
RedPRL Documentation

The RedPRL Development Team

Jun 07, 2018

Contents

1 Features 3

2 Papers & Talks 5

3 RedPRL User Guide 7
3.1 Tutorial . 7
3.2 Language reference . 11
3.3 Atomic judgments . 13
3.4 Multiverses . 15
3.5 Refinement rules . 16
3.6 Indices . 31
3.7 Acknowledgments . 31

i

ii

RedPRL Documentation

RedPRL is an experimental proof assistant based on cubical computational type theory, which extends the Nuprl
semantics by higher-dimensional features inspired by homotopy type theory. RedPRL is created and maintained by
the RedPRL Development Team.

RedPRL is written in Standard ML, and is available for download on GitHub.

Contents 1

http://www.nuprl.org/
https://github.com/RedPRL/sml-redprl/blob/master/CONTRIBUTORS.md
http://sml-family.org/
http://github.com/redprl/sml-redprl

RedPRL Documentation

2 Contents

CHAPTER 1

Features

• computational canonicity and extraction

• univalence as a theorem

• strict (exact) equality types

• coequalizer and pushout types

• functional extensionality

• equality reflection

• proof tactics

3

RedPRL Documentation

4 Chapter 1. Features

CHAPTER 2

Papers & Talks

• Favonia. Cubical Computational Type Theory & RedPRL. 2018.

• Harper, Angiuli. Computational (Higher) Type Theory. ACM POPL Tutorial Session 2018.

• Angiuli, Harper, Wilson. Computational Higher-Dimensional Type Theory. POPL 2017.

• Sterling, Harper. Algebraic Foundations of Proof Refinement. Draft, 2016.

5

http://favonia.org/files/chtt-penn2018-slides.pdf
https://www.cs.cmu.edu/~rwh/talks/POPL18-Tutorial.pdf
https://www.cs.cmu.edu/~rwh/papers/chitt/popl17.pdf
https://www.cs.cmu.edu/~redprl/afpr.pdf

RedPRL Documentation

6 Chapter 2. Papers & Talks

CHAPTER 3

RedPRL User Guide

3.1 Tutorial

We will walk through parts of examples/tutorial.prl, which was the live demo of RedPRL in our POPL
2018 tutorial on Computational (Higher) Type Theory. For further guidance, we recommend that new users consult
the many other proofs in the examples/ subdirectory.

RedPRL is a program logic for a functional programming language extended with constructs for higher-dimensional
reasoning. A proof in RedPRL is a tactic script that constructs a program (or extract) and demonstrates that it inhabits
the specified type.

3.1.1 Getting started

Let’s start by defining the function that negates a boolean:

theorem Not :
(-> bool bool)

by {
lam b =>
if b then `ff else `tt

}.

The lam b => tactic introduces a variable b : bool in the context, if then else performs a case split, and
each branch is resolved by a boolean literal (`ff and `tt). We can inspect the proof state at any point using a hole.
Replace `ff with ?the-tt-case, and run RedPRL again:

?the-tt-case.
Goal #0.

b : bool

bool

7

https://existentialtype.wordpress.com/2018/01/15/popl-2018-tutorial/
https://existentialtype.wordpress.com/2018/01/15/popl-2018-tutorial/

RedPRL Documentation

That is, the current subgoal has type bool, and b : bool is in scope. Replace ?the-tt-case with `ff once
again, and follow this theorem by:

print Not.

The print command displays the theorem statement and its extract. In this case, we can prove Not with the extract
directly:

theorem NotDirect :
(-> bool bool)

by {
`(lam [b] (if [_] bool b ff tt))

}.

In general, we might not have a particular extract in mind, or establishing the type of that extract may require non-
trivial reasoning, so we typically choose (or are forced) to use interactive tactics rather than specifying extracts.

RedPRL has a notion of exact, extensional equality of programs, written =. For example, applying Not twice is equal
to the identity function. (Function application is written $.)

theorem NotNot :
(->
[b : bool]
(= bool ($ Not ($ Not b)) b))

by {
lam b => auto

}.

This instance of auto cases on b, and in each case simplifies the left-hand side and supplies a reflexive equality. (For
example, the subgoal (= bool tt tt) is handled by the refinement rule refine bool/eq/tt.)

Families of types respect equality of indices. For example, suppose we have a boolean-indexed family of types
family. By virtue of the equation we just proved, an element of the type ($ family b) is also an element of the
type ($ family ($ Not ($ Not b))):

theorem RespectEquality :
(->
[family : (-> [b : bool] (U 0))]
[b : bool]
($ family b)
($ family ($ Not ($ Not b))))

by {
lam family b pf =>
rewrite ($ NotNot b); // equation to rewrite along
[with b' => `($ family b') // what to rewrite (i.e., b')
, use pf
];
auto

}.

Here, (U 0) is a universe (the “type of small types”). The rewrite tactic rewrites the argument to family along
the equality (= bool ($ Not ($ Not b)) b) given by ($ NotNot b), taking pf : ($ family b)
to a proof of ($ family ($ Not ($ Not b)))).

Surprisingly, the extract is just a constant function: (lam [x0 x1 x2] x2)! The reason is that at runtime, for any
particular b, the types ($ family b) and ($ family ($ Not ($ Not b)))) will be exactly the same, so
there’s no need for a coercion.

8 Chapter 3. RedPRL User Guide

RedPRL Documentation

3.1.2 Cubical reasoning

RedPRL also includes a notion of path similar to the identity type of homotopy type theory. Like equations, paths are
respected by the constructs of type theory. However, while respect for equations is silent, respect for paths affects the
runtime behavior of programs.

In RedPRL, paths are mediated by dimension variables abstractly representing how the path varies over an interval.
Nested paths of paths are indexed by multiple dimension variables, and therefore trace out squares, cubes, hypercubes,
etc., hence the name cubical type theory. A reflexive path depends degenerately on a dimension variable:

theorem Refl :
(->
[ty : (U 0)]
[a : ty]
(path [_] ty a a))

by {
lam ty a =>
abs _ => `a

}.

The abs _ => tactic is analogous to lam a => but introduces dimension variables rather than ordinary variables.

