docs.python.org/3/library/functions.html#int]) – The value to increment the key by

	
stats_track_duration(key)

	Time around a context and add to the the per-message measurements

New in version 3.13.0.

Deprecated since version 3.19.0.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key for the timing to track

	
statsd_add_timing(key, duration)

	Add a timing to the per-message measurements

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to add the timing to

	duration (int|float) – The timing value in seconds

Deprecated since version 3.13.0.

	
statsd_incr(key, value=1)

	Increment the specified key in the per-message measurements

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to increment

	value (int [https://docs.python.org/3/library/functions.html#int]) – The value to increment the key by

Deprecated since version 3.13.0.

	
statsd_track_duration(key)

	Time around a context and add to the the per-message measurements

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key for the timing to track

Deprecated since version 3.13.0.

	
timestamp

	Access the unix epoch timestamp value from the AMQP message
properties of the current message.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
unset_sentry_context(tag)

	Remove a context tag from sentry

	Parameters

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – The context tag to remove

	
user_id

	Access the user-id AMQP message property from the current
message’s properties.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
yield_to_ioloop()

	Function that will allow Rejected to process IOLoop events while
in a tight-loop inside an asynchronous consumer.

	
class rejected.consumer.PublishingConsumer(*args, **kwargs)

	Deprecated, functionality moved to rejected.consumer.Consumer

Deprecated since version 3.17.0.

	
app_id

	Access the current message’s app-id property as an attribute of
the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
body

	Access the opaque body from the current message.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
content_encoding

	Access the current message’s content-encoding AMQP message
property as an attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
content_type

	Access the current message’s content-type AMQP message property
as an attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
correlation_id

	Access the current message’s correlation-id AMAP message
property as an attribute of the consumer class. If the message does not
have a correlation-id then, each message is assigned a new UUIDv4
based correlation-id value.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
exchange

	Access the AMQP exchange the message was published to as an
attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
expiration

	Access the current message’s expiration AMQP message property as
an attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
finish()

	Finishes message processing for the current message. If this is
called in prepare(), the
process() method is not invoked
for the current message.

	
headers

	Access the current message’s headers AMQP message property as an
attribute of the consumer class.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
initialize()

	Extend this method for any initialization tasks that occur only when
the Consumer class is created.

	
io_loop

	Access the tornado.ioloop.IOLoop [https://www.tornadoweb.org/en/latest/ioloop.html#tornado.ioloop.IOLoop] instance for the
current message.

New in version 3.18.4.

	Return type

	tornado.ioloop.IOLoop [https://www.tornadoweb.org/en/latest/ioloop.html#tornado.ioloop.IOLoop]

	
message_age_key()

	Return the key part that is used in submitting message age stats.
Override this method to change the key part. This could be used to
include message priority in the key, for example.

New in version 3.18.6.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
message_id

	Access the current message’s message-id AMQP message property as
an attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
message_type

	Access the current message’s type AMQP message property as an
attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
name

	Property returning the name of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
on_blocked(name)

	Called when a connection for this consumer is blocked.

Override this method to respond to being blocked.

New in version 3.17.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The connection name that is blocked

	
on_finish()

	Called after a message has been processed.

Override this method to perform cleanup, logging, etc.
This method is a counterpart to
prepare(). on_finish may
not produce any output, as it is called after all processing has
taken place.

If an exception is raised during the processing of a message,
prepare() is not invoked.

Note

Asynchronous support: Decorate this method with
tornado.gen.coroutine() [https://www.tornadoweb.org/en/latest/gen.html#tornado.gen.coroutine] to make it asynchronous.

	
on_unblocked(name)

	Called when a connection for this consumer is unblocked.

Override this method to respond to being blocked.

New in version 3.17.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The connection name that is blocked

	
prepare()

	Called when a message is received before
process().

Note

Asynchronous support: Decorate this method with
tornado.gen.coroutine() [https://www.tornadoweb.org/en/latest/gen.html#tornado.gen.coroutine] to make it asynchronous.

If this method returns a Future [https://www.tornadoweb.org/en/latest/concurrent.html#tornado.concurrent.Future], execution
will not proceed until the Future has completed.

	
priority

	Access the current message’s priority AMQP message property as
an attribute of the consumer class.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
process()

	Extend this method for implementing your Consumer logic.

If the message can not be processed and the Consumer should stop after
n failures to process messages, raise the
ConsumerException.

Note

Asynchronous support: Decorate this method with
tornado.gen.coroutine() [https://www.tornadoweb.org/en/latest/gen.html#tornado.gen.coroutine] to make it asynchronous.

	Raises

	rejected.consumer.ConsumerException

	Raises

	rejected.consumer.MessageException

	Raises

	rejected.consumer.ProcessingException

	
properties

	Access the current message’s AMQP message properties in dict form as
an attribute of the consumer class.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
publish_message(exchange, routing_key, properties, body, channel=None)

	Publish a message to RabbitMQ on the same channel the original
message was received on.

	Parameters

	
	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exchange to publish to

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The routing key to publish with

	properties (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The message properties

	body (str [https://docs.python.org/3/library/stdtypes.html#str]) – The message body

	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The channel/connection name to use. If it is not
specified, the channel that the message was delivered on is used.

	
redelivered

	Indicates if the current message has been redelivered.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
reply(response_body, properties, auto_id=True, exchange=None, reply_to=None)

	Reply to the received message.

If auto_id is True [https://docs.python.org/3/library/constants.html#True], a new UUIDv4 value will be generated
for the message_id AMQP message property. The correlation_id
AMQP message property will be set to the message_id of the
original message. In addition, the timestamp will be assigned the
current time of the message. If auto_id is False [https://docs.python.org/3/library/constants.html#False], neither
the message_id and the correlation_id AMQP properties will be
changed in the properties.

If exchange is not set, the exchange the message was received on
will be used.

If reply_to is set in the original properties,
it will be used as the routing key. If the reply_to is not set
in the properties and it is not passed in, a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] will be
raised. If reply to is set in the properties, it will be cleared out
prior to the message being republished.

	Parameters

	
	response_body (any) – The message body to send

	properties (rejected.data.Properties) – Message properties to use

	auto_id (bool [https://docs.python.org/3/library/functions.html#bool]) – Automatically shuffle message_id &
correlation_id

	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – Override the exchange to publish to

	reply_to (str [https://docs.python.org/3/library/stdtypes.html#str]) – Override the reply_to AMQP property

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

	
reply_to

	Access the current message’s reply-to AMQP message property as
an attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
returned

	Indicates if the message was delivered by consumer previously and
returned from RabbitMQ.

New in version 3.17.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
routing_key

	Access the routing key for the current message.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
send_exception_to_sentry(exc_info)

	Send an exception to Sentry if enabled.

	Parameters

	exc_info (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – exception information as returned from
sys.exc_info() [https://docs.python.org/3/library/sys.html#sys.exc_info]

	
sentry_client

	Access the Sentry raven Client instance or None

Use this object to add tags or additional context to Sentry
error reports (see raven.base.Client.tags_context() [https://raven.readthedocs.io/en/latest/usage.html#raven.base.Client.tags_context]) or
to report messages (via raven.base.Client.captureMessage() [https://raven.readthedocs.io/en/latest/usage.html#raven.base.Client.captureMessage])
directly to Sentry.

	Return type

	raven.base.Client [https://raven.readthedocs.io/en/latest/usage.html#raven.base.Client]

	
set_sentry_context(tag, value)

	Set a context tag in Sentry for the given key and value.

