
reef Documentation
Release 0.1.0

Marco

Nov 29, 2018

Contents

1 Introduction 1

2 User’s guide 3
2.1 Terminology . 3
2.2 Outline . 4
2.3 Configuring fields . 4

3 Components reference 5
3.1 Text . 5
3.2 Choice . 8
3.3 Static . 10
3.4 Internal . 11

4 Integration guide 17
4.1 Initializing Reef . 17
4.2 Implementing internal requests . 19
4.3 Integrating the builder . 19
4.4 Integrating the form viewer . 22
4.5 Submitting the form using AJAX . 23
4.6 Presenting hardcoded forms . 24

5 Contribution guide 25
5.1 Creating a component . 25
5.2 Adding a locale . 32
5.3 Creating a layout . 33
5.4 Creating an extension . 34
5.5 Creating an icon set . 36

6 Indices and tables 37

i

ii

CHAPTER 1

Introduction

This is the documentation for Reef, the Responsive Embeddable Extensible Form generator for PHP.

Reef is an open source, framework agnostic form builder for PHP, providing functionality for building and showing
forms and receiving form submissions from users. Building forms can be done using either a drag and drop user
interface, a chaining PHP interface, or using YAML files or form definition arrays.

Reef requires PHP 7.2 or higher, and depends on the jQuery javascript library.

1

https://reefphp.gitlab.io/home/

reef Documentation, Release 0.1.0

2 Chapter 1. Introduction

CHAPTER 2

User’s guide

Reef provides a user interface for both managing and filling out forms. This user’s guide is intended to as documenta-
tion on how to manage forms using the form builder UI. For technical documentation on the Reef API or on extending
Reef, please refer to the integration guide or contribution guide, respectively.

2.1 Terminology

Before we start, let’s agree on some terminology first:

• A component is a type of input, e.g. a text input, dropdown or checkbox

• A field is a component inserted in a form. You may for example add a text input component to ask for a user’s
name, and use another text input component to ask for his favourite type of food

• A form is a collection of fields, e.g. you may compose a form asking for a user’s name, age and gender using a
text field, number field and radio (bullet selection) field

• A submission is form data submitted by the user

Additionally, the following terminology is used in configurations:

• A title represents text that is presented to the end user, often the user viewing a form. For installations using
multiple locales, titles can always be translated in these multiple locales.

• A name on the other hand represents the technical name of some object, for instance a field. A name may only
consist of lowercase alphanumeric characters and underscores, that is a-z, 0-9 and _, under the condition
that the name starts with a letter (a-z) and an underscore may not be followed by another underscore. These
technical names are used internally to identify the object you are configuring: the storage in the database will
be named after it, and the name can be used in conditions. In the builder, all objects always get assigned a valid
default name, so you are not required to name objects yourself, but you can change the name if necessary.

3

reef Documentation, Release 0.1.0

2.2 Outline

The process of creating a new form typically consists of:

1. Adding fields to your form

2. Configuring each field

3. Optionally, configuring the form itself

4. Saving the form

These actions have their own tabs in the interface, available in the top left.

1. In the leftmost tab, all available components are displayed, which you can drag into your form, or on which you
can click to append them to your form

2. When selecting a field you have added, the middle tab provides the possibility to configure the field in question

3. The rightmost tab may (or may not, depending on the integration) provide the possibility for some form config-
uration, after which you can also save the form here

2.3 Configuring fields

The fields are divided into a number of groups:

• Text input fields, in which users can type data

• Choice fields, where users can choose from a predefined set of choices

• Static fields, e.g. headings and paragraphs of text, that do not present any input possibility

• ‘Other’ fields, including any fields that do not fit in any of the above categories

Each component has its own specific set of configuration possibilities. A heading is quite simple: you can set the
size and the text. A number field can be configured quite extensively, providing possibilities to set e.g. a minimum,
maximum and default value, and the possibility to set custom error feedback texts.

The specific configuration settings of all components can be found in the components reference. Here, we will focus
on two general settings applying to almost all components.

2.3.1 Visible setting

You may wish to optionally show or hide fields, depending on data entered previously. For example, you may want to
ask for one’s telephone number after they have checked a checkbox asking whether they want to get in touch. In this
case, the telephone number field would be shown if the checkbox is ticked, or hidden otherwise. You can achieve this
by setting the ‘visible’ setting to ‘condition’, and configuring this property in the correct way. More on how to do this
can be found on the condition component page.

2.3.2 Required setting

Analogous to the visible setting, you may want to optionally require some fields. For instance, in the above example,
instead of hiding the telephone field if the box is not ticked, you may wish to show the field but not require it, and
only require it if the user indicates he wants to get in touch. In this case you can use a condition for the required
property. Of course you can also set it to ‘Yes’ or ‘No’ to either always or never require it. Again, more information
on conditions can be found on the condition component page.

4 Chapter 2. User’s guide

../components/index.html
../components/reef/condition.html
../components/reef/condition.html

CHAPTER 3

Components reference

Click on a reference below to view its guide.

3.1 Text

Text components allow the user to enter text. The entered value may be anything within the set boundaries.

3.1.1 Text line

The text line component allows the user to fill in a freeform text value consisting of one single line.

Table 1: Declaration parameters
Name Type Default

value
Description

Default
value

default

Text ‘’
(empty)

The default value

Max.
input
length

max_length

Number 1000 The maximum input length, in number of characters

5

reef Documentation, Release 0.1.0

Table 2: Language items
Name Description

Title
title

The field title/label

Placeholder
placeholder

The default gray background text

3.1.2 Textarea

The textarea component allows the user to fill in a (possibly large) freeform text value consisting of possibly multiple
lines.

Table 3: Declaration parameters
Name Type Default

value
Description

Default
value

default

Text ‘’
(empty)

The default value

Max.
input
length

max_length

Number 15000 The maximum input length, in number of characters

Table 4: Language items
Name Description

Title
title

The field title/label

Placeholder
placeholder

The default gray background text

6 Chapter 3. Components reference

reef Documentation, Release 0.1.0

3.1.3 Number

The number component allows the user to fill in a number. It adheres to the min/max/step construction that the HTML
element <input type="number"> uses.