Paths form a groupoid: they can be composed and reversed; composition is associative (up to a path) and has Refl as
unit (up to a path); etc. These operations all follow from a single operation, homogeneous Kan composition (hcom),
which produces the fourth side of a square given the other three, or the sixth side of a cube given the other five, etc.
The details of this operation are beyond the scope of this tutorial, but the following illustration demonstrates how to
compose paths p and q using hcom:

--- x p
| ---------
y | |

a | | q
| |
a.........c

That is, if p goes from a to b, and q goes from b to c, then we can form a square with p on top, q on the right, and the
constantly-a path on the left; the bottom must therefore be a path from a to c. The concrete notation is given below
(where (@ p x) applies the path p to the dimension variable x as argument).

theorem PathConcat :
(->
[ty : (U 0 kan)]
[a b c : ty]
[p : (path [_] ty a b)]
[q : (path [_] ty b c)]
(path [_] ty a c))

by {
lam ty a b c p q =>
abs x =>
`(hcom 0~>1 ty (@ p x) [x=0 [_] a] [x=1 [y] (@ q y)])

}.

Another source of paths is Voevodsky’s univalence principle, stating that any equivalence (isomorphism-up-to-paths)
between types gives rise to a path between those types. We apply this principle to the isomorphism between (->
bool ty) and (* ty ty) sending a function to the pair ({ , }) of its output on tt and ff.

3.1. Tutorial 9

RedPRL Documentation

theorem FunToPair :
(->
[ty : (U 0 kan)]
(-> bool ty)
(* ty ty))

by {
lam ty fun =>
{`($ fun tt), `($ fun ff)}

}.

theorem PathFunToPair :
(->
[ty : (U 0 kan)]
(path [_] (U 0 kan) (-> bool ty) (* ty ty)))

by {
lam ty => abs x =>
// see tutorial.prl for omitted proofs

}.

Respect for paths follows from an explicit coercion operation (coe). We can coerce along the path ($
PathFunToPair ty) from left to right (0~>1), taking an element of (bool -> ty) to (ty * ty).

theorem RespectPaths :
(->
[ty : (U 0 kan)]
(-> bool ty)
(* ty ty))

by {
lam ty fun =>
`(coe 0~>1 [x] (@ ($ PathFunToPair ty) x) fun)

}.

Unlike rewrite, uses of coe are reflected in the extract, because they affect computation. Indeed, an element of
(bool -> ty) is not literally an element of (ty * ty), and there is more than one isomorphism between these
types! A major benefit of cubical type theory over homotopy type theory is that coercions actually compute: if we
apply RespectPaths to the identity function, we get exactly the pair {`tt,`ff}.

theorem ComputeCoercion :
(=
(* bool bool)
($ RespectPaths bool (lam [b] b))
(tuple [proj1 tt] [proj2 ff]))

by {
auto

}.

Experts: though paths in RedPRL are defined by dimension variables rather than the refl and J operators of
homotopy type theory, J is definable using coercion and homogeneous Kan composition (but will not compute to d
on refl).

theorem J(#l:lvl) : // parametrized over any universe level #l
(->
[ty : (U #l kan)]
[a : ty]
[fam : (-> [x : ty] (path [_] ty a x) (U #l kan))]
[d : ($ fam a (abs [_] a))]
[x : ty]

(continues on next page)

10 Chapter 3. RedPRL User Guide

RedPRL Documentation

(continued from previous page)

[p : (path [_] ty a x)]
($ fam x p))

by {
lam ty a fam d x p =>
`(coe 0~>1
[i] ($ fam

(hcom 0~>1 ty a [i=0 [_] a] [i=1 [j] (@ p j)])
(abs [j] (hcom 0~>j ty a [i=0 [_] a] [i=1 [j] (@ p j)]))) d)

}.

3.2 Language reference

RedPRL documents contain expressions written in multiple languages: the top-level vernacular, the object language,
and the tactic language.

3.2.1 Top-level vernacular

The top-level vernacular is a very simple language of commands that interact with the signature: this language is for
declaring new theorems, definitional extensions and tactics; the top-level vernacular can also be used to print out an
object from the signature. This is the language that one writes in a .prl file.

Defining theorems

A theorem in RedPRL is given by a type (an object language expression) together with a tactic script which establishes
that the given type is inhabited; when a theorem is declared, the tactic script is executed against the goal, and if the
result is successful, the generated evidence is added to the signature.

theorem OpName(#p : ...) :
// goal here (object language expression)

by {
// script here (tactic expression)

}.

Most definitions in a RedPRL signature will take the form of theorems; but other forms of definition may be preferable,
depending on circumstances.

Defining new operators

The most primitive way to define a new operator in RedPRL is to use the define command. A definition is specified
by giving an operator name (which must be capitalized), together with a (possibly empty) sequence of parameters
together with their valences, and an object-language term which shall be the definiens:

define OpName(#p : [dim].exp, ...) : exp =
// object language expression here

.

A parameter is referenced using a metavariable (which is distinguished syntactically using the # sigil); the valence
of a parameter specifies binding structure, with [tau1,tau2].tau being the valence of a binder of sort tau that
binds a variable of sort tau1 and a variable of sort tau2.

A simple definition of sort exp without parameters can be abbreviated as follows:

3.2. Language reference 11

RedPRL Documentation

define OpName =
// object language expression here

.

Definitions of this kind are not subject to any typing conditions in CHTT; instead, if you use a primitive definition
within a proof, you will have to prove that it is well-typed.

Defining tactics

A tactic can be defined using the special tactic command:

tactic OpName(#p : ...) =
// tactic expression here

.

This desugars to an instance of the define command, and differs only in that the body of the definiens is here parsed
using the grammar of tactic expressions.

Printing objects

To print a previously-defined object from the signature, one can write the following command:

print OpName.

When to use theorems or definitions?

As a rule of thumb, in most cases it is simpler to interactively construct an element of a type using a theorem
declaration than it is to define a code for an element, and then prove that it has the intended type. This is why theorems
are usually preferred to definitions in RedPRL.

However, definitions may be preferable in some cases; consider the definition of an abbreviation for the type family
(lam [ty] (-> nat ty)) of sequences. As a theorem, this definition must take a universe level as a parameter

define Sequence(#l : lvl) :
(-> [ty : (U #l)] (U #l))

by {
// apply function introduction rule in the tactic language
lam ty =>
// explicitly give the body of the function in the object language
`(-> nat ty)

}.

Later, when using this definition, one would have to explicitly provide the universe level, even though it does not play
a part in the actual defined object: for instance, (Sequence #lvl{0}). The parameter was present only in order
to express the type of the type family. On the other hand, with a definition, we can write the following:

define Sequence =
(lam [ty] (-> nat ty))

.

One advantage of theorems over definitions is that RedPRL knows their type intrinsically; whereas definitions must
be unfolded and proved to be well-typed at each use-site.

12 Chapter 3. RedPRL User Guide

RedPRL Documentation

3.2.2 Object language

RedPRL’s object language and tactic language share a common syntactic framework based on multi-sorted second-
order abstract syntax, which provides a uniform treatment of binding with syntactic sorts. RedPRL has three main
sorts: exp (the sort of expressions), dim (the sort of dimension expressions) and tac (the sort of tactic expressions).