	Parameters

	
	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – The context tag name

	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – The context value

	
settings

	Access the consumer settings as specified by the config section
for the consumer in the rejected configuration.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
shutdown()

	Override to cleanly shutdown when rejected is stopping the consumer.

This could be used for closing database connections or other such
activities.

	
stats_add_duration(key, duration)

	Add a duration to the per-message measurements

New in version 3.19.0.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to add the timing to

	duration (int|float) – The timing value in seconds

	
stats_add_timing(key, duration)

	Add a timing to the per-message measurements

New in version 3.13.0.

Deprecated since version 3.19.0.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to add the timing to

	duration (int|float) – The timing value in seconds

	
stats_incr(key, value=1)

	Increment the specified key in the per-message measurements

New in version 3.13.0.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to increment

	value (int [https://docs.python.org/3/library/functions.html#int]) – The value to increment the key by

	
stats_set_tag(key, value=1)

	Set the specified tag/value in the per-message measurements

New in version 3.13.0.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to increment

	value (int [https://docs.python.org/3/library/functions.html#int]) – The value to increment the key by

	
stats_set_value(key, value=1)

	Set the specified key/value in the per-message measurements

New in version 3.13.0.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to increment

	value (int [https://docs.python.org/3/library/functions.html#int]) – The value to increment the key by

	
stats_track_duration(key)

	Time around a context and add to the the per-message measurements

New in version 3.13.0.

Deprecated since version 3.19.0.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key for the timing to track

	
statsd_add_timing(key, duration)

	Add a timing to the per-message measurements

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to add the timing to

	duration (int|float) – The timing value in seconds

Deprecated since version 3.13.0.

	
statsd_incr(key, value=1)

	Increment the specified key in the per-message measurements

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to increment

	value (int [https://docs.python.org/3/library/functions.html#int]) – The value to increment the key by

Deprecated since version 3.13.0.

	
statsd_track_duration(key)

	Time around a context and add to the the per-message measurements

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key for the timing to track

Deprecated since version 3.13.0.

	
timestamp

	Access the unix epoch timestamp value from the AMQP message
properties of the current message.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
unset_sentry_context(tag)

	Remove a context tag from sentry

	Parameters

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – The context tag to remove

	
user_id

	Access the user-id AMQP message property from the current
message’s properties.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
yield_to_ioloop()

	Function that will allow Rejected to process IOLoop events while
in a tight-loop inside an asynchronous consumer.

SmartConsumer

	
class rejected.consumer.SmartConsumer(settings, process, drop_invalid_messages=None, message_type=None, error_exchange=None, error_max_retry=None, drop_exchange=None)

	Base class to ease the implementation of strongly typed message
consumers that validate and automatically decode and deserialize the
inbound message body based upon the message properties. Additionally,
should one of the supported content_encoding types (gzip or
bzip2) be specified in the message’s property, it will automatically
be decoded.

When publishing a message, the message can be automatically serialized
and encoded. If the content_type property is specified, the consumer
will attempt to automatically serialize the message body. If the
content_encoding property is specified using a supported encoding
(gzip or bzip2), it will automatically be encoded as well.

Supported MIME types for automatic serialization and deserialization are:

	application/json

	application/pickle

	application/x-pickle

	application/x-plist

	application/x-vnd.python.pickle

	application/vnd.python.pickle

	text/csv

	text/html (with beautifulsoup4 installed)

	text/xml (with beautifulsoup4 installed)

	text/yaml

	text/x-yaml

In any of the consumer base classes, if the MESSAGE_TYPE attribute is
set, the type property of incoming messages will be validated against
when a message is received, checking for string equality against the
MESSAGE_TYPE attribute. If they are not matched, the consumer will not
process the message and will drop the message without an exception if the
DROP_INVALID_MESSAGES attribute is set to True. If it is False,
a ConsumerException is raised.

Note

Since 3.17, SmartConsumer and
SmartPublishingConsumer have been combined
into the same class.

	
app_id

	Access the current message’s app-id property as an attribute of
the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
body

	Return the message body, unencoded if needed,
deserialized if possible.

	Return type

	any

	
content_encoding

	Access the current message’s content-encoding AMQP message
property as an attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
content_type

	Access the current message’s content-type AMQP message property
as an attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
correlation_id

	Access the current message’s correlation-id AMAP message
property as an attribute of the consumer class. If the message does not
have a correlation-id then, each message is assigned a new UUIDv4
based correlation-id value.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
exchange

	Access the AMQP exchange the message was published to as an
attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
expiration

	Access the current message’s expiration AMQP message property as
an attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
finish()

	Finishes message processing for the current message. If this is
called in prepare(), the
process() method is not invoked
for the current message.

	
headers

	Access the current message’s headers AMQP message property as an
attribute of the consumer class.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
initialize()

	Extend this method for any initialization tasks that occur only when
the Consumer class is created.

	
io_loop

	Access the tornado.ioloop.IOLoop [https://www.tornadoweb.org/en/latest/ioloop.html#tornado.ioloop.IOLoop] instance for the
current message.

New in version 3.18.4.

	Return type

	tornado.ioloop.IOLoop [https://www.tornadoweb.org/en/latest/ioloop.html#tornado.ioloop.IOLoop]

	
message_age_key()

	Return the key part that is used in submitting message age stats.
Override this method to change the key part. This could be used to
include message priority in the key, for example.

New in version 3.18.6.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
message_id

	Access the current message’s message-id AMQP message property as
an attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
message_type

	Access the current message’s type AMQP message property as an
attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
name

	Property returning the name of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
on_blocked(name)

	Called when a connection for this consumer is blocked.

Override this method to respond to being blocked.

New in version 3.17.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The connection name that is blocked

	
on_finish()

	Called after a message has been processed.

Override this method to perform cleanup, logging, etc.
This method is a counterpart to
prepare(). on_finish may
not produce any output, as it is called after all processing has
taken place.

If an exception is raised during the processing of a message,
prepare() is not invoked.

Note

Asynchronous support: Decorate this method with
tornado.gen.coroutine() [https://www.tornadoweb.org/en/latest/gen.html#tornado.gen.coroutine] to make it asynchronous.

	
on_unblocked(name)

	Called when a connection for this consumer is unblocked.

Override this method to respond to being blocked.

New in version 3.17.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The connection name that is blocked

	
prepare()

	Called when a message is received before
process().

Note

Asynchronous support: Decorate this method with
tornado.gen.coroutine() [https://www.tornadoweb.org/en/latest/gen.html#tornado.gen.coroutine] to make it asynchronous.

If this method returns a Future [https://www.tornadoweb.org/en/latest/concurrent.html#tornado.concurrent.Future], execution
will not proceed until the Future has completed.

	
priority

	Access the current message’s priority AMQP message property as
an attribute of the consumer class.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
process()

	Extend this method for implementing your Consumer logic.

If the message can not be processed and the Consumer should stop after
n failures to process messages, raise the
ConsumerException.

Note

Asynchronous support: Decorate this method with
tornado.gen.coroutine() [https://www.tornadoweb.org/en/latest/gen.html#tornado.gen.coroutine] to make it asynchronous.

	Raises

	rejected.consumer.ConsumerException

	Raises

	rejected.consumer.MessageException

	Raises

	rejected.consumer.ProcessingException

	
properties

	Access the current message’s AMQP message properties in dict form as
an attribute of the consumer class.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
publish_message(exchange, routing_key, properties, body, no_serialization=False, no_encoding=False, channel=None)

	Publish a message to RabbitMQ on the same channel the original
message was received on.