Table 5: Declaration parameters
Name Type Default

value
Description

Default
value

default

Number ‘’
(empty)

The default value

Minimum
min

Number ‘’ for
none

The minimum value

Maximum
max

Number ‘’ for
none

The maximum value

Step
step

Number ‘’, im-
plies
‘1’

The step between values. Valid field values are defined by the sequence min,
min + step, min + 2*step, et cetera not exceeding max.

3.1. Text 7

reef Documentation, Release 0.1.0

Table 6: Language items
Name Description

Title
title

The field title/label

Validation error

error_not_a_number

Feedback text when the user has entered non-numeric input

Minimum error

error_number_min

Feedback text when the user has entered a value that is too low

Maximum error

error_number_max

Feedback text when the user has entered a value that is too high

Min/max error

error_number_min_max

Feedback text when the user has entered a value that is not within the set bounds

3.2 Choice

Choice components allow the user to choose between a predefined set of values, i.e. no manual input is requested.

3.2.1 Checkbox

The checkbox component presents the user with a single checkbox.

Table 7: Declaration parameters
Name Type Default

value
Description

Checked
by
default

default

Checkbox This option indicates the default value of the checkbox, either checked or not
checked

8 Chapter 3. Components reference

reef Documentation, Release 0.1.0

Table 8: Language items
Name Description

Title
title

The field title/label

Box label
box_label

A label near the checkbox

3.2.2 Checklist

The checklist component presents the user with a list of checkboxes, each of which can be independently checked.

Table 9: Declaration parameters
Name Type Default

value
Description

Options

options

Option
list

Each option added here represents a single checkbox that can be checked.
The checkbox indicates the default value of that option, either checked or not
checked. At least two options should be added. See Option list for more details.

Table 10: Language items
Name Description

Title
title

The field title/label

3.2.3 Choice list (radio buttons)

The choice list component allows the user to choose one of multiple options. In contrast to the Dropdown (select)
component, all options are always presented, with bullet points before the options that can be clicked to choose that
option.

Table 11: Declaration parameters
Name Type Default

value
Description

Options

options

Option
list

Each option added here represents a radio bullet to choose from. The checkbox
indicates the default value (at most one). At least two options should be added.
See Option list for more details.

3.2. Choice 9

./option_list.html
./select.html
./option_list.html

reef Documentation, Release 0.1.0

Table 12: Language items
Name Description

Title
title

The field title/label

3.2.4 Dropdown (select list)

The dropdown component allows the user to choose one of multiple options. In contrast to the Choice list (radio
buttons) component, only one options is presented, with the possibility to extend the field to show all options to
choose from.

Table 13: Declaration parameters
Name Type Default

value
Description

Options

options

Option
list

Each option added here represents an option to choose from. The checkbox
indicates the default value (at most one). At least two options should be added.
See Option list for more details.

Table 14: Language items
Name Description

Title
title

The field title/label

3.3 Static

Static components allow the creator of a form to add some text without an input field, to add some contextual infor-
mation to the form.

3.3.1 Heading

The heading component allows a form creator to add a title or heading to a form.

10 Chapter 3. Components reference

./radio.html
./radio.html
./option_list.html

reef Documentation, Release 0.1.0

Table 15: Declaration parameters
Name Type Default

value
Description

Level
level

Number 1 The heading level, may be a number from 1 to 6. A level 1 heading corresponds
to the HTML <h1> tag. Generally the level 1 heading is the largest heading,
while the a level 6 heading is the smallest.

Table 16: Language items
Name Description

Title
title

The title text

3.3.2 Paragraph

The paragraph component allows a form creator to add a paragraph of plain text.

Table 17: Declaration parameters
Name Type Default

value
Description

This component has no declaration parameters

Table 18: Language items
Name Description

Content
content

The paragraph text

3.4 Internal

Internal components are only meant to be used in the builder UI, hence they can not be used in forms. However, due
to their more elaborate configuration options, the following pages are still useful to end users.

3.4.1 Option list

The option list component is an internal component, and hence cannot be used in the builder. It is used as configuration
component in the builder however.

3.4. Internal 11

reef Documentation, Release 0.1.0

Option list in the builder

For components involving multiple predefined options, an option list is presented allowing you to fill in the options
the user is allowed to choose from. For each option, there are three settings to configure:

• Name: The name of the options. This is a technical name that can be used for e.g. conditions and overviews,
and hence should only consist of lowercase letters, numbers and underscores. If the names are not important,
the default names option_1, option_2, et cetera are perfectly fine to use. For more information on names,
please refer to the terminology.

• Title: The title of the option. This is the text that is presented to the user. When using multiple locales, you can
enter a different text for each locale.

• Checkbox: The checkbox often indicates whether the option is a default option, i.e. whether it is choosen by
default or not.

Both the name and checkbox may be absent from the option list, depending on the particular needs of the component.

Technical details

The option list allows the user to provide multiple options in multiple locales. Besides a name and localized title, a
checkbox can be utilized to provide a toggle for default options.

12 Chapter 3. Components reference

../../users_guide/index.html#terminology

reef Documentation, Release 0.1.0

Table 19: Declaration parameters
Name Type Default

value
Description

Min.
number
of
options

min_num_options

Number 2 The minimum amount of options the user should provide. Often, this should be
2

Max.
number
of
options

max_num_options

Number None The maximum amount of options the user may provide. By default, no explicit
limit is used

Min.
number
of
checked
defaults

max_checked_defaults

Number None The maximum amount of options the user may mark as default

Default
number
of
options

default_num_options

Number 3 The default number of options that is added when in the builder a new field is
added that uses an option list in its configuration

Ask
field
names
names

Checkbox true Whether names should be asked. Toggles the display of the name input fields

Default
options

default

Option
list

default_num_options
default
options

A list of default options

3.4. Internal 13

reef Documentation, Release 0.1.0

Table 20: Language items
Name Description

Title
title

The field title/label

3.4.2 Condition

The condition component is an internal component, and hence cannot be used in the builder. It is used as configuration
component in the builder however.

Conditions in the builder

Conditions provide you the possibility to perform certain actions based on values that the user filled in previously. If
you have two fields and only want to show field 2 if field 1 is filled in, this can be achieved using conditions. Reef itself
provides functionality to show or hide fields dependent on certain conditions, and to mark fields as required based on
certain conditions. These two settings are called ‘visible’ and ‘required’ respectively, for these settings, conditions
should be read as follows:

• visible: This field should be visible only if the following is true

• required: This field should be required only if the following is true

Note: Invisible fields cannot be required. However, you do not need to check this yourself: Reef checks this for you

In the builder, a condition can be set by either of four methods:

• ‘Yes’ (or true), indicating a positive result (e.g. the field should be visible)

• ‘No’ (or false), indicating a negative result (e.g. the field should not be visible)

• ‘Condition’, this option provides you with an interface to build a custom condition. More information below.