The object language is written in a variant of s-expression notation, with binding operators written systematically in
the style of (lam [x] x). An expression in the object language is an untyped program or realizer in the language
of Computational Higher Type Theory (CHTT).

These expressions include ordinary programming constructs like lambda abstraction and application, records, projec-
tion, etc., as well as cubical programming constructs inspired by cubical sets. Below are summarized common forms
overlapping with other calculi.

Ordinary Operation Expression
dependent function type (-> [x y ... : ty] ... ty)
lambda abstraction (lam [x y ...] e)
function application ($ f e1 e2 ...)
dependent record type (record [lbl ... : ty] ..)
tuple (record element) (tuple [lbl e] ...)
record projection (! lbl e)

The cubical extension is characterized by a new sort of expressions, dimension expressions along with many new
operations. A dimension expression can be a dimension variable i, representing an interval, or a dimension constant
0 or 1, representing one of its end point.

Cubical Operation Expression
coercion (coe r~>s [i] ty e)
homogeneous composition (hcom r~>s ty cap [i=0 [j] tube0] ...)
path type (path [i] ty e0 e1)
line type (-> [i : dim] ... ty)
path/line abstraction (abs [i j ...] e)
path/line application (@ e r1 r2 ...)
univalence (V a b e)

Todo: Finish summary of object language terms.

3.2.3 Tactic language

Todo: Summarize tactic language

3.3 Atomic judgments

RedPRL currently has five forms of atomic (non-hypothetical) judgments that may appear in subgoals.

1. Truth asserts that a type is inhabited.

2. Type equality asserts an equality between two types.

3.3. Atomic judgments 13

RedPRL Documentation

3. Subtyping asserts a subtyping relation.

4. Subkinding asserts that some type is actually a universe in which all types has a particular kind.

5. Term lets the user give an expression.

Note that these judgment forms differ from our semantic presentations in papers.

3.3.1 Truth

A truth judgment

a true

or simply

a

means a is an inhabited type. Any inhabitant can realize this judgment. For example, the expression 1 realizes

int

because 1 is in the type int. This is commonly used to state a theorem or specify the type of the program to be
implemented. In fact, all top-level theorems (see Defining theorems) must be in this judgmental form.

3.3.2 Type equality

A type equality judgment

a = b type

means a are b are equal types (without regard to universe level), and its realizer must be ax, the same as the realizer
of equality types. For example, we have

int = int type

realized by ax. Multiverses are supported through kind markers such as kan or discrete:

a = b discrete type
a = b kan type
a = b coe type
a = b hcom type
a = b pre type

where a = b kan type means a and b are equal Kan types. (The judgment a = b type is really an abbrevi-
ation of a = b pre type because pre is the default kind.) Following the PRL family of proof assistants which
use partial equivalence relations, well-typedness is defined as the equality of the type and itself; to save some typing,
a type stands for a = a type and a kan type stands for a = a kan type.

In the presence of universes and equality types, one might wonder why we still have a dedicated judgmental form for
type equality. That is, one may intuitively treat the judgment

a = b type

as (= (U l) a b) true for some unknown universe level l. It turns out to be very convenient to state type
equality without specifying the universe levels; with this, we survived without a universe level synthesizer as the one
in Nuprl, which was created to alleviate the burden of guessing universe levels.

14 Chapter 3. RedPRL User Guide

RedPRL Documentation

3.3.3 Subtyping

A subtype judgment

a <= b type

states that a is a subtype of b. More precisely, the partial equivalence relation associated with a is a subrelation of the
one associated with b. The realizer must be ax. There is no support of kind markers because the subtyping relation
never takes additional structures into consideration.

This is currently used whenever we only need a subtyping relationship rather than type equality. For example, if a
function f is in type (-> a b), the rule to determine whether the function application ($ f x) is in type b' will
only demand b <= b' type rather than b = b' type. That said, the only non-trivial subtyping relation one can
prove in RedPRL now is the cumulativity of universes. One instance would be

(U 0 discrete) <= (U 1 kan)

realized by ax.

3.3.4 Subkinding

The following are subkind judgments:

a <= discrete universe
a <= kan universe
a <= coe universe
a <= hcom universe
a <= pre universe

They assert that a is a subuniverse of the universe of the specified kind at the omega level. Intuitively, a <= k
universe would be the subtyping judgment a <= (U omega k) type if we could internalize universes at the
omega level. The realizer must be ax. These judgments play the same role as subtyping judgments except that they
handle the cases where the right hand side is some omega-level universe. Suppose a function f is in type (-> a
b). The rule to determine whether the function application ($ f x) is a type will demand b <= pre universe
rather than b = (U omega) type (or b = (U l) type for some universe level l).

3.3.5 Term

A term judgment is displayed in the sort of the expression it is asking for, for example:

dim
exp

The realizer is the received term from the user. This is used to obtain motives or dimension expressions. For example,
the rewrite tactic requires users to specify the parts to be rewritten by fulfilling term subgoals.

3.4 Multiverses

Todo: To Infinity. . . and Beyond!

3.4. Multiverses 15

RedPRL Documentation

3.5 Refinement rules

3.5.1 Booleans

bool/eqtype

H >> bool = bool in (U #l #k)

bool/eq/tt

H >> tt = tt in bool

bool/eq/ff

H >> ff = ff in bool

bool/eq/if

H >> (if [x] (#c0 x) #m0 #t0 #f0) = (if [x] (#c1 x) #m1 #t1 #f1) in #ty
where H >> #m0 = #m1 synth ~> bool, psi
| H >> #t0 = #t1 in (#c0 tt)
| H >> #f0 = #f1 in (#c0 ff)
| H, x:bool >> (#c0 x) = (#c1 x) type
| psi
| H >> (#c0 #m0) <= #ty type