By default, if you pass a non-string object to the body and the
properties have a supported content-type set, the body will be
auto-serialized in the specified content-type.

If the properties do not have a timestamp set, it will be set to the
current time.

If you specify a content-encoding in the properties and the encoding is
supported, the body will be auto-encoded.

Both of these behaviors can be disabled by setting no_serialization or
no_encoding to True.

	Parameters

	
	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exchange to publish to

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The routing key to publish with

	properties (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The message properties

	body (mixed) – The message body to publish

	no_serialization (bool [https://docs.python.org/3/library/functions.html#bool]) – Turn off auto-serialization of the body

	no_encoding (bool [https://docs.python.org/3/library/functions.html#bool]) – Turn off auto-encoding of the body

	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The channel/connection name to use. If it is not
specified, the channel that the message was delivered on is used.

	
redelivered

	Indicates if the current message has been redelivered.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
reply(response_body, properties, auto_id=True, exchange=None, reply_to=None)

	Reply to the received message.

If auto_id is True [https://docs.python.org/3/library/constants.html#True], a new UUIDv4 value will be generated
for the message_id AMQP message property. The correlation_id
AMQP message property will be set to the message_id of the
original message. In addition, the timestamp will be assigned the
current time of the message. If auto_id is False [https://docs.python.org/3/library/constants.html#False], neither
the message_id and the correlation_id AMQP properties will be
changed in the properties.

If exchange is not set, the exchange the message was received on
will be used.

If reply_to is set in the original properties,
it will be used as the routing key. If the reply_to is not set
in the properties and it is not passed in, a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] will be
raised. If reply to is set in the properties, it will be cleared out
prior to the message being republished.

	Parameters

	
	response_body (any) – The message body to send

	properties (rejected.data.Properties) – Message properties to use

	auto_id (bool [https://docs.python.org/3/library/functions.html#bool]) – Automatically shuffle message_id &
correlation_id

	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – Override the exchange to publish to

	reply_to (str [https://docs.python.org/3/library/stdtypes.html#str]) – Override the reply_to AMQP property

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

	
reply_to

	Access the current message’s reply-to AMQP message property as
an attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
returned

	Indicates if the message was delivered by consumer previously and
returned from RabbitMQ.

New in version 3.17.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
routing_key

	Access the routing key for the current message.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
send_exception_to_sentry(exc_info)

	Send an exception to Sentry if enabled.

	Parameters

	exc_info (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – exception information as returned from
sys.exc_info() [https://docs.python.org/3/library/sys.html#sys.exc_info]

	
sentry_client

	Access the Sentry raven Client instance or None

Use this object to add tags or additional context to Sentry
error reports (see raven.base.Client.tags_context() [https://raven.readthedocs.io/en/latest/usage.html#raven.base.Client.tags_context]) or
to report messages (via raven.base.Client.captureMessage() [https://raven.readthedocs.io/en/latest/usage.html#raven.base.Client.captureMessage])
directly to Sentry.

	Return type

	raven.base.Client [https://raven.readthedocs.io/en/latest/usage.html#raven.base.Client]

	
set_sentry_context(tag, value)

	Set a context tag in Sentry for the given key and value.

	Parameters

	
	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – The context tag name

	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – The context value

	
settings

	Access the consumer settings as specified by the config section
for the consumer in the rejected configuration.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
shutdown()

	Override to cleanly shutdown when rejected is stopping the consumer.

This could be used for closing database connections or other such
activities.

	
stats_add_duration(key, duration)

	Add a duration to the per-message measurements

New in version 3.19.0.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to add the timing to

	duration (int|float) – The timing value in seconds

	
stats_add_timing(key, duration)

	Add a timing to the per-message measurements

New in version 3.13.0.

Deprecated since version 3.19.0.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to add the timing to

	duration (int|float) – The timing value in seconds

	
stats_incr(key, value=1)

	Increment the specified key in the per-message measurements

New in version 3.13.0.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to increment

	value (int [https://docs.python.org/3/library/functions.html#int]) – The value to increment the key by

	
stats_set_tag(key, value=1)

	Set the specified tag/value in the per-message measurements

New in version 3.13.0.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to increment

	value (int [https://docs.python.org/3/library/functions.html#int]) – The value to increment the key by

	
stats_set_value(key, value=1)

	Set the specified key/value in the per-message measurements

New in version 3.13.0.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to increment

	value (int [https://docs.python.org/3/library/functions.html#int]) – The value to increment the key by

	
stats_track_duration(key)

	Time around a context and add to the the per-message measurements

New in version 3.13.0.

Deprecated since version 3.19.0.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key for the timing to track

	
statsd_add_timing(key, duration)

	Add a timing to the per-message measurements

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to add the timing to

	duration (int|float) – The timing value in seconds

Deprecated since version 3.13.0.

	
statsd_incr(key, value=1)

	Increment the specified key in the per-message measurements

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to increment

	value (int [https://docs.python.org/3/library/functions.html#int]) – The value to increment the key by

Deprecated since version 3.13.0.

	
statsd_track_duration(key)

	Time around a context and add to the the per-message measurements

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key for the timing to track

Deprecated since version 3.13.0.

	
timestamp

	Access the unix epoch timestamp value from the AMQP message
properties of the current message.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
unset_sentry_context(tag)

	Remove a context tag from sentry

	Parameters

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – The context tag to remove

	
user_id

	Access the user-id AMQP message property from the current
message’s properties.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
yield_to_ioloop()

	Function that will allow Rejected to process IOLoop events while
in a tight-loop inside an asynchronous consumer.

	
class rejected.consumer.SmartPublishingConsumer(*args, **kwargs)

	Deprecated, functionality moved to
rejected.consumer.SmartConsumer

Deprecated since version 3.17.0.

	
app_id

	Access the current message’s app-id property as an attribute of
the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
body

	Return the message body, unencoded if needed,
deserialized if possible.

	Return type

	any

	
content_encoding

	Access the current message’s content-encoding AMQP message
property as an attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
content_type

	Access the current message’s content-type AMQP message property
as an attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
correlation_id

	Access the current message’s correlation-id AMAP message
property as an attribute of the consumer class. If the message does not
have a correlation-id then, each message is assigned a new UUIDv4
based correlation-id value.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
exchange

	Access the AMQP exchange the message was published to as an
attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
expiration

	Access the current message’s expiration AMQP message property as
an attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
finish()

	Finishes message processing for the current message. If this is
called in prepare(), the
process() method is not invoked
for the current message.

	
headers

	Access the current message’s headers AMQP message property as an
attribute of the consumer class.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
initialize()

	Extend this method for any initialization tasks that occur only when
the Consumer class is created.

	
io_loop

	Access the tornado.ioloop.IOLoop [https://www.tornadoweb.org/en/latest/ioloop.html#tornado.ioloop.IOLoop] instance for the
current message.

New in version 3.18.4.

	Return type

	tornado.ioloop.IOLoop [https://www.tornadoweb.org/en/latest/ioloop.html#tornado.ioloop.IOLoop]

	
message_age_key()

	Return the key part that is used in submitting message age stats.
Override this method to change the key part. This could be used to
include message priority in the key, for example.

New in version 3.18.6.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
message_id

	Access the current message’s message-id AMQP message property as
an attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
message_type

	Access the current message’s type AMQP message property as an
attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
name

	Property returning the name of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
on_blocked(name)

	Called when a connection for this consumer is blocked.

Override this method to respond to being blocked.