• ‘Manual condition’, this option is only provided for those who have enough technical knowledge to type condi-
tions themselves, and wish to create more complicated conditions

The condition interface

Any condition returns either yes/true or no/false (the first two of the four options above). Which of these two, depends
on the input of the user. In the interface, you can select three fields. Always select them from left to right!

• The first dropdown allows you to select the field which has to be used in the condition. By default, Reef
assigns names like field_123456789abcdef to fields, but you may change these names in order to ease
the condition building

• Dependent on the choice in the first dropdown, the second dropdown present different operators you can use.
These could for instance be checks for equality, checking a number is higher/lower than some number, et cetera

• Often, an operator in the second dropdown requires some operand, which can be chosen in the third and final
input. The exact behaviour of this last input varies per field and operator. Refer to their documentation for more
information.

14 Chapter 3. Components reference

reef Documentation, Release 0.1.0

The above holds for a single condition. However, you may wish to combine multiple conditions. E.g., ask A if B or C.
You can add multiple conditions using an and/or construction: B and C is true if both B and C are true, B or C is
true if at least one of B and C is true.

Technical details

The option list allows the user to provide multiple options in multiple locales. Besides a name and localized title, a
checkbox can be utilized to provide a toggle for default options.

Table 21: Declaration parameters
Name Type Default

value
Description

Default

default

Condition None A default condition

Table 22: Language items
Name Description

Title
title

The field title/label

3.4. Internal 15

reef Documentation, Release 0.1.0

16 Chapter 3. Components reference

CHAPTER 4

Integration guide

Before continuing, make sure you’ve read up on the terminology first.

Reef requires a reasonable amount of set-up and integration before it operates within your website. Depending on your
requirements, you will have to write code in these languages:

• In PHP, code for preparing the builder and forms, receiving submissions and passing them to Reef, and providing
feedback to the browser where required. In addition, an entry point should be created for internal requests. Most
likely, you will also have to check authorization here: determining who may create forms and who may fill them
in.

• In HTML, some code in which the resulting Reef HTML will be injected. Probably a wrapper <div> or the
like

• In JavaScript, creating an instance of the Reef or ReefBuilder class, in order for the interactive elements to
work

The integration is divided into four parts: the general Reef setup, implementing internal requests, builder integration
and form integration.

4.1 Initializing Reef

Reef is initialized in two steps: first you create a ReefSetup object, which is used to build to configuration. Then, by
passing this setup to a new Reef instance, the setup is frozen and checked. One of the main checks that is performed
is compatibility checks, checking that the components, extensions and layouts are compatible with each other. If not,
an exception is thrown.

An example of creating a Reef setup:

$Setup = new \Reef\ReefSetup(
new \Reef\Storage\PDO_MySQL_StorageFactory($YourPDOObject),
new \Reef\Layout\bootstrap4\bootstrap4(),
new \Reef\Session\PhpSession()

);

17

../users_guide/index.html#terminology

reef Documentation, Release 0.1.0

The first argument defines the specific storage class that is to be used, you can choose from
PDO_MySQL_StorageFactory, PDO_SQLite_StorageFactory and NoStorageFactory, of which the
latter can only be used if you do not want to store forms and submissions.

Note: When using one of the PDO factories, Reef requires the PDO attribute PDO::ATTR_ERRMODE to be set to
PDO::ERRMODE_EXCEPTION. Additionally, if you use MySQL, the connection charset should be set to utf8mb4.

The second argument defines the layout you want to use. Each layout has its own set of configurable options that you
can set at creation. Note you can also pass an array of layout objects.

The third argument specifies the session implementation to use. For most basic components, a session object is not
required, in which case you can use NoSession, but for example the reef:upload component requires a session
object.

After creating the ReefSetup object, one can start adding additional components and extensions. The ReefSetup is
initialized by default with some basic native components that need not be added manually:

• reef:text_line

• reef:textarea

• reef:checkbox

• reef:radio

• reef:check_list

• reef:text_number

• reef:heading

• reef:paragraph

• reef:hidden

• reef:option_list

• reef:select

• reef:condition

• reef:submit

Other components, from reef-extra, a third-party developer, or from yourself, can be added to this list using
ReefSetup::addComponent(). For example, to add the upload component, one would do:

$Setup->addComponent(new \Reef\Components\Upload\UploadComponent);

Similarly, one can add extensions using ReefSetup::addExtension(). By default, no extensions are loaded
into Reef. To load the reef-extra::required-stars extension, you could for instance do:

$Setup->addExtension(new \ReefExtra\RequiredStars\RequiredStars);

Once the setup is finished, one can initialize Reef itself:

$Reef = new \Reef\Reef(
$Setup,
[

'cache_dir' => './cache/',
'locales' => ['en_US'],
'internal_request_url' => './reefrequest.php?hash=[[request_hash]]',

(continues on next page)

18 Chapter 4. Integration guide

reef Documentation, Release 0.1.0

(continued from previous page)

]
);

The second parameter here is an array of configuration settings. The cache dir defines where Reef may put cache
files. It is not optional, as currently the assets functionality relies on caching being present. The locales setting defines
which locales to use. You can pass any number of locales here; passing multiple locales allows you to switch between
locales and creating forms in these multiple locales. The internal_request_url setting defines the entry point
of internal requests. Internal requests are used for assets like JS and CSS files and images, while it also provides the
possibility for callacks to PHP for e.g. uploading files. This setting is also non-optional. More options are available,
these can all be found TODO.

This concludes this section on creating the Reef object. Next we will use it to integrate the builder into your website.

4.2 Implementing internal requests

Before we start integrating the builder or form, we should start with one prerequisite: the internal requests entry point.

With the internal request URL configured as above, the request hash will be available to the internal request controller
in $_GET['hash']. This hash should be passed to Reef in the following way, using the $Reef object as created
above:

$Reef->internalRequest($_GET['hash']??null, [
'form_check' => function($Form) {

// Check that user is allowed to view $Form
},
'submission_check' => function($Submission) {

// Check that user is allowed to view $Submission
},

]);

The result of the internal request can be anything: JS code, CSS code, an image or, more generally, any (binary) file.
Make sure your code can handle this.