3.5.2 Natural numbers and integers

nat/eqtype

H >> nat = nat in (U #l #k)

nat/eq/zero

H >> (nat 0) = (nat 0) in nat

nat/eq/succ

H >> (succ #n) = (succ #m) in nat
| H >> #n = #m in nat

16 Chapter 3. RedPRL User Guide

RedPRL Documentation

nat/eq/nat-rec

H >> (nat-rec [x] (#c0 x) #m0 #n0 [a b] (#p0 a b)) = (nat-rec [x] (#c1 x) #m1 #n1 [a
→˓b] (#p1 a b)) in #ty
| H >> #m0 = #m1 in nat
| H >> #n0 = #n1 in (#c0 (nat 0))
| H, a:nat, b:(#c0 a) >> #p0 a b = #p1 a b in (#c0 (succ a))
| H, x:nat >> (#c0 x) = (#c1 x) type
| H >> (#c0 #m0) <= #ty type

int/eqtype

H >> int = int in (U #l #k)

int/eq/pos

H >> (pos #m) = (pos #n) in int
| H >> #m = #n in nat

int/eq/negsucc

H >> (negsucc #m) = (negsucc #n) in int
| H >> #m = #n in nat

int/eq/int-rec

H >> (int-rec [x] (#e0 x) #m0 [a] (#n0 a) [b] (#p0 b)) = (int-rec [x] (#e1 x) #m1 [a]
→˓(#n1 a) [b] (#p1 b)) in #ty
| H >> #m0 = #m1 in int
| H, b:nat >> (#p0 b) = (#p1 b) in #e0 (pos b)
| H, a:nat >> (#n0 a) = (#n1 a) in #e0 (negsucc a)
| H, x:int >> (#e0 x) = (#e1 x) type
| H >> (#e0 m0) <= #ty type

3.5.3 Void

void/eqtype

H >> void = void in (U #l #k)

3.5.4 Circle

s1/eqtype

3.5. Refinement rules 17

RedPRL Documentation

H >> S1 = S1 in (U #l #k)
where kan <= #k universe

s1/eq/base

H >> base = base in S1

s1/eq/loop

H >> loop #r = loop #r in S1

s1/eq/fcom

H >> (fcom #i~>#j #cap0 [#r/0=#s/0 [k] (#t0/0 k)] ... [#r/n=#s/n [k] (#t0/n k)])
= (fcom #i~>#j #cap1 [#r/0=#s/0 [k] (#t1/0 k)] ... [#r/n=#s/n [k] (#t1/n k)]) in

→˓S1
| H >> #cap0 = #cap1 in S1
| H, k:dim, #r/0=#s/0 >> (#t0/0 k) = (#t1/0 k) in S1
| ...
| H, k:dim, #r/n=#s/n >> (#t0/n k) = (#t1/n k) in S1
| H, k:dim, #r/0=#s/0, #r/1=#s/1 >> (#t0/0 k) = (#t1/1 k) in S1
| H, k:dim, #r/0=#s/0, #r/2=#s/2 >> (#t0/0 k) = (#t1/2 k) in S1
| ...
| H, k:dim, #r/n-1=#s/n-1, #r/n=#s/n >> (#t0/n-1 k) = (#t1/n k) in S1
| H, #r/0=#s/0 >> #cap0 = (#t0/0 #i) in S1
| ...
| H, #r/n=#s/n >> #cap0 = (#t0/n #i) in S1

s1/eq/s1-rec

H >> (S1-rec [x] (#c0 x) #m0 #b0 [u] #l0) = (S1-rec [x] (#c1 x) #m1 #b1 [u] #l1) in
→˓#ty
| H >> #m0 = #m1 in S1
| H >> #b0 = #b1 in (#c0 base)
| H, u:dim >> (#l0 u) = (#l1 u) in (#c0 (loop u))
| H >> (#l0 0) = #b0 in (#c0 base)
| H >> (#l0 1) = #b0 in (#c0 base)
| H, x:S1 >> (#c0 x) = (#c1 x) kan type
| H >> (#c0 #m0) <= #ty type

s1/beta/loop

H >> (S1-rec [x] (#c x) (loop #r) #b [u] (#l u)) = #m in #ty
| H >> (#l #r) = #m in #ty
| H, #r=0 >> #b = #m in #ty
| H, #r=1 >> #b = #m in #ty

18 Chapter 3. RedPRL User Guide

RedPRL Documentation

3.5.5 Dependent functions

fun/eqtype

H >> (-> [x : #a0] (#b0 x)) = (-> [x : #a1] (#b1 x)) in (U #l #k)
where

(#k/dom, #k/cod) <-
(discrete, discrete) if #k == discrete
(coe, kan) if #k == kan
(pre, hcom) if #k == hcom
(coe, coe) if #k == coe
(pre, pre) if #k == pre

| H >> #a0 = #a1 in (U #l #k/dom)
| H, x:#a0 >> (#b0 x) = (#b1 x) in (U #l #k/cod)

fun/eq/lam

H >> (lam [x] (#e0 x)) = (lam [x] (#e1 x)) in (-> [x : #a] (#b x))
| H, x:#a >> (#e0 x) = (#e1 x) in (#b x)
| H >> #a type

fun/intro

H >> (-> [x : #a] (#b x)) ext (lam [x] (#e x))
| H, x:#a >> (#b x) ext (#e x)
| H >> #a type

fun/eq/eta

H >> #e = #f in (-> [x : #a] (#b x))
| H >> (lam [x] ($ #e x)) = #f in (-> [x : #a] (#b x))
| H >> #e = #e in (-> [x : #a] (#b x))

fun/eq/app

H >> ($ #f0 #e0) = ($ #f1 #e1) in #ty
where H >> #f0 = #f1 synth ~> (-> [x : #a] (#b x)), psi
| H >> #e0 = #e1 in #a
| psi
| H >> (#cod #e0) <= #ty type

3.5.6 Records

record/eqtype

3.5. Refinement rules 19

RedPRL Documentation

H >> (record [lbl/a : #a0] ... [lbl/b : (#b0 lbl/a ...)])
= (record [lbl/a : #a1] ... [lbl/b : (#b1 lbl/a ...)])
in (U #l #k)

where
(#k/hd, #kltl) <-
(discrete, discrete) if #k == discrete
(kan, kan) if #k == kan
(hcom, kan) if #k == hcom
(coe, coe) if #k == coe
(pre, pre) if #k == pre

| H >> #a0 = #a1 in (U #l #k/hd)
| ...
| H, x : #a0, ... >> (#b0 x ...) = (#b1 x ...) in (U #l #k/tl)

Todo: The choice of kinds #k/hd and #k/tl looks a little fishy; is this exactly what would be generated if a record
were encoded as an iterated sigma type?

record/eq/tuple

H >> (tuple [lbl/a #p0] ... [lbl/b #q0])
= (tuple [lbl/a #p1] ... [lbl/b #q1])
in (record [lbl/a : #a] ... [lbl/b : (#b lbl/a ...)])

| H >> #p0 = #p1 in #a
| ...
| H >> #q0 = #q1 in (#b #p0 ...)
| ...
| H, x:#a, ... >> (#b x ...) type

record/eq/eta

H >> #e0 = #e1 in (record [lbl/a : #a] ... [lbl/b : (#b lbl/a ...)])
| H >> (tuple [lbl/a (! lbl/a #e0)] ... [lbl/b (! lbl/b #e0)])
| = #e1 in (record [lbl/a : #a] ... [lbl/b : (#b lbl/a ...)])
| H >> #e0 in (record [lbl/a : #a] ... [lbl/b : (#b lbl/a ...)])

record/eq/proj

H >> (! lbl #e0) = (! lbl #e1) in #ty
where H >> #e0 = #e1 synth ~> (record [lbl0 : #a0] ... [lbl : (#a ...)] ...), psi
| psi
| H >> (#a (! lbl0 #e0) ...) <= #ty type

record/intro

H >> (record [lbl/a : #a] ... [lbl/b : (#b lbl/a ...)])
ext (tuple [lbl/a #p/a] ... [lbl/b #p/b])

| H >> #a ext #p/a
| ...