New in version 3.17.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The connection name that is blocked

	
on_finish()

	Called after a message has been processed.

Override this method to perform cleanup, logging, etc.
This method is a counterpart to
prepare(). on_finish may
not produce any output, as it is called after all processing has
taken place.

If an exception is raised during the processing of a message,
prepare() is not invoked.

Note

Asynchronous support: Decorate this method with
tornado.gen.coroutine() [https://www.tornadoweb.org/en/latest/gen.html#tornado.gen.coroutine] to make it asynchronous.

	
on_unblocked(name)

	Called when a connection for this consumer is unblocked.

Override this method to respond to being blocked.

New in version 3.17.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The connection name that is blocked

	
prepare()

	Called when a message is received before
process().

Note

Asynchronous support: Decorate this method with
tornado.gen.coroutine() [https://www.tornadoweb.org/en/latest/gen.html#tornado.gen.coroutine] to make it asynchronous.

If this method returns a Future [https://www.tornadoweb.org/en/latest/concurrent.html#tornado.concurrent.Future], execution
will not proceed until the Future has completed.

	
priority

	Access the current message’s priority AMQP message property as
an attribute of the consumer class.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
process()

	Extend this method for implementing your Consumer logic.

If the message can not be processed and the Consumer should stop after
n failures to process messages, raise the
ConsumerException.

Note

Asynchronous support: Decorate this method with
tornado.gen.coroutine() [https://www.tornadoweb.org/en/latest/gen.html#tornado.gen.coroutine] to make it asynchronous.

	Raises

	rejected.consumer.ConsumerException

	Raises

	rejected.consumer.MessageException

	Raises

	rejected.consumer.ProcessingException

	
properties

	Access the current message’s AMQP message properties in dict form as
an attribute of the consumer class.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
publish_message(exchange, routing_key, properties, body, no_serialization=False, no_encoding=False, channel=None)

	Publish a message to RabbitMQ on the same channel the original
message was received on.

By default, if you pass a non-string object to the body and the
properties have a supported content-type set, the body will be
auto-serialized in the specified content-type.

If the properties do not have a timestamp set, it will be set to the
current time.

If you specify a content-encoding in the properties and the encoding is
supported, the body will be auto-encoded.

Both of these behaviors can be disabled by setting no_serialization or
no_encoding to True.

	Parameters

	
	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exchange to publish to

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The routing key to publish with

	properties (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The message properties

	body (mixed) – The message body to publish

	no_serialization (bool [https://docs.python.org/3/library/functions.html#bool]) – Turn off auto-serialization of the body

	no_encoding (bool [https://docs.python.org/3/library/functions.html#bool]) – Turn off auto-encoding of the body

	channel (str [https://docs.python.org/3/library/stdtypes.html#str]) – The channel/connection name to use. If it is not
specified, the channel that the message was delivered on is used.

	
redelivered

	Indicates if the current message has been redelivered.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
reply(response_body, properties, auto_id=True, exchange=None, reply_to=None)

	Reply to the received message.

If auto_id is True [https://docs.python.org/3/library/constants.html#True], a new UUIDv4 value will be generated
for the message_id AMQP message property. The correlation_id
AMQP message property will be set to the message_id of the
original message. In addition, the timestamp will be assigned the
current time of the message. If auto_id is False [https://docs.python.org/3/library/constants.html#False], neither
the message_id and the correlation_id AMQP properties will be
changed in the properties.

If exchange is not set, the exchange the message was received on
will be used.

If reply_to is set in the original properties,
it will be used as the routing key. If the reply_to is not set
in the properties and it is not passed in, a ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] will be
raised. If reply to is set in the properties, it will be cleared out
prior to the message being republished.

	Parameters

	
	response_body (any) – The message body to send

	properties (rejected.data.Properties) – Message properties to use

	auto_id (bool [https://docs.python.org/3/library/functions.html#bool]) – Automatically shuffle message_id &
correlation_id

	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – Override the exchange to publish to

	reply_to (str [https://docs.python.org/3/library/stdtypes.html#str]) – Override the reply_to AMQP property

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]

	
reply_to

	Access the current message’s reply-to AMQP message property as
an attribute of the consumer class.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
returned

	Indicates if the message was delivered by consumer previously and
returned from RabbitMQ.

New in version 3.17.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
routing_key

	Access the routing key for the current message.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
send_exception_to_sentry(exc_info)

	Send an exception to Sentry if enabled.

	Parameters

	exc_info (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – exception information as returned from
sys.exc_info() [https://docs.python.org/3/library/sys.html#sys.exc_info]

	
sentry_client

	Access the Sentry raven Client instance or None

Use this object to add tags or additional context to Sentry
error reports (see raven.base.Client.tags_context() [https://raven.readthedocs.io/en/latest/usage.html#raven.base.Client.tags_context]) or
to report messages (via raven.base.Client.captureMessage() [https://raven.readthedocs.io/en/latest/usage.html#raven.base.Client.captureMessage])
directly to Sentry.

	Return type

	raven.base.Client [https://raven.readthedocs.io/en/latest/usage.html#raven.base.Client]

	
set_sentry_context(tag, value)

	Set a context tag in Sentry for the given key and value.

	Parameters

	
	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – The context tag name

	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – The context value

	
settings

	Access the consumer settings as specified by the config section
for the consumer in the rejected configuration.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
shutdown()

	Override to cleanly shutdown when rejected is stopping the consumer.

This could be used for closing database connections or other such
activities.

	
stats_add_duration(key, duration)

	Add a duration to the per-message measurements

New in version 3.19.0.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to add the timing to

	duration (int|float) – The timing value in seconds

	
stats_add_timing(key, duration)

	Add a timing to the per-message measurements

New in version 3.13.0.

Deprecated since version 3.19.0.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to add the timing to

	duration (int|float) – The timing value in seconds

	
stats_incr(key, value=1)

	Increment the specified key in the per-message measurements

New in version 3.13.0.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to increment

	value (int [https://docs.python.org/3/library/functions.html#int]) – The value to increment the key by

	
stats_set_tag(key, value=1)

	Set the specified tag/value in the per-message measurements

New in version 3.13.0.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to increment

	value (int [https://docs.python.org/3/library/functions.html#int]) – The value to increment the key by

	
stats_set_value(key, value=1)

	Set the specified key/value in the per-message measurements

New in version 3.13.0.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to increment

	value (int [https://docs.python.org/3/library/functions.html#int]) – The value to increment the key by

	
stats_track_duration(key)

	Time around a context and add to the the per-message measurements

New in version 3.13.0.

Deprecated since version 3.19.0.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key for the timing to track

	
statsd_add_timing(key, duration)

	Add a timing to the per-message measurements

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to add the timing to

	duration (int|float) – The timing value in seconds

Deprecated since version 3.13.0.

	
statsd_incr(key, value=1)

	Increment the specified key in the per-message measurements

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to increment

	value (int [https://docs.python.org/3/library/functions.html#int]) – The value to increment the key by

Deprecated since version 3.13.0.

	
statsd_track_duration(key)

	Time around a context and add to the the per-message measurements

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key for the timing to track

Deprecated since version 3.13.0.

	
timestamp

	Access the unix epoch timestamp value from the AMQP message
properties of the current message.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
unset_sentry_context(tag)

	Remove a context tag from sentry

	Parameters

	tag (str [https://docs.python.org/3/library/stdtypes.html#str]) – The context tag to remove

	
user_id

	Access the user-id AMQP message property from the current
message’s properties.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
yield_to_ioloop()

	Function that will allow Rejected to process IOLoop events while
in a tight-loop inside an asynchronous consumer.