At this stage, you probably do not yet know how to check whether a user is allowed to view something. For the time
being, we can leave them empty. When finished, you can implement them. If a user is not allowed to view view
the given form or submission, you should make sure to stop execution by either throwing an exception or exiting the
script.

Important: The internal requests URL can be called with both GET and POST methods, so be sure the code answers
to both of these.

4.3 Integrating the builder

Note: If you do not want to use the builder interface, you can skip this section

To integrate the builder, we expect a $Reef object is available, as generated in the previous section. Getting a builder
object is not hard. Actually, it is as easy as:

4.2. Implementing internal requests 19

reef Documentation, Release 0.1.0

$Builder = $Reef->getBuilder();

Next you may want to change some settings:

$Builder->setSettings([
'submit_action' => 'path/to/builder/submit',
'definition_form_creator' => function($Creator) {

// ...
},
'components' => [

// ...
],

]);

The available settings are:

• The submit_action is the entry point to which the builder data (the form configuration) may be submitted
(POSTed).

• The definition_form_creator is a callback function with which you can modify the form configuration
form (read: the form containing the form configuration). By default, this form contains a storage_name field
which you may or may not want (you may delete it, but then you should provide your own value programmati-
cally when submitting, more on that further below), and you may add your own configuration values.

• The components array defines which components you want your users to be able to use in the builder. It
should (of course) be a subset of the components added to your Reef setup. You can also add and remove
components using Builder::addComponents() and Builder::removeComponents().

Next, we want to display the builder. Before creating the builder, we have to create the form we want
to edit. An existing stored form can be fetched using $Form = $Reef->getForm($i_formId);,
a new form can be created using $Form = $Reef->newTempStorableForm(['storage_name' =>
'some_unique_table_name']);. Note that the storage name should match a certain format, please refer to the
information on names on in the terminology.

Having obtained the form, we can obtain the HTML as follows:

$s_html = $Builder->generateBuilderHtml($Form, [
'definition_submission' => [

// ...
],

]);

The definition_submission setting is optional, and can provide values for fields you added to the form con-
figuration form you added earlier to the definition_form_creator.

The JS code can be obtained using:

$s_js = $Reef->getReefAssets()->getJSHTML('builder', [
'exclude' => [

'jquery',
'popper',
'bootstrap4',

],
]);

Here, exclude defines which libraries your website has already loaded and hence should not be included again. The
CSS code can be obtained similarly using getCSSHTML().

Include the JS and CSS code in your <head>, and the $s_html in somewhere in your <body>, like:

20 Chapter 4. Integration guide

../users_guide/index.html#terminology

reef Documentation, Release 0.1.0

<div class="builderWrapper">
<?php echo($s_html); ?>

</div>

At this stage you should be able to see the builder interface on your builder page. However, it will not be interactive
yet, as we have not done anything with JavaScript yet. To attach javascript, you use something like:

var builder;
$(function() {

builder = new ReefBuilder('.builderWrapper', {
submit_before : function(ajaxParams) {

ajaxParams.data.some_custom_variable = "some_custom_value";
}

});
});

The first argument defines the element where the builder HTML resides in. In this case we use the div.
builderWrapper as used above. The second argument may contain some settings. The submit_before setting
may be used to alter the AJAX request to the server before performing it; it can be used to add additional parameters.
Of course, you can also ommit the second argument.

Having added the javascript, reloading the builder interface you should now have achieved an interactive builder. The
last step remaining is implementing the submit entry point.

Once a user saves a form, a request is POSTed to the submit_action URL provided in the $Builder settings,
with the form data in the $_POST['builder_data'] variable. In most cases, you will want to do something
along these lines:

$Builder->processBuilderData_write($Form, $_POST['builder_data'], function(&$a_return,
→˓ $DefinitionSubmission) use(&$Form) {

if($a_return['result']) {
// Here you may want to perform some database actions of your own,

→˓probably saving $Form->getFormId() somewhere

$a_return['redirect'] = 'some/url/to/redirect/to/after/success';
}

});

Important: Note that in order for the updater to be able to correctly migrate the old form state to the new form
state, you will need to use the same $Builder and $Form objects in both generateBuilderHtml() and
processBuilderData_write().

The processBuilderData_write() method processes the builder data, which might be a two-step process:

• In the first request, the JS builder indicates no data loss is permitted. If the updater recognizes that dataloss
might or will occur, the form is not updated and information about the data loss is returned instead, asking the
user whether he/she really wants to do this.

• If the user accepts data loss, another request is done, with the indication that data loss is permitted.

When the builder may proceed, the form is migrated from the old state to the new state. After the
form has been migrated successfully to the new state, the callback you may pass to the third argument of
processBuilderData_write() is performed. Note that whenever you want to use $Form in the callback,
you have to pass it by reference, as the form in the new state will be a new Form instance. The first parameter of the
callback ($a_return) contains the data returned to the JS builder. If $a_return['result'] is truthy, the form
has updated successfully. You may provide an URL for redirect to redirect the user to on success. The second

4.3. Integrating the builder 21

reef Documentation, Release 0.1.0

parameter of the callback ($DefinitionSubmission) contains the submission of the form configuration form. If
you used definition_form_creator earlier on to augment this form, here is your chance to read out the values
the user submitted.

This concludes the integration of the builder into your website. While you cannot yet view and fill out the forms
themselves, you should now be able to create and edit forms. You can also implement a delete function using
$Form->delete();.

Note: If there are no submissions to a form, the builder will never complain about data loss as there is no data to be
lost. Keep this in mind if you are testing the builder integration at this stage.

4.4 Integrating the form viewer

To integrate the form viewer, we expect a $Form object is available, created in the builder and loaded through
$Reef->getForm() or $Reef->getFormByUUID().

To view the form, we need a Submission object. For a new submission, this can be created using:

$Submission = $Form->newSubmission();
$Submission->emptySubmission();

To edit an existing submission stored by Reef, you can use:

$Submission = $Form->getSubmission($i_yourSubmissionId);

Now you can obtain the form HTML using:

$s_html = $Form->generateFormHtml($Submission, ['main_var' => 'form_data']);

You may also pass null for $Submission, in this case automatically a new submission will be used. The
main_var defines which $_POST entry should be used for the form data.