(continues on next page)

20 Chapter 3. RedPRL User Guide

RedPRL Documentation

(continued from previous page)

| H >> (#b #p/a ...) ext #p/b
| ...
| H, x:#a, ... >> (#b x ...) type

3.5.7 Paths

path/eqtype

H >> (path [u] (#a0 u) #m0 #n0) = (path [u] (#a1 u) #m1 #n1) in (U #l #k)
where

#ka <-
discrete if #k == discrete
kan if #k == kan
hcom if #k == hcom
kan if #k == coe
pre if #k == pre

| H, u:dim >> (#a0 u) = (#a1 u) in (U #l #ka)
| H >> #m0 = #m1 in (#a0 0)
| H >> #n0 = #n1 in (#a0 1)

path/eq/abs

H >> (abs [v] (#m0 v)) = (abs [v] (#m1 v)) in (path [v] (#a v) #p0 #p1)
| H, v:dim >> #m0 v = #m1 v in (#a v)
| H >> (#m0 0) = #p0 in (#a 0)
| H >> (#m0 1) = #p1 in (#a 1)

path/intro

H >> (path [u] (#a u) #p0 #p1) ext (abs [u] (#m u))
| H, u:dim >> (#a u) ext (#m u)
| H >> (#m 0) = #p0 in (#a 0)
| H >> (#m 1) = #p1 in (#a 1)

path/eq/eta

H >> #m = #n in (path [u] (#a u) #p0 #p1)
| H >> (abs [u] (#m u)) = #n in (path [u] (#a u) #p0 #p1)
| H >> #m = #m in (path [u] (#a u) #p0 #p1)

path/eq/app

H >> (@ #m0 #r) = (@ #m1 #r) in #ty
where H >> #m0 = #m1 synth ~> (path [u] (#a u) #p0 #p1), psi
| psi
| H >> (#a #r) = #ty type

3.5. Refinement rules 21

RedPRL Documentation

path/eq/app/const

H >> (@ #m #r) = #p in #a
where

H >> #m = #m synth ~> (path [x] (#ty x) #p0 #p1), psi
#pr <-
#p0 if #r == 0
#p1 if #r == 1

| H >> #pr = #p in #a
| psi
| H >> #ty #r <= #a type

path/eq/from-line

H >> #m0 = #m1 in (path [x] (#ty x) #n0 #n1)
| H >> #m0 = #m1 in (line [x] (#ty x))
| H >> #n0 = (@ #m0 0) in (#ty 0)
| H >> #n1 = (@ #m1 1) in (#ty 1)

3.5.8 Lines

line/eqtype

H >> (line [u] (#a0 u)) = (line [u] (#a1 u)) in (U #l #k)
where

#ka <-
discrete if #k == discrete
kan if #k == kan
hcom if #k == hcom
kan if #k == coe
pre if #k == pre

| H, u:dim >> (#a0 u) = (#a1 u) in (U #l #ka)

line/eq/abs

H >> (abs [u] (#m0 u)) = (abs [u] (#m1 u)) in (line [u] (#a u))
| H, u:dim >> #m0 u = #m1 u in (#a u)

line/intro

H >> (line [u] (#a u)) ext (abs [u] (#m u))
| H, u:dim >> (#a u) ext (#m u)

line/eq/eta

H >> #m = #n in (line [u] (#a u))
| H >> #m in (line [u] (#a u))
| H >> (abs [u] (@ m u)) = #n in (line [u] (#a u))

22 Chapter 3. RedPRL User Guide

RedPRL Documentation

line/eq/app

H >> (@ #m0 #r) = (@ #m0 #r) in #ty
where H >> #m0 = #m1 synth ~> (line [u] (#a u)), psi
| psi
| H >> (#a #r) <= #ty type

3.5.9 Pushouts

pushout/eqtype

H >> (pushout #a0 #b0 #c0 [x] (#f0 x) [x] (#g0 x)) = (pushout #a1 #b1 #c1 [x] (#f1 x)
→˓[x] (#g1 x)) in (U #l #k)
where

(#k/end, #k/apex) <-
(coe, coe) if #k == kan
(coe, coe) if #k == coe
(pre, pre) if #k == hcom
(pre, pre) if #k == pre

| H, x:#c0 >> (#f0 x) = (#f1 x) in #a0
| H, x:#c0 >> (#g0 x) = (#g1 x) in #b0
| H >> #a0 = #a1 in (U #l #k/end)
| H >> #b0 = #b1 in (U #l #k/end)
| H >> #c0 = #c1 in (U #l #k/apex)

pushout/eq/left

H >> (left #m0) = (left #m1) in (pushout #a #b #c [x] (#f x) [x] (#g x))
| H >> #m0 = #m1 in #a
| H, x:#c >> (#f x) in #a
| H, x:#c >> (#g x) in #b
| H >> #b type
| H >> #c type

pushout/eq/right

H >> (right #m0) = (right #m1) in (pushout #a #b #c [x] (#f x) [x] (#g x))
| H >> #m0 = #m1 in #b
| H, x:#c >> (#f x) in #a
| H, x:#c >> (#g x) in #b
| H >> #a type
| H >> #c type

pushout/eq/glue

H >> (glue #r #m0 #fm0 #gm0) = (glue #r #m1 #fm1 #gm1) in (pushout #a #b #c [x] (#f
→˓x) [x] (#g x))
| H >> #m0 = #m1 in #c
| H >> #fm0 = #fm1 in #a

(continues on next page)