Testing Support

The rejected.testing.AsyncTestCase provides a based class for the
easy creation of tests for your consumers. The test cases exposes multiple
methods to make it easy to setup a consumer and process messages. It is
build on top of tornado.testing.AsyncTestCase [https://www.tornadoweb.org/en/latest/testing.html#tornado.testing.AsyncTestCase] which extends
unittest.TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase].

To get started, override the
rejected.testing.AsyncTestCase.get_consumer() method.

Next, the rejected.testing.AsyncTestCase.get_settings() method can be
overridden to define the settings that are passed into the consumer.

Finally, to invoke your Consumer as if it were receiving a message, the
process_message() method should be
invoked.

Note

Tests are asynchronous, so each test should be decorated with
gen_test().

Example

The following example expects that when the message is processed by the
consumer, the consumer will raise a MessageException.

from rejected import consumer, testing

import my_package

class ConsumerTestCase(testing.AsyncTestCase):

 def get_consumer(self):
 return my_package.Consumer

 def get_settings(self):
 return {'remote_url': 'http://foo'}

 @testing.gen_test
 def test_consumer_raises_message_exception(self):
 with self.assertRaises(consumer.MessageException):
 yield self.process_message({'foo': 'bar'})

	
class rejected.testing.AsyncTestCase(methodName: str = 'runTest')

	tornado.testing.AsyncTestCase [https://www.tornadoweb.org/en/latest/testing.html#tornado.testing.AsyncTestCase] subclass for testing
Consumer classes.

	
create_message(message, properties=None, exchange='rejected', routing_key='test')

	Create a message instance for use with the consumer in testing.

	Parameters

	
	message (any) – the body of the message to create

	properties (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – AMQP message properties

	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exchange the message should appear to be from

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The message’s routing key

	Return type

	rejected.data.Message

	
get_consumer()

	Override to return the consumer class for testing.

	Return type

	rejected.consumer.Consumer

	
get_settings()

	Override this method to provide settings to the consumer during
construction. These settings should be from the config stanza
of the Consumer configuration.

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
measurement

	Return the rejected.data.Measurement for the currently
assigned measurement object to the consumer.

	Return type

	rejected.data.Measurement

	
process_message(message_body=None, content_type='application/json', message_type=None, properties=None, exchange='rejected', routing_key='routing-key')

	Process a message as if it were being delivered by RabbitMQ. When
invoked, an AMQP message will be locally created and passed into the
consumer. With using the default values for the method, if you pass in
a JSON serializable object, the message body will automatically be
JSON serialized.

If an exception is not raised, a Measurement
instance is returned that will contain all of the measurements
collected during the processing of the message.

Example:

class ConsumerTestCase(testing.AsyncTestCase):

 @testing.gen_test
 def test_consumer_raises_message_exception(self):
 with self.assertRaises(consumer.MessageException):
 result = yield self.process_message({'foo': 'bar'})

Note

This method is a co-routine and must be yielded to ensure
that your tests are functioning properly.

	Parameters

	
	message_body (any) – the body of the message to create

	content_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The mime type

	message_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – identifies the type of message to create

	properties (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – AMQP message properties

	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exchange the message should appear to be from

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The message’s routing key

	Raises

	rejected.consumer.ConsumerException

	Raises

	rejected.consumer.MessageException

	Raises

	rejected.consumer.ProcessingException

	Return type

	rejected.data.Measurement

	
published_messages

	Return a list of PublishedMessage
that are extracted from all calls to
basic_publish() [https://pika.readthedocs.io/en/latest/modules/channel.html#pika.channel.Channel.basic_publish] that are invoked during the
test. The properties attribute is the
pika.spec.BasicProperties [https://pika.readthedocs.io/en/latest/modules/spec.html#pika.spec.BasicProperties]
instance that was created during publishing.

New in version 3.18.9.

	Returns

	list([PublishedMessage])

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
class rejected.testing.PublishedMessage(exchange, routing_key, properties, body)

	Contains information about messages published during a test when
using rejected.testing.AsyncTestCase.

	Parameters

	
	exchange (str [https://docs.python.org/3/library/stdtypes.html#str]) – The exchange the message was published to

	routing_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The routing key the message was published with

	properties (pika.spec.BasicProperties [https://pika.readthedocs.io/en/latest/modules/spec.html#pika.spec.BasicProperties]) – AMQP message properties

	body (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – AMQP message body

New in version 3.18.9.

	
rejected.testing.gen_test(func: Optional[Callable[[...], Union[collections.abc.Generator, Coroutine]]] = None, timeout: Optional[float] = None) → Union[Callable[[...], None], Callable[[Callable[[...], Union[collections.abc.Generator, Coroutine]]], Callable[[...], None]]]

	Testing equivalent of tornado.gen.coroutine() [https://www.tornadoweb.org/en/latest/gen.html#tornado.gen.coroutine], to be applied to test
methods.

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 rejected	

 	
 	
 rejected.data	

 	
 	
 rejected.testing	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | Y

A

 	
 	add_duration() (rejected.data.Measurement method)

 	app_id (rejected.consumer.Consumer attribute)

 	(rejected.consumer.PublishingConsumer attribute)

 	(rejected.consumer.SmartConsumer attribute)

 	(rejected.consumer.SmartPublishingConsumer attribute)

 	
 	AsyncTestCase (class in rejected.testing)

B

 	
 	body (rejected.consumer.Consumer attribute)

 	(rejected.consumer.PublishingConsumer attribute)

 	(rejected.consumer.SmartConsumer attribute)

 	(rejected.consumer.SmartPublishingConsumer attribute)

C

 	
 	Consumer (class in rejected.consumer)

 	ConsumerException (class in rejected.consumer)

 	content_encoding (rejected.consumer.Consumer attribute)

 	(rejected.consumer.PublishingConsumer attribute)

 	(rejected.consumer.SmartConsumer attribute)

 	(rejected.consumer.SmartPublishingConsumer attribute)

 	content_type (rejected.consumer.Consumer attribute)

 	(rejected.consumer.PublishingConsumer attribute)

 	(rejected.consumer.SmartConsumer attribute)

 	(rejected.consumer.SmartPublishingConsumer attribute)

 	
 	correlation_id (rejected.consumer.Consumer attribute)

 	(rejected.consumer.PublishingConsumer attribute)

 	(rejected.consumer.SmartConsumer attribute)

 	(rejected.consumer.SmartPublishingConsumer attribute)

 	create_message() (rejected.testing.AsyncTestCase method)

D

 	
 	decr() (rejected.data.Measurement method)

E

 	
 	exchange (rejected.consumer.Consumer attribute)

 	(rejected.consumer.PublishingConsumer attribute)

 	(rejected.consumer.SmartConsumer attribute)

 	(rejected.consumer.SmartPublishingConsumer attribute)

 	
 	expiration (rejected.consumer.Consumer attribute)

 	(rejected.consumer.PublishingConsumer attribute)

 	(rejected.consumer.SmartConsumer attribute)

 	(rejected.consumer.SmartPublishingConsumer attribute)

F

 	
 	finish() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

G

 	
 	gen_test() (in module rejected.testing)

 	
 	get_consumer() (rejected.testing.AsyncTestCase method)

 	get_settings() (rejected.testing.AsyncTestCase method)

H

 	
 	headers (rejected.consumer.Consumer attribute)

 	(rejected.consumer.PublishingConsumer attribute)