In a similar way as with the builder, you can fetch the JS code using:

$Form->getFormAssets()->getJSHTML('form', [
'exclude' => [

'jquery',
'popper',
'bootstrap4',

],
]);

The CSS code can be obtained using getCSSHTML().

The HTML and JavaScript required to create an interactively checked form will look like this:

<form action="path/to/submission/submit" method="post" onsubmit="return reef.
→˓validate();">

<div class="form-wrapper">
<?php echo($s_html); ?>

</div>
</form>

<script>
var reef;

(continues on next page)

22 Chapter 4. Integration guide

reef Documentation, Release 0.1.0

(continued from previous page)

$(function() {
reef = new Reef($('.form-wrapper'));

});
</script>

In the controller behind the action URL, you can save the submission using:

if($Submission->processUserInput($_POST['form_data']??[])) {
// Successfully saved. Here you can redirect or take some other action

}

Here, processUserInput() is a utility function performing fromUserInput(), validate() and save()
inside a SQL transaction.

Tip: If you use the same controller for the view and submit actions, using e.g.
if($_SERVER['REQUEST_METHOD'] == 'POST') to distinguish them, you should put this call to
processUserInput() before generateFormHtml(). In this way, generateFormHtml() will include
any validation errors if these occurred and JavaScript did (or could) not catch them!

You may probably want to also include functionality to delete a submission, this can be done using
$Submission->delete();. With this last note, this concludes the integration of the form viewer.

Attention: Don’t forget to implement the form and submission permission checks in your internal request imple-
mentation!

4.5 Submitting the form using AJAX

You may wish to submit your form submissions through AJAX rather than through a standard POST request. In this
case, the following changes should be applied compared to the instructions in the previous section.

You should give the <form> element an id (e.g. <form id="submission_form" ...>), and then use:

reef = new Reef($('.form-wrapper'), {
submit_url : 'path/to/submission/submit',
submit_form : $('#submission_form')

});

You can of course also implement your own submit call, using reef.validate() for validation.

In your submit PHP, you can then do something along the lines of:

$Submission->fromUserInput($_POST['form_data']??[]);
if($Submission->validate()) {

$Submission->save();
}
else {

$a_return = [
'errors' => $Submission->getErrors(),

];

echo(json_encode($a_return));

(continues on next page)

4.5. Submitting the form using AJAX 23

reef Documentation, Release 0.1.0

(continued from previous page)

die();
}

When errors occur, the automatic reef JS submitter will recognize the errors entry and add the errors to the respec-
tive fields. When implementing your own submit call, you can use reef.addErrors(response.errors); to
achieve this.

4.6 Presenting hardcoded forms

You may want to present forms that are not saved by Reef, and store the submissions yourself. In this case, the
following changes should be applied compared to the instructions in the integration section.

First, you will not be loading the $Form from Reef but creating it yourself. You could do this using the Creator object,
like this:

$Form = $Reef->newTempForm();
$Form->newCreator()

->addField('reef:text_line')
->setName('name')
->setLocale(['title' => 'Your name'])

->apply();

Next, we need to replace the processUserInput() call with the following:

$Submission->fromUserInput($_POST['form_data']??[]);
if($Submission->validate()) {

$a_yourStructuredData = $Submission->toStructured();
// Save the data

}

Now, $a_yourStructuredData contains a structured representation of the submission data. You may for exam-
ple json_encode() it and save it in a file or database.

The last line that needs to be replaced is the getSubmission() line, to import the data from the structured data
representation:

$Submission = $Form->newSubmission();
$Submission->fromStructured($a_yourStructuredData);

Important: Note that not all components may be compatible with this way of using Reef. Forms that are not
saved within Reef for example lack the ability to (reliably) use the filesystem functionality, and hence cannot use the
reef:upload component.

24 Chapter 4. Integration guide

CHAPTER 5

Contribution guide

There are multiple ways you can customize, extend or contribute to Reef. Most of these can be done by using mecha-
nisms provided by Reef, such as for layouts or components. A guide for each of these types is available below:

5.1 Creating a component

The best way to create a component is probably by looking how other components are built up, and copying from
them. In addition, this guide will help you to better understand what is going on.

5.1.1 Terminology

Please remember the following terminology, in addition to the basic terminology:

• A component is a complete set of PHP, HTML, JS & CSS code that defines the behaviour of a specific type of
user input, being for instance a text field, checkbox or heading.

• A field is an instance of a component added to a form, complete with filled-in configuration values such as field
name (=technical name!), field title (as shown to users), and things like placeholders, default values, required
status, visibility conditions et cetera.

• A field value is an object entirely devoted to reading, parsing, validating and saving the value a user submitted
to a field.

Additionally:

• The structured storage methods toStructured() and fromStructured() define how the value of the
field should be registered in PHP. The structured format is a mixed format: it may be e.g. an int, string, (multi-
dimensional) array, et cetera.

• The flat storage methods toFlat() and fromFlat() define how the value of the field should be stored in
the database. It has a more restricted format: toFlat() should return a one-dimensional array of data, where
each entry in the array corresponds to one column in the database table created for the form. A component may
use any number of entries in the flat representation; either 0, 1 or more, as desired.

25

../../users_guide/index.html#terminology

reef Documentation, Release 0.1.0

5.1.2 Directory structure

A component has a specific directory structure:

src
js (or css)

{view_name}.js (e.g. form.js)
{layout_name}-{view_name}.js (e.g. bootstrap4-form.js)

locale
{locale_name}.yml (e.g. en_US.yml)

view
{layout_name} (e.g. bootstrap4)

form.mustache
submission.mustache

config.yml
{view_name}.css (e.g. form.css)
{view_name}.js (e.g. form.js)
{component_name}Component.php
{component_name}Field.php
{component_name}Value.php

Here, view_name can be either form, submission, builder or all. When using a specific view, the js/css
file is only included when required (i.e., when that view is loaded). When using all, the js/css file is always included
whenever the component is used.

You can put a general JS or CSS file in the root src dir, or put it in the js/css subdirectory. Additionally, you can place
JS and CSS files in the js/css subdirectory with a filename {layout_name}-{view_name}.js/css to specify
code for a specific layout.