3.5. Refinement rules 23

RedPRL Documentation

(continued from previous page)

| H >> #gm0 = #gm1 in #b
| H >> (#f #m0) = #fm0 in #a
| H >> (#g #m0) = #gm0 in #b
| H, x:#c >> (#f x) in #a
| H, x:#c >> (#g x) in #b

pushout/eq/fcom

H >> (fcom #i~>#j #cap0 [#r/0=#s/0 [k] (#t0/0 k)] ... [#r/n=#s/n [k] (#t0/n k)])
= (fcom #i~>#j #cap1 [#r/0=#s/0 [k] (#t1/0 k)] ... [#r/n=#s/n [k] (#t1/n k)])
in (pushout #a #b #c [x] (#f x) [x] (#g x))

where
#ty <- (pushout #a #b #c [x] (#f x) [x] (#g x))

| H, x:#c >> (#f x) in #a
| H, x:#c >> (#g x) in #b
| H >> #a type
| H >> #b type
| H >> #c type
| H >> #cap0 = #cap1 in #ty
| H, k:dim, #r/0=#s/0 >> (#t0/0 k) = (#t1/0 k) in #ty
| ...
| H, k:dim, #r/n=#s/n >> (#t0/n k) = (#t1/n k) in #ty
| H, k:dim, #r/0=#s/0, #r/1=#s/1 >> (#t0/0 k) = (#t1/1 k) in #ty
| H, k:dim, #r/0=#s/0, #r/2=#s/2 >> (#t0/0 k) = (#t1/2 k) in #ty
| ...
| H, k:dim, #r/n-1=#s/n-1, #r/n=#s/n >> (#t0/n-1 k) = (#t1/n k) in #ty
| H, #r/0=#s/0 >> #cap0 = (#t0/0 #i) in #ty
| ...
| H, #r/n=#s/n >> #cap0 = (#t0/n #i) in #ty

pushout/eq/pushout-rec

H >> (pushout-rec [p] (#d0 p) #m0 [a] (#n0 a) [b] (#p0 b) [v x] (#q0 v x))
= (pushout-rec [x] (#d1 x) #m1 [a] (#n1 a) [b] (#p1 b) [v x] (#q1 v x)) in #ty

where H >> #m0 = #m1 synth ~> (pushout #a #b #c [x] (#f x) [x] (#g x)), psi
| H, a:#a >> (#n0 a) = (#n1 a) in (#d0 (left a))
| H, b:#b >> (#p0 b) = (#p1 b) in (#d1 (right b))
| H, v:dim, x:#c >> (#q0 v x) = (#q1 v x) in (#d0 (glue v x (#f x) (#g x)))
| H, x:#c >> (#q0 0 x) = (#n0 (#f x)) in (#d0 (left (#f x)))
| H, x:#c >> (#q0 1 x) = (#p0 (#g x)) in (#d0 (right (#g x)))
| H, p:(pushout #a #b #c [x] (#f x) [x] (#g x)) >> (#d0 p) = (#d1 p) kan type
| psi
| H >> (#d0 #m0) <= #ty type

pushout/beta/glue

H >> (pushout-rec [p] (#d p) (glue #r #t #ft #gt) [a] (#n a) [b] (#p b) [v x] (#q v
→˓x)) = #s in #ty
| H >> (#q #r #t) = #s in #ty
| H, #r=0 >> (#n #ft) = #s in #ty
| H, #r=1 >> (#p #gt) = #s in #ty

24 Chapter 3. RedPRL User Guide

RedPRL Documentation

3.5.10 Coequalizers

coeq/eqtype

H >> (coeq #a0 #b0 [x] (#f0 x) [x] (#g0 x)) = (coeq #a1 #b1 [x] (#f1 x) [x] (#g1 x))
→˓in (U #l #k)
where

(#k/cod, #k/dom) <-
(coe, coe) if #k == kan
(coe, coe) if #k == coe
(pre, pre) if #k == hcom
(pre, pre) if #k == pre

| H, x:#a0 >> (#f0 x) = (#f1 x) in #b0
| H, x:#a0 >> (#g0 x) = (#g1 x) in #b0
| H >> #a0 = #a1 in (U #l #k/dom)
| H >> #b0 = #b1 in (U #l #k/cod)

coeq/eq/cod

H >> (cecod #m0) = (cecod #m1) in (coeq #a #b [x] (#f x) [x] (#g x))
| H >> #m0 = #m1 in #b
| H, x:#a >> (#f x) in #b
| H, x:#a >> (#g x) in #b
| H >> #a type

coeq/eq/dom

H >> (cedom #r #m0 #fm0 #gm0) = (cedom #r #m0 #fm0 #gm0) in (coeq #a #b [x] (#f x)
→˓[x] (#g x))
| H >> #m0 = #m1 in #a
| H >> #fm0 = #fm1 in #b
| H >> #gm0 = #gm1 in #b
| H >> (#f #m0) = #fm0 in #b
| H >> (#g #m0) = #gm0 in #b
| H, x:#a >> (#f x) in #b
| H, x:#a >> (#g x) in #b

coeq/eq/fcom

H >> (fcom #i~>#j #cap0 [#r/0=#s/0 [k] (#t0/0 k)] ... [#r/n=#s/n [k] (#t0/n k)])
= (fcom #i~>#j #cap1 [#r/0=#s/0 [k] (#t1/0 k)] ... [#r/n=#s/n [k] (#t1/n k)])
in (coeq #a #b [x] (#f x) [x] [x] (#g x))

where
#ty <- (coeq #a #b [x] (#f x) [x] [x] (#g x))

| H, x:#a >> (#f x) in #b
| H, x:#a >> (#g x) in #b
| H >> #a type
| H >> #b type
| H >> #cap0 = #cap1 in #ty
| H, k:dim, #r/0=#s/0 >> (#t0/0 k) = (#t1/0 k) in #ty
| ...

(continues on next page)

3.5. Refinement rules 25

RedPRL Documentation

(continued from previous page)

| H, k:dim, #r/n=#s/n >> (#t0/n k) = (#t1/n k) in #ty
| H, k:dim, #r/0=#s/0, #r/1=#s/1 >> (#t0/0 k) = (#t1/1 k) in #ty
| H, k:dim, #r/0=#s/0, #r/2=#s/2 >> (#t0/0 k) = (#t1/2 k) in #ty
| ...
| H, k:dim, #r/n-1=#s/n-1, #r/n=#s/n >> (#t0/n-1 k) = (#t1/n k) in #ty
| H, #r/0=#s/0 >> #cap0 = (#t0/0 #i) in #ty
| ...
| H, #r/n=#s/n >> #cap0 = (#t0/n #i) in #ty

coeq/beta/dom

H >> (coeq-rec [c] (#p c) (cedom #r #t #ft #gt) [b] (#n b) [v a] (#q v a)) = #s in #ty
| H >> (#q #r #t) = #s in #ty
| H, #r=0 >> (#n #ft) = #s in #ty
| H, #r=1 >> (#n #gt) = #s in #ty