 	(rejected.consumer.SmartConsumer attribute)

 	(rejected.consumer.SmartPublishingConsumer attribute)

I

 	
 	incr() (rejected.data.Measurement method)

 	initialize() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

 	
 	io_loop (rejected.consumer.Consumer attribute)

 	(rejected.consumer.PublishingConsumer attribute)

 	(rejected.consumer.SmartConsumer attribute)

 	(rejected.consumer.SmartPublishingConsumer attribute)

M

 	
 	Measurement (class in rejected.data)

 	measurement (rejected.testing.AsyncTestCase attribute)

 	Message (class in rejected.data)

 	message_age_key() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

 	message_id (rejected.consumer.Consumer attribute)

 	(rejected.consumer.PublishingConsumer attribute)

 	(rejected.consumer.SmartConsumer attribute)

 	(rejected.consumer.SmartPublishingConsumer attribute)

 	
 	message_type (rejected.consumer.Consumer attribute)

 	(rejected.consumer.PublishingConsumer attribute)

 	(rejected.consumer.SmartConsumer attribute)

 	(rejected.consumer.SmartPublishingConsumer attribute)

 	MessageException (class in rejected.consumer)

N

 	
 	name (rejected.consumer.Consumer attribute)

 	(rejected.consumer.PublishingConsumer attribute)

 	(rejected.consumer.SmartConsumer attribute)

 	(rejected.consumer.SmartPublishingConsumer attribute)

O

 	
 	on_blocked() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

 	on_finish() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

 	
 	on_unblocked() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

P

 	
 	prepare() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

 	priority (rejected.consumer.Consumer attribute)

 	(rejected.consumer.PublishingConsumer attribute)

 	(rejected.consumer.SmartConsumer attribute)

 	(rejected.consumer.SmartPublishingConsumer attribute)

 	process() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

 	process_message() (rejected.testing.AsyncTestCase method)

 	
 	ProcessingException (class in rejected.consumer)

 	Properties (class in rejected.data)

 	properties (rejected.consumer.Consumer attribute)

 	(rejected.consumer.PublishingConsumer attribute)

 	(rejected.consumer.SmartConsumer attribute)

 	(rejected.consumer.SmartPublishingConsumer attribute)

 	publish_message() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

 	published_messages (rejected.testing.AsyncTestCase attribute)

 	PublishedMessage (class in rejected.testing)

 	PublishingConsumer (class in rejected.consumer)

R

 	
 	redelivered (rejected.consumer.Consumer attribute)

 	(rejected.consumer.PublishingConsumer attribute)

 	(rejected.consumer.SmartConsumer attribute)

 	(rejected.consumer.SmartPublishingConsumer attribute)

 	rejected.data (module)

 	rejected.testing (module)

 	RejectedException (class in rejected.consumer)

 	reply() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

 	
 	reply_to (rejected.consumer.Consumer attribute)

 	(rejected.consumer.PublishingConsumer attribute)

 	(rejected.consumer.SmartConsumer attribute)

 	(rejected.consumer.SmartPublishingConsumer attribute)

 	returned (rejected.consumer.Consumer attribute)

 	(rejected.consumer.PublishingConsumer attribute)

 	(rejected.consumer.SmartConsumer attribute)

 	(rejected.consumer.SmartPublishingConsumer attribute)

 	routing_key (rejected.consumer.Consumer attribute)

 	(rejected.consumer.PublishingConsumer attribute)

 	(rejected.consumer.SmartConsumer attribute)

 	(rejected.consumer.SmartPublishingConsumer attribute)

S

 	
 	send_exception_to_sentry() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

 	sentry_client (rejected.consumer.Consumer attribute)

 	(rejected.consumer.PublishingConsumer attribute)

 	(rejected.consumer.SmartConsumer attribute)

 	(rejected.consumer.SmartPublishingConsumer attribute)

 	set_sentry_context() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

 	set_tag() (rejected.data.Measurement method)

 	set_value() (rejected.data.Measurement method)

 	settings (rejected.consumer.Consumer attribute)

 	(rejected.consumer.PublishingConsumer attribute)

 	(rejected.consumer.SmartConsumer attribute)

 	(rejected.consumer.SmartPublishingConsumer attribute)

 	setUp() (rejected.testing.AsyncTestCase method)

 	shutdown() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

 	SmartConsumer (class in rejected.consumer)

 	SmartPublishingConsumer (class in rejected.consumer)

 	stats_add_duration() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

 	stats_add_timing() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

 	
 	stats_incr() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

 	stats_set_tag() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

 	stats_set_value() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

 	stats_track_duration() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

 	statsd_add_timing() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

 	statsd_incr() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

 	statsd_track_duration() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

T

 	
 	tearDown() (rejected.testing.AsyncTestCase method)

 	timestamp (rejected.consumer.Consumer attribute)

 	(rejected.consumer.PublishingConsumer attribute)

 	(rejected.consumer.SmartConsumer attribute)

 	(rejected.consumer.SmartPublishingConsumer attribute)

 	
 	track_duration() (rejected.data.Measurement method)

U

 	
 	unset_sentry_context() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

 	
 	user_id (rejected.consumer.Consumer attribute)

 	(rejected.consumer.PublishingConsumer attribute)

 	(rejected.consumer.SmartConsumer attribute)

 	(rejected.consumer.SmartPublishingConsumer attribute)

Y

 	
 	yield_to_ioloop() (rejected.consumer.Consumer method)

 	(rejected.consumer.PublishingConsumer method)

 	(rejected.consumer.SmartConsumer method)

 	(rejected.consumer.SmartPublishingConsumer method)

Rejected Data Objects

Rejected data objects

	
class rejected.data.Measurement

	Common Measurement Object that provides common methods for collecting
and exposes measurement data that is submitted in
rejected.process.Process and rejected.consumer.Consumer
for submission to statsd or influxdb.

	Attributes

	counters

	Counters that are affected by
decr() and
incr()

	durations

	List of duration values (float or int)

	tags

	Tag key/value pairs for use with InfluxDB

	values

	Numeric values such as integers, gauges,
and such.

New in version 3.13.0.

	
add_duration(key, value)

	Add a duration for the specified key

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The value name

	value (float [https://docs.python.org/3/library/functions.html#float]) – The value

New in version 3.19.0.

	
decr(key, value=1)

	Decrement a counter.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to decrement

	value (int [https://docs.python.org/3/library/functions.html#int]) – The value to decrement by

	
incr(key, value=1)

	Increment a counter.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The key to increment

	value (int [https://docs.python.org/3/library/functions.html#int]) – The value to increment by

	
set_tag(key, value)

	Set a tag. This is only used for InfluxDB measurements.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The tag name

	value (str [https://docs.python.org/3/library/stdtypes.html#str] or bool [https://docs.python.org/3/library/functions.html#bool] or int [https://docs.python.org/3/library/functions.html#int]) – The tag value

	
set_value(key, value)

	Set a value.

	Parameters

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The value name

	value (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – The value

	
track_duration(key)

	Context manager that sets a value with the duration of time that it
takes to execute whatever it is wrapping.