In the locale folder, you can add translations in multiple languages. Note that the keys used in this file also need to be
registered in the config.yml file.

In the view folder, all HTML code is situated, using Mustache as templating engine, in PHP as well as in Javascript.
For each supported layout, you should add two view files, form.mustache and submission.mustache.

The file config.yml defines the general properties of your component.

The three PHP files contain the PHP code of your extension. The component file contains general functionality, the
field file contains functionality for fields (component instances in the form), and the value file contains functionality
for parsing, validating and processing submitted values.

5.1.3 Specifics

Components come with a relatively large number of options you can use, hence we split this guide into four sections:

Configuration file

The configuration file defines most of the settings of your component. If contains the name, used locale entries,
declaration form and condition operators.

In general, your config.yml will look like this:

vendor: vendor_name
name: component_name
category: text
documentation: https://link-to-your-docs
assets:

(continues on next page)

26 Chapter 5. Contribution guide

reef Documentation, Release 0.1.0

(continued from previous page)

component_image: img/component-image.svg
basicLocale:

title: rf_field_title
advancedLocale:

error_too_long: error_too_long_title
internalLocale:

error_empty:
basicDefinition:

fields: []
advancedDefinition:

fields: []
props: []
builder_operators:

empty: is empty
nempty: is not empty

Required values

The vendor name and component name should be names according to the conventional definition within Reef. The
category can be one of the builder categories, e.g. text, choice, static or other. These three values (vendor, name,
category) are always required. The component_image defines the path to the image file of this component, used
in the builder. When the component is to be used in the builder, this value is also required.

Optional values

Locale and definition

The basic/advanced variants define whether to place the specific item in the basic tab or advanced tab in the builder.
The basicLocale and advancedLocale contain key: value pairs where:

• value is the locale name of the title of the text input in the builder, i.e. the text presented to the form maker.
These are typically also present in a locale .yml file, either the component locale or the general reef locale.

• key is the locale name of the locale value, i.e. the text filled in by the form maker and presented to the form
submitter

Additionally, internalLocale is an array of locale keys in the form key: (empty), where each key is a value
present in the the component or reef locale files.

The definition arrays contain a (possibly empty) list of field declarations. These declarations define the custom config-
uration values for the component, e.g. a default value, placeholder, max input length, et cetera. The name, required
and visible fields are automatically added by Reef, depending on the PHP implementations.

You may also have a props entry, which may hold a value that should not be presented in the builder. It is for example
used in the text_line component to define a regexp value. Each entry in props is a hash with both a name and a
default value.

Operators and props

There is also the builder_operators entry, defining which condition operators are supported. It holds an array
of key: value pairs where:

5.1. Creating a component 27

reef Documentation, Release 0.1.0

• key is the name of the operator, which is used to translate the operator name in the locale file (where
operator_{operator name} is used)

• value is the operator as used in conditions. This should be an english name, just as in most programming
languages

Creating the component & component class

Components define specific types of input: a text field, checkbox, dropdown, et cetera. Reef provides some basic
components, but you can write components yourself to introduce custom input types.

Component member functions

The main component class should extend the abstract class \Reef\Components\Component. Each component
should have a unique name set by the const COMPONENT_NAME constant, and the directory that the component
code resides in should be given by the getDir() method. The getDir() implementation should be something
along the lines of:

public static function getDir() : string {
return __DIR__.'/';

}

In addition, components have the possibility to use a number of different methods:

__construct()

The __construct() function is not used by the Component base class, and hence can without limitations be used
by the component itself for initialization purposes.

init()

The init() function can be used to initialize the component. It is called as soon as the component is added to the
Reef setup class. The difference with the __construct() method is that init() receives the Reef setup object
as first parameter, allowing you to use the entire Reef setup here.

getCSS() and getJS()

You can use the getCSS() and getJS() functions to add any (remote) CSS/JS assets the component requires. Each
of these methods should return an array of arrays, where each contained array is an associative array defining an asset
using the following entries:

type => 'local' (in component directory) or 'remote' (over http(s))
path => path or url to the file
view => for which view(s) to load, one of 'form', 'submission', 'builder' or 'all'.
→˓Optional, defaults to 'all'
name => canonical name (required for remote files). Allows Reef to recognize when two
→˓plugins want to include the same library, and to make sure it does not include them
→˓twice.
integrity => Optionally, an integrity value for remote files

28 Chapter 5. Contribution guide

reef Documentation, Release 0.1.0

checkSetup()

The checkSetup() function can be used to check the component configuration. It is called by the checkSetup()
function in the Reef setup class, which is called as soon as a Reef object is created. In this method you can check
whether any dependencies are present that should be present, and whether there are any incompatibilities.

validateDeclaration()

The validateDeclaration() function is performed whenever a field declaration (possibly belonging to a form
definition) is validated. You can override it to perform any custom checks. For example, the reef:text_number
components checks whether the range max is not lower than the range min. By default this function returns true
indicating a valid declaration, but this may change in the future, so be sure to call this method and use its result
in your child class implementation. If you require the form context of the field in your check, you may better use
Field::validateDeclaration().

requiredComponents()

The requiredComponents() function returns an array of component names that are required to be present for the
component to work. The main component class determines this list automatically based on the basicDefinition
and advancedDefinition of the component configuration. However, you may need to augment this array a bit
in specific cases.

nativelySupportedLayouts()

The nativelySupportedLayouts() function can be used to override the layouts supported by the component,
if it uses templating. If you do not, you may override this function to return null.

addLayout()

Probably you cannot support each layout that’s around. Hence, if a layout wishes to build in support for this com-
ponent, the addLayout() function can be used by the layout to add a layout directory for that layout for this
component.

getConfiguration()

This function returns the configuration array of the component. The result is cached for performance. The configura-
tion is determined based on the component and its parent components; however do note that component inheritance is
not fully developed yet.

internalRequest()

Internal requests routed to this component arrive here. Internal requests serve as communication method between
the browser and PHP, to aid interactivity. Depending on the request hash (the first argument), you may return
anything to the browser, like an image, JSON object, et cetera. The request paths of components are formed like
component:{component_vendor_name}:{component_component_name}:{custom_request_hash},
where custom_request_hash is the hash passed to Component::internalRequest().

5.1. Creating a component 29

reef Documentation, Release 0.1.0

The field class

Field are instances of components, in the sense that a field is a component assigned to a form. The form and component
objects can be fetched using getForm() and getComponent().