coeq/eq/coeq-rec

H >> (coeq-rec [c] (#p0 c) #m0 [b] (#n0 b) [v a] (#q0 v a))
= (coeq-rec [c] (#p1 c) #m1 [b] (#n1 b) [v a] (#q1 v a)) in #ty

where H >> #m0 = #m1 synth (coeq #a #b [x] (#f x) [x] (#g x)), psi
| H, b:#b >> (#n0 b) = (#n1 b) in (#p0 (cecod b))
| H, v:dim, a:#a >> (#q0 v a) = (#q1 v a) in (#p0 (cedom v a (#f a) (#g a))
| H, a:#a >> (#q0 0 a) = (#n0 (#f a)) in (#p0 (cecod (#f a)))
| H, a:#a >> (#q0 1 a) = (#n0 (#g a)) in (#p0 (cecod (#g a)))
| H, c:(coeq #a #b [x] (#f x) [x] (#g x)) >> (#p0 c) = (#p1 c) kan type
| psi
| H >> (#p0 #m0) <= #ty type

3.5.11 Exact equalities

eq/eqtype

H >> (= #a0 #m0 #n0) = (= #a1 #m1 #n1) in (U #l #k)
where

#ka <-
discrete if #k == discrete
discrete if #k == kan
pre if #k == hcom
discrete if #k == coe
pre if #k == pre

| H >> #m0 = #m1 in #a0
| H >> #n0 = #n1 in #a0
| H >> #a0 = #a1 in (U #l #ka)

eq/eq/ax

H >> ax = ax in (= #a #m #n)
| H >> #m = #n in #a

26 Chapter 3. RedPRL User Guide

RedPRL Documentation

eq/eta

H >> #x = #y in (= #a #m #n)
| H >> ax = #y in (= #a #m #n)
| H >> #x in (= #a #m #n)

3.5.12 Composite types

fcom/eqtype

H >> (fcom #i~>#j #Cap0 [#r/0=#s/0 [k] (#T0/0 k)] ... [#r/n=#s/n [k] (#T0/n k)])
= (fcom #i~>#j #Cap1 [#r/0=#s/0 [k] (#T1/0 k)] ... [#r/n=#s/n [k] (#T1/n k)])
in (U #l #k)

where
(#k/cap, #k/tube) <-
(kan, kan) if #k == kan
(hcom, kan) if #k == hcom
(kan, kan) if #k == coe
(pre, coe) if #k == pre

| H >> #Cap0 = #Cap1 in (U #l #k/cap)
| H, k:dim, #r/0=#s/0 >> (#T0/0 k) = (#T1/0 k) in (U #l #k/tube)
| ...
| H, k:dim, #r/n=#s/n >> (#T0/n k) = (#T1/n k) in (U #l #k/tube)
| H, k:dim, #r/0=#s/0, #r/1=#s/1 >> (#T0/0 k) = (#T1/1 k) in (U #l #k/tube)
| H, k:dim, #r/0=#s/0, #r/2=#s/2 >> (#T0/0 k) = (#T1/2 k) in (U #l #k/tube)
| ...
| H, k:dim, #r/n-1=#s/n-1, #r/n=#s/n >> (#T0/n-1 k) = (#T1/n k) in (U #l #k/tube)
| H, #r/0=#s/0 >> #Cap0 = (#T0/0 #i) in (U #l #k/cap)
| ...
| H, #r/n=#s/n >> #Cap0 = (#T0/n #i) in (U #l #k/cap)

fcom/eq/box

H >> (box #i~>#j #cap0 [#r/0=#s/0 #b0/0] ... [#r/n=#s/n #b0/n])
= (box #i~>#j #cap1 [#r/0=#s/0 #b1/0] ... [#r/n=#s/n #b1/n])
in (fcom #i~>#j #Cap [#r/0=#s/0 [k] (#T/0 k)] ... [#r/n=#s/n [k] (#T/n k)])

| H >> #cap0 = #cap1 in #Cap
| H, #r/0=#s/0 >> #b0/0 = #b1/0 in (#T/0 #j)
| ...
| H, #r/n=#s/n >> #b0/n = #b1/n in (#T/n #j)
| H, #r/0=#s/0, #r/1=#s/1 >> #b0/0 = #b1/1 in (#T/0 #j)
| H, #r/0=#s/0, #r/2=#s/2 >> #b0/0 = #b1/2 in (#T/0 #j)
| ...
| H, #r/n-1=#s/n-1, #r/n=#s/n >> #b0/n-1 = #b1/n in (#T/n-1 #j)
| H, #r/0=#s/0 >> #cap0 = (coe #j~>#i #T/0 #b0/0) in #Cap
| ...
| H, #r/n=#s/n >> #cap0 = (coe #j~>#i #T/n #b0/n) in #Cap
| H, k:dim, #r/0=#s/0 >> (#T/0 k) coe type
| ...
| H, k:dim, #r/n=#s/n >> (#T/n k) coe type
| H, k:dim, #r/0=#s/0, #r/1=#s/1 >> (#T/0 k) = (#T/1 k) coe type
| H, k:dim, #r/0=#s/0, #r/2=#s/2 >> (#T/0 k) = (#T/2 k) coe type
| ...

(continues on next page)

3.5. Refinement rules 27

RedPRL Documentation

(continued from previous page)

| H, k:dim, #r/n-1=#s/n-1, #r/n=#s/n >> (#T/n-1 k) = (#T/n k) coe type
| H, #r/0=#s/0 >> #Cap = (#T/0 #i) type
| ...
| H, #r/n=#s/n >> #Cap = (#T/n #i) type

fcom/intro

H >> (fcom #i~>#j #Cap [#r/0=#s/0 [k] (#T/0 k)] ... [#r/n=#s/n [k] (#T/n k)])
ext (box #i~>#j #cap [#r/0=#s/0 #b/0] ... [#r/n=#s/n #b/n])

| H >> #Cap ext #cap
| H, #r/0=#s/0 >> (#T/0 #j) ext #b/0
| ...
| H, #r/n=#s/n >> (#T/n #j) ext #b/n
| H, #r/0=#s/0, #r/1=#s/1 >> #b/0 = #b/1 in (#T/0 #j)
| H, #r/0=#s/0, #r/2=#s/2 >> #b/0 = #b/2 in (#T/0 #j)
| ...
| H, #r/n-1=#s/n-1, #r/n=#s/n >> #b/n-1 = #b/n in (#T/n-1 #j)
| H, #r/0=#s/0 >> #cap = (coe #j~>#i #T/0 #b/0) in #Cap
| ...
| H, #r/n=#s/n >> #cap = (coe #j~>#i #T/n #b/n) in #Cap
| H, k:dim, #r/0=#s/0 >> (#T/0 k) coe type
| ...
| H, k:dim, #r/n=#s/n >> (#T/n k) coe type
| H, k:dim, #r/0=#s/0, #r/1=#s/1 >> (#T/0 k) = (#T/1 k) coe type
| H, k:dim, #r/0=#s/0, #r/2=#s/2 >> (#T/0 k) = (#T/2 k) coe type
| ...
| H, k:dim, #r/n-1=#s/n-1, #r/n=#s/n >> (#T/n-1 k) = (#T/n k) coe type
| H, #r/0=#s/0 >> #Cap = (#T/0 #i) type
| ...
| H, #r/n=#s/n >> #Cap = (#T/n #i) type