	Parameters

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The timing name

	
class rejected.data.Message(connection, channel, method, properties, body, returned=False)

	Class for containing all the attributes about a message object creating a
flatter, move convenient way to access the data while supporting the legacy
methods that were previously in place in rejected < 2.0

	Attributes

	body

	The AMQP message body

	connection

	The name of the connection that the
message was received on.

	channel

	The channel that the message was
was received on.

	consumer_tag

	The consumer tag registered with RabbitMQ
that identifies which consumer registered
to receive this message.

	delivery_tag

	The delivery tag that represents the
deliver of this message with RabbitMQ.

	exchange

	The exchange the message was published to

	method

	The pika.spec.Basic.Deliver [https://pika.readthedocs.io/en/latest/modules/spec.html#pika.spec.Basic.Deliver] or
pika.spec.Basic.Return [https://pika.readthedocs.io/en/latest/modules/spec.html#pika.spec.Basic.Return] object
that represents how the message was
received by rejected.

	properties

	The BasicProperties [https://pika.readthedocs.io/en/latest/modules/spec.html#pika.spec.BasicProperties]
object that represents the message’s AMQP
properties.

	redelivered

	A flag that indicates the message was
previously delivered by RabbitMQ.

	returned

	A flag that indicates the message was
returned by RabbitMQ.

	routing_key

	The routing key that was used to deliver
the message.

	
class rejected.data.Properties(properties=None)

	A class that represents all of the field attributes of AMQP’s
Basic.Properties.

	Attributes

	app_id

	Creating application id

	content_type

	MIME content type

	content_encoding

	MIME content encoding

	correlation_id

	Application correlation identifier

	delivery_mode

	Non-persistent (1) or persistent (2)

	expiration

	Message expiration specification

	headers

	Message header field table

	message_id

	Application message identifier

	priority

	Message priority, 0 to 9

	reply_to

	Address to reply to

	timestamp

	Message timestamp

	type

	Message type name

	user_id

	Creating user id

Changelog

3.22.0

	Bump pika version from 0.13.1 to 1.2.0
- Update kwargs to basic_qos call since parameter names and order changed.
- Update kwargs to basic_consume call since parameter names and order changed.
- Update on_channel_closed callback to expect the closing_reason since the reply_code and reply_text were moved to attributes of the ChannelClosed exception.
- Set the callback as a kwarg for channel.confirm_delivery since new parameter was introduced.
- Renamed self.handle to self.connection in Connection class for reference to pika.tornado_connection.TornadoConnection.
- Add handling for new pika.exceptions.ConnectionWrongStateError [https://pika.readthedocs.io/en/latest/modules/exceptions.html#pika.exceptions.ConnectionWrongStateError] when closing channel or connection.
- Add support for ssl_options config parameters and deprecate ssl since it is no longer supported.

3.21.1

	FIXED an issue with a uncaught exception raised when connecting or reconnecting and can’t a socket can not be connected.

3.21.0

	FIXED multiple Python 3.9 issues
- Require helper >= 2.5.0, <3
- Fix helper.controller.Controller import path in rejected.controller
- Change from using a namedtuple to using a slotted Class due to issues pickling rejected.process.Callbacks
- Just use profile instead of switching between cProfile and profile
- Have helper fix log configuration after multiprocess popens the child process

3.20.10

	FIXED a bug in rejected.testing PublishedMessage body and properties being swapped for republished messages #41 [https://github.com/gmr/rejected/pull/41] - nvllsvm [https://github.com/nvllsvm]

3.20.9

	FIXED a bug in rejected.testing that was introduced in 3.20.8 #37 [https://github.com/gmr/rejected/pull/37] - nvllsvm [https://github.com/nvllsvm]

	FIXED a compatibility issue with Python 3.9 #38 [https://github.com/gmr/rejected/pull/38] - nvllsvm [https://github.com/nvllsvm]

3.20.8

	FIXED a bug in rejected.testing when using only positional arguments #36 [https://github.com/gmr/rejected/pull/36] - nvllsvm [https://github.com/nvllsvm]

	FIXED a defect in string formatting when raising an exception due to a missing setting

3.20.7

	Loosen the pin on pyyaml due to security issue

3.20.6

	FIXED an issue when TCP statsd fails to connect not calling the tcp on close callback

3.20.5

	When TCP statsd is enabled and the statsd client can not connect, shutdown rejected.process.Process

	
	Only log TCP statsd send_metric failures when the client believes it is connected

	
	If send_metric failure occurs and it believes it’s connected, shutdown rejected.process.Process

	Log state on AMQP connection failure

3.20.4

	FIXED initialize() getting called twice in rejected.testing

3.20.3

	Catch an operational exceptions when checking if a process is still alive

3.20.2

	Catch a few operational exceptions when starting a consumer process

3.20.1

	Don’t expect asyncio’s Futures to have exc_info().

3.20.0

	flake8 cleanup

	Update pins and minor fixes allowing support for Tornado 6, pika 0.13

3.19.21

	Better handle RabbitMQ connection failures, forced connection close, broker shutdowns, etc

3.19.20

	Address odd on_channel_closed() behavior with
spinning connection creation when pika.exceptions.ConnectionClosed [https://pika.readthedocs.io/en/latest/modules/exceptions.html#pika.exceptions.ConnectionClosed]
while trying to create a new channel.

3.19.19

	FIXED rejected.consumer.RejectedException to not blow up when an exception
was created with no args or kwargs.

3.19.18

	FIXED rejected.consumer.RejectedException log message formatting when
using format strings in the passed in value.

3.19.17

	Ensure exceptions are cast to strings when logging in rejected.consumer.Consumer

3.19.16

	FIXED on_open() when pika raises
pika.exceptions.ConnectionClosed [https://pika.readthedocs.io/en/latest/modules/exceptions.html#pika.exceptions.ConnectionClosed] when trying to create a new channel.

3.19.15

	FIXED on_channel_closed() when pika raises
pika.exceptions.ConnectionClosed [https://pika.readthedocs.io/en/latest/modules/exceptions.html#pika.exceptions.ConnectionClosed] when trying to create a new channel.

3.19.14

	Fix misnamed ACK_PROCESSING_EXCEPTIONS constant in processing logic

	Hard pin to pika 0.12.0 due to breaking changes in 0.13

3.19.13

	FIXED rejected.consumer.RejectedException to pull the metric and value
args from the kwargs instead of explicitly defining them. This allows for
consumers prior to 3.19 to experience the same metric style behavior as
before.

	ADDED ACK_PROCESSING_EXCEPTIONS class level attribute to rejected.consumer.Consumer
that allows a consumer to ack a ProcessingException
instead of rejecting it, constraining the use of dead-lettering in RbbitMQ
to :exc:`~rejected.consumer.MessageException`s.

3.19.12

	Loosen the pika pin to work with Python 3.7

3.19.11

	FIXED consumer cancellation handling to shutdown the connection

3.19.10

	Address shutdown and dead process bugs

3.19.9

	TCP statsd wants a linefeed

3.19.8

	FIXED statsd TCP configuration setting bug (str vs bool)

	Log setup exceptions

3.19.7

	ADDED ability to connect to statsd via TCP for submitting metrics

3.19.6

	ADDED ability to disable including the hostname when submitting stats to statsd

3.19.5

	Add SSL connection flag support to configuration #20 [https://github.com/gmr/rejected/pull/20] - code-fabriek [https://github.com/code-fabriek]

	Fix documentation for rejected.data.Measurement

	Alter logging levels for connection failures

	Add rejected.testing.AsyncTestCase.measurement

3.19.4

	Try to handle a MCP process cleanup race condition better (Sentry REJECTED-DA)

3.19.3

	Really fix a bug with the processing time and message age metrics

3.19.2

	Fix a bug with the processing time and message age metrics

	Catch a timeout when waiting on a zombie

3.19.1

	Fix a bug in the new durations code

3.19.0

	Sentry client changes:
- Do not assign version, let the client figure that out
- Do not specify the versions of loaded modules, let the client figure that out

	Add rejected.data.Measurement.add_duration, changing the behavior of
recorded durations, creating a stack of timings instead of a single timing
for the key. For InfluxDB submissions, if there is a only a single value,
that metric will continue to submit as previous versions. If there are multiple,
the average, min, max, median, and 95th percentile values will be submitted.