Field member functions

The field class should extend the abstract class \Reef\Components\Field.

Fields have the possibility to use a number of different methods:

__construct()

The __construct() function is not used by the Field base class, and hence can without limitations be used by
the component itself for initialization purposes.

getDeclaration

The function getDeclaration returns the declaration of the field, as an array.

checkSetup()

The checkSetup() function can be used to check the component configuration. It is called by the checkSetup()
function in the Reef setup class, which is called as soon as a Reef object is created. In this method you can check
whether any dependencies are present that should be present, and whether there are any incompatibilities.

validateDeclaration()

The validateDeclaration() function is performed whenever a field declaration (possibly belonging to a form
definition) is validated. You can override it to perform any custom checks, but be sure you also include the result of this
method in your child class implementation. This method is equivalent to Component::validateDeclaration,
with the added possibility of using the form context of the field.

getFlatStructure()

The getFlatStructure() function should return an array of columns to be used in the database table for this
field. We distinguish three cases:

1. If the field requires multiple columns in the database table, the result of this array should be an associative array
with the column name as key and the column specification as value.

2. Otherwise, if the field requires only one column in the table, you may use either an associative array as above,
or a numeric array with one entry having key 0 (zero), with as value again a column specification.

3. If the field requires no storage, you may return an empty array [].

Note that this function is abstract in Field, hence it should always be implemented. A column specification is an
array defining what type of table column to create for the field. It can consist of the following entries:

• type: Either \Reef\Storage\Storage::TYPE_INTEGER, ::TYPE_TEXT, ::TYPE_BOOLEAN or
::TYPE_FLOAT.

30 Chapter 5. Contribution guide

reef Documentation, Release 0.1.0

• min: For ::TYPE_INTEGER, the minimum possible value to be stored

• max: For ::TYPE_INTEGER, the maximum possible value to be stored

• limit: For ::TYPE_TEXT, the maximum number of characters to be stored (note: characters, not bytes!)

Schema update functions

The needsSchemaUpdate() function is called before performing a form update (when editing a stored form). By
default it returns false, but you may perform custom checks to return true whenever you need the schema update
functions (beforeSchemaUpdate, afterSchemaUpdate) to be called. Note that by default, these functions
are also always called whenever the flat structure or field name changes with the update. Hence, you only need to
implement this method if you have some custom logic going on within your columns.

The functions beforeSchemaUpdate, beforeDelete and afterSchemaUpdate are called within the form
update process on the moments the names suggest. They are passed a data array with useful variables, for specifics
refer to their docblocks.

updateDataLoss()

The updateDataLoss() function can be used to indicate whether a field update will lead to data loss. It is checked
before updating a form; if there is (possible) dataloss the user is first asked whether he/she wants to proceed. This
method is always called on the new field, and receives the old field instance as first argument. It should return either
\Reef\Updater::DATALOSS_NO if there is a guarantee there is no dataloss, ::DATALOSS_DEFINITE if there
is a guarantee there will be dataloss, or ::DATALOSS__POTENTIAL otherwise.

getOverviewColumns()

This function should return an array with the same keys as getFlatStructure, but with values containing the
title of the fields that can be used in an overview table or CSV file.

View functions

The methods view_form and view_submission are called whenever the form HTML or submission HTML are
generated, respectively. It receives the FieldValue to generate the view for as first parameter, and an option array
as second. It should return an array of view variables to be used in mustache. You may override this method to modify
the result, but then you should always call the parent function and use its result.

internalRequest()

Internal requests routed to this field arrive here. Internal requests serve as communication method be-
tween the browser and PHP, to aid interactivity. Depending on the request hash (the first argument),
you may return anything to the browser, like an image, JSON object, et cetera. The request paths of
fields are formed like form:{form_uuid}:field:{field_name}:{custom_request_hash}, where
custom_request_hash is the hash passed to Field::internalRequest().

5.1. Creating a component 31

reef Documentation, Release 0.1.0

The field value class

Warning: Work in progress

Javascript

Warning: Work in progress

5.2 Adding a locale

In contrast to other plugin types, for locales no PHP classes are required to be implemented. You only have to define
the translations of the locale in question.

You can either write the required locale files and send a merge request to Reef including them, or add locales on the
fly using setLocale(). The locale name is an IETF language tag with the dash (-) replaced with an underscore (_).
All plugins should always include a en_US locale, others may be added as desired.

5.2.1 Adding a locale to Reef (merge request)

If you want to add locale files to Reef in a merge request, you will have to translate the following files into your desired
locale:

• locale/en_US.yml

• src/Components/{{component_name}}/locale/en_US.yml (for each component)

Create a merge request containing translations of these files, and we may merge them into Reef.

5.2.2 Adding/setting locale on the fly

You may want to override some locale or add some custom locale. This can be done on multiple levels:

1. At the very base, Reef defines some language strings in locale/en_US.yml, which can be edited using
\\Reef\\Reef::setLocale().

2. On top of the Reef locale, language strings may also be set on component level by using
\\Reef\\Components\\Component::setLocale(). These can also be set in the component locale
file residing in locale/en_US.yml relative to the component directory.

3. On top of the Reef locale, language strings may also be set on form level by using
\\Reef\\Form\\Form::setLocale().

4. On top of the Form and Component locale, language strings may also be set on field level by using
\\Reef\\Components\\Field::setLocale(). For a field, translations are fetched in the following
order or prevalence: field, form, component, reef.

The setLocale(string $s_locale, string[] $a_locale) method is shared between these classes,
and receives the locale name as its first parameter, and list of translations as second parameter.

32 Chapter 5. Contribution guide

reef Documentation, Release 0.1.0

5.3 Creating a layout

Layouts define how forms look like within Reef. By default, Reef ships with the Bootstrap 4 layout, but any other
layout can also be added and used.