	Add rejected.consumer.Consumer.stats_add_duration

	Deprecate rejected.consumer.Consumer.stats_add_timing

	Deprecate rejected.consumer.Consumer.stats_add_timing

	Consumer tags are now in the format [consumer-name]-[os PID]

	Created a base exception class rejected.consumer.RejectedException

	rejected.consumer.ConsumerException, rejected.consumer.MessageException,
and rejected.consumer.ProcessingException extend rejected.consumer.RejectedException

	If a rejected.consumer.ConsumerException, rejected.consumer.MessageException,
or rejected.consumer.ProcessingException are passed a keyword of metric,
the consumer will automatically instrument a counter (statsd) or tag (InfluxDB)
using the metric value.

	rejected.consumer.ConsumerException, rejected.consumer.MessageException,
and rejected.consumer.ProcessingException now support “new style” string formatting,
automatically applying the args and keyword args that are passed into the creation
of the exception.

	Logging levels for exceptions changed:
- rejected.consumer.ConsumerException are logged with error
- rejected.consumer.MessageException are logged with info
- rejected.consumer.ProcessingException are logged with warning

	Fix the handling of child startup failures in the MCP

	Fix a bug where un-configured consumers caused an exception in the MCP

	Handle the edge case when a connection specified in the consumer config does not exist

	Refactor how the version of the consumer module or package is determined

	Add ProcessingException as a top-level package export

	Fix misc docstrings

	Fix the use of SIGABRT being used from child processes to notify the MCP when
processes exit, instead register for SIGCHLD in the MCP.

3.18.9

	Added rejected.testing.AsyncTestCase.published_messages() and rejected.testing.PublishedMessage

	Updated testing documentation

	Updated the setup.py extras install for testing to install all testing dependencies

	Made raven optional in rejected.testing

3.18.8

	Fix the mocks in rejected.testing

3.18.7

	Fix child process errors in shutdown

	Fix unfiltered connection list returned to a process, introduced in 3.18.4

3.18.6

	Move message age stat to Consumer, add method to override key

3.18.5

	Treat NotImplementedError as an unhandled exception

3.18.4

	Handle UNHANDLED_EXCEPTION in rejected.testing

	Add the rejected.consumer.Consumer.io_loop property

	Add the testing setup.py extras_require entry

3.18.3

	Fix rejected.consumer.Consumer.require_setting

3.18.2

	Fix the republishing of dropped messages

3.18.1

	Fix ProcessingException AMQP header property assignment

3.18.0

	Add connection as an attribute of channel in rejected.testing

	Refactor how error text is extracted in rejected.consumer.Consumer.execute

	When a message raises a ProcessingException, the string value of the exception is added to the AMQP message headers property

	Messages dropped by a consumer can now be republished to a different exchange

3.17.4

	Don’t start consuming until all connections are ready, fix shutdown

3.17.3

	Fix publisher confirmations

3.17.2

	Don’t blow up if stats is not defined in config

3.17.1

	Documentation updates

	Fix the test for Consumer configuration

3.17.0

	rejected.testing updates

	Add automatic assignment of correlation-id to rejected.consumer.Consumer

	Only use sentry_client if it’s configured

	Behavior change: Don’t spawn a process per connection, Spawn qty consumers with N connections

	Add State.is_active

	Add attributes for the connection the message was received on and if the message was published by the consumer and returned by RabbitMQ

	Deprecate PublishingConsumer and SmartPublishingConsumer, folding them into Consumer and SmartConsumer respectively

	Refactor to not have a singular channel instance, but rather a dict of channels for all connections

	Add the ability to specify a channel to publish a message on, defaulting to the channel the message was delivered on

	Add a property that indicates the current message that is being processed was returned by RabbitMQ

	Change Consumer._execute and Consumer._set_channel to be “public” but will hide from docs.

	
	Major Process refactor

	
	Create a new Connection class to isolate direct AMQP connection/channel management from the Process class.

	Alter Process to allow for multiple connections. This allows a consumer to consume from multiple AMQP broker connections or have AMQP broker connections that are not used for consuming. This could be useful for consuming from one broker and publishing to another broker in a different data center.

	Add new enabled flag in the config for statsd and influxdb stats monitoring

	Add a new behavior that puts pending messages sent into a collections.deque when a consumer is processing instead of just blocking on message delivery until processing is done. This could have a negative impact on memory utilization for consumers with large messages, but can be controlled by the qos_prefetch setting.

	Process now sends messages returned from RabbitMQ to the Consumer

	Process now will notify a consumer when RabbitMQ blocks and unblocks a connection

3.16.7

	Allow for any AMQP properties when testing

3.16.6

	Refactor and cleanup Sentry configuration and behavior

3.16.5

	Fix InfluxDB error metrics

3.16.4

	Update logging levels in rejected.consumer.Consumer._execute

	Set exception error strings in per-request measurements

3.16.3

	Better exception logging/sentry use in async consumers

3.16.2

	Fix a bug using -o in Python 3

3.16.1

	Add rejected.consumer.Consumer.send_exception_to_sentry

3.16.0

	Add rejected.testing testing framework

3.15.1

	Ensure that message age is always a float

3.15.0

	
	Sentry Updates

	
	Catch all top-level startup exceptions and send them to sentry

	Fix the sending of consumer exceptions to sentry

3.14.0

	Cleanup the shutdown and provide way to bypass cache in active_processes

	If a consumer has not responded back with stats info after 3 attempts, it will be shutdown and a new consumer will take its place.

	Add the consumer name to the extra values for logging

3.13.4

	Properly handle finishing in rejected.consumer.Consumer.prepare

	Fix default/class level config of error exchange, etc

3.13.3

	Fix rejected.consumer.Consumer.stats_track_duration

3.13.2

	Better backwards compatibility with rejected.consumer.Consumer “stats” commands

3.13.1

	
	Bugfixes:

	
	Construct the proper InfluxDB base URL

	Fix the mixin __init__ signature to support the new kwargs

	Remove overly verbose logging

3.13.0

	Remove Python 2.6 support

	Documentation Updates

	consumer.Consumer: Accept multiple MESSAGE_TYPEs.

	PublishingConsumer: Remove routing key from metric.

	Add per-consumer sentry configuration

	Refactor Consumer stats and statsd support

	
	Update to use the per-message measurement

	
	Changes how we submit measurements to statsd
- Drops some redundant measurements that were submitted
- Renames the exception measurement names

	Adds support for InfluxDB

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 rejected

 		
 Consumer Examples

 		
 Configuration File Syntax

 		
 Application

 		
 stats

 		
 influxdb

 		
 statsd

 		
 Connections

 		
 ssl_options

 		
 Consumers

 		
 Consumer Connections

 		
 Daemon

 		
 Logging

 		
 Logging Caveats

 		
 Troubleshooting

 		
 Configuration Example

 		
 Command-Line Options

 		
 Help

 		
 Consumer API

 		
 Message Type Validation

 		
 Republishing of Dropped Messages

 		
 Consumer Classes

 		
 Consumer

 		
 SmartConsumer

 		
 Exceptions

 		
 Testing Support

 		
 Example

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