5.3.1 Layout member functions

Layouts should extend the abstract class \Reef\Layout\Layout. Each layout should have a unique name returned
by the getName() method, and the directory that the layout code resides in should be given by the getDir()
method. Just as with components, the getDir() implementation should be something along the lines of:

public static function getDir() : string {
return __DIR__.'/';

}

In addition, layouts have the possibility to use a number of different methods:

__construct()

The __construct() function is not used by the Layout base class, and hence can without limitations be used by
the layout itself for initialization purposes.

init()

The init() function can be used to initialize the layout. It is called just before Reef starts checking the entire setup.
The difference with the __construct() method is that init() receives the Reef setup object as first parameter,
allowing you to use the entire Reef setup here.

getCSS() and getJS()

Just as with components, you can use the getCSS() and getJS() functions to add any (remote) CSS/JS assets the
layout requires.

getConfig()

The getConfig() function should return the current configuration of the layout.

view()

The view() function should return an array of template variables that should be passed to the template parser. These
will be available in Mustache using {{layout.the_var_name}}.

5.3.2 Template files

Naturally, for layouts most work will probably not be in the PHP code, but rather in the Mustache templates. Templates
should be added for both the form view (when a user fills in the form) and the submission view (when a user views
the filled in values). These two templates should be present for the form itself, allowing you to wrap all fields in some
wrapping HTML, and for each component you wish to support (at least all Reef base components).

5.3. Creating a layout 33

reef Documentation, Release 0.1.0

For each component layout, you should consider adding the following hook template keys to your template files:

• [[form_label_before]] before the form label in form.mustache

• [[form_label_append]] within the form label, after the text, in form.mustache

• [[form_label_after]] after the form label in form.mustache

• [[form_input_before]] before the form input in form.mustache

• [[form_input_after]] before the form input in form.mustache

• [[submission_label_before]] before the form label in submission.mustache

• [[submission_label_after]] after the form label in submission.mustache

• [[submission_input_before]] before the form input value in submission.mustache

• [[submission_input_after]] before the form input value in submission.mustache

In addition, each component template file should have a base HTML tag <div class="form-group"> at least
containing the following declarations:

<!-- for form.mustache: -->
<div class="form-group {{CSSPRFX}}field {{#field.hasErrors}}{{CSSPRFX}}invalid{{/
→˓field.hasErrors}} {{field.field_classes}}" data-{{CSSPRFX}}type="reef:the_component_
→˓name" data-{{CSSPRFX}}name="{{field.name}}" {{{field.visible}}}>
<!-- for submission.mustache: -->
<div class="form-group {{CSSPRFX}}field {{field.field_classes}}" data-{{CSSPRFX}}type=
→˓"reef:the_component_name" data-{{CSSPRFX}}name="{{field.name}}" {{{field.visible}}}>

Of source, the errors and name parts are only required if they are applicable to the component in question.

5.4 Creating an extension

Extensions can be used to extend Reef in ways that are not possible using any of the other methods. You can add
extensions to for example add configuration values to components or add some HTML to fields.

5.4.1 Extension member functions

Extensions should extend the abstract class \Reef\Extension\Extension. Each extension should have a
unique name returned by the getName() method, and the directory that the extension code resides in should be
given by the getDir() method. Just as with components, the getDir() implementation should be something
along the lines of:

public static function getDir() : string {
return __DIR__.'/';

}

In addition, extensions have the possibility to use a number of different methods:

__construct()

The __construct() function is not used by the Extension base class, and hence can without limitations be used
by the extension itself for initialization purposes.

34 Chapter 5. Contribution guide

reef Documentation, Release 0.1.0

init()

The init() function can be used to initialize the extension. It is called as soon as the extension is added to the Reef
setup class. The difference with the __construct() method is that init() receives the Reef setup object as first
parameter, allowing you to use the entire Reef setup here.

getCSS() and getJS()

Just as with components, you can use the getCSS() and getJS() functions to add any (remote) CSS/JS assets the
extension requires.

checkSetup()

The checkSetup() function can be used to check the extension configuration. It is called by the checkSetup()
function in the Reef setup class, which is called as soon as a Reef object is created. In this method you can check
whether any dependencies are present that should be present, and whether there are any incompatibilities.

nativelySupportedLayouts()

The nativelySupportedLayouts() function can be used to override the layouts supported by the extension, if
it uses templating. If you do not, you may override this function to return null.

addLayout()

Probably you cannot support each layout that’s around. Hence, if a layout wishes to build in support for this extension,
the addLayout() function can be used by the layout to add a layout directory for that layout for this extension.

getSubscribedEvents()

This function can be used to define listeners to events. Events are triggered by Reef (or e.g. an other exten-
sion) in order for extensions to be able to hook on. Each event has a unique name, in the form {vendor}.
{event_name}. The getSubscribedEvents function returns an associative array defining a mapping between
event names and function names. For example, if you wish to perform the (self-defined) extension member function
component_configuration() when the reef.component_configuration event is triggered, you may
use:

public static function getSubscribedEvents() {
return [

'reef.component_configuration' => 'component_configuration',
];

}

The component_configuration() function then receives an associative array of variables passed by the event.
Make sure you fetch these by reference in order to be able to edit them:

public function component_configuration(&$a_vars) {
// ...

}

5.4. Creating an extension 35

reef Documentation, Release 0.1.0

5.4.2 Layout hooks

You can add HTML to layouts using layout hooks. A template hook is defined by a template hook tag [[...]]
containing a template hook name, e.g. [[form_input_after]], a hook after the input in a component form
template. If you define a file ./view/{layout_name}/{hook_name}.mustache in your extension, this
template will be inserted at the position of the hook in the HTML. The hook tags are preprocessed and cached by Reef
before being passed to Mustache, hence:

1. you should empty the Reef cache after editing a hook file, as Reef does not check modifications of hook files
for performance reasons,

2. you have complete access to the entire scope of the mustache template you are hooking into, including any
variables you may have added using the reef.component_configuration event.

5.5 Creating an icon set

Using icon sets, you can customize the icons used within Reef to use your own set of icons. In practice, an icon set is
actually just an extension including some hook template files. For more information on how extensions work, please
refer to the page on extensions. For an example of an icon set extension, you can take a look at the FA4IconSet.

36 Chapter 5. Contribution guide

https://gitlab.com/reefphp/reef-extra/fontawesome4

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

37

	Introduction
	User’s guide
	Terminology
	Outline
	Configuring fields

	Components reference
	Text
	Choice
	Static
	Internal

	Integration guide
	Initializing Reef
	Implementing internal requests
	Integrating the builder
	Integrating the form viewer
	Submitting the form using AJAX
	Presenting hardcoded forms

	Contribution guide
	Creating a component
	Adding a locale
	Creating a layout
	Creating an extension
	Creating an icon set

	Indices and tables