3.5.13 V types

v/eqtype

H >> (V #r #a0 #b0 #e0) = (V #r #a1 #b1 #e1) in (U #l #k)
where

(#ka, #kb) <-
(kan, kan) if #k == kan
(hcom, hcom) if #k == hcom
(coe, com) if #k == coe
(pre, pre) if #k == pre

| H, #r=0 >> #e0 = #e1 in (Equiv #a0 #b0)
| H, #r=0 >> #a0 = #a1 in (U #l #ka)
| H >> #b0 = #b1 in (U #l #kb)

where Equiv is defined by

define HasAllPathsTo (#C,#c) = (-> [center : #C] (path [_] #C center #c)).
define IsContr (#C) = (* [c : #C] (HasAllPathsTo #C c)).
define Fiber (#A,#B,#f,#b) = (* [a : #A] (path [_] #B ($ #f a) #b)).
define IsEquiv (#A,#B,#f) = (-> [b : #B] (IsContr (Fiber #A #B #f b))).
define Equiv (#A,#B) = (* [f : (-> #A #B)] (IsEquiv #A #B f)).

28 Chapter 3. RedPRL User Guide

RedPRL Documentation

v/eq/vin

H >> (vin #r #m0 #n0) = (vin #r #m1 #n1) in (V #r #a #b #e)
| H, #r=0 >> #m0 = #m1 in #a
| H >> #n0 = #n1 in #b
| H, #r=0 >> ($ (! proj1 #e) #m0) = #n0 in #b
| H, #r=0 >> #e in (Equiv #a #b)

v/intro

H >> (V #r #a #b #e) ext (vin #r #m #n)
| H, #r=0 >> #a ext #m
| H >> #b ext #n
| H, #r=0 >> ($ (! proj1 #e) #m) = #n in #b
| H, #r=0 >> #e in (Equiv #a #b)

v/eq/proj

H >> (vproj #r #m0 #f0) = (vproj #r #m1 #f1) in #ty
where

#r /= 0 and #r /= 1
H >> #m0 = #m1 synth ~> (v #r #a #b #e), psi

| H, #r=0 >> #f0 = #f1 in (-> #a #b)
| H, #r=0 >> #f0 = (! proj1 #e) in (-> #a #b)
| psi
| H >> #b <= #ty type

3.5.14 Kan operations

hcom/eq

H >> (hcom #i~>#j #ty0 #cap0 [#r/0=#s/0 [k] (#t0/0 k)] ... [#r/n=#s/n [k] (#t0/n k)])
= (hcom #i~>#j #ty1 #cap1 [#r/0=#s/0 [k] (#t1/0 k)] ... [#r/n=#s/n [k] (#t1/n

→˓k)]) in #ty
| H >> #cap0 = #cap1 in #ty0
| H, k:dim, #r/0=#s/0 >> (#t0/0 k) = (#t1/0 k) in #ty0
| ...
| H, k:dim, #r/n=#s/n >> (#t0/n k) = (#t1/n k) in #ty0
| H, k:dim, #r/0=#s/0, #r/1=#s/1 >> (#t0/0 k) = (#t1/1 k) in #ty0
| H, k:dim, #r/0=#s/0, #r/2=#s/2 >> (#t0/0 k) = (#t1/2 k) in #ty0
| ...
| H, k:dim, #r/n-1=#s/n-1, #r/n=#s/n >> (#t0/n-1 k) = (#t1/n k) in #ty0
| H, #r/0=#s/0 >> #cap0 = (#t0/0 #i) in #ty0
| ...
| H, #r/n=#s/n >> #cap0 = (#t0/n #i) in #ty0
| H >> #ty0 = #ty1 hcom type
| H >> #ty0 <= #ty type

3.5. Refinement rules 29

RedPRL Documentation

hcom/eq/cap

H >> (hcom #i~>#i #ty' #cap [#r/0=#s/0 [k] (#t/0 k)] ... [#r/n=#s/n [k] (#t/n k)]) =
→˓#m in #ty
| H >> #cap = #m in #ty
| H, k:dim, #r/0=#s/0 >> (#t/0 k) in #ty'
| ...
| H, k:dim, #r/n=#s/n >> (#t/n k) in #ty'
| H, k:dim, #r/0=#s/0, #r/1=#s/1 >> (#t0 k) = (#t1 k) in #ty'
| H, k:dim, #r/0=#s/0, #r/2=#s/2 >> (#t0 k) = (#t2 k) in #ty'
| ...
| H, k:dim, #r/n-1=#s/n-1, #r/n=#s/n >> (#t/n-1 k) = (#t/n k) in #ty'
| H, #r/0=#s/0 >> #cap = (#t/0 #i) in #ty'
| ...
| H, #r/n=#s/n >> #cap = (#t/n #i) in #ty'
| H >> #ty' hcom type
| H >> #ty' <= #ty type

hcom/eq/tube

H >> (hcom #i~>#j #ty' #cap [#r/0=#s/0 [k] (#t/0 k)] ... [#r/n=#s/n [k] (#t/n k)]) =
→˓#m in #ty
where

#r/0 /= #s/0, ..., #r/l-1 /= #s/l-1 and #r/l = #s/l
| H >> (#t/l #j) = #m in #ty'
| H, k:dim, #r/0=#s/0 >> (#t/0 k) in #ty'
| ...
| H, k:dim, #r/n=#s/n >> (#t/n k) in #ty'
| H, k:dim, #r/0=#s/0, #r/1=#s/1 >> (#t/0 k) = (#t/1 k) in #ty'
| H, k:dim, #r/0=#s/0, #r/2=#s/2 >> (#t/0 k) = (#t/2 k) in #ty'
| ...
| H, k:dim, #r/n-1=#s/n-1, #rn=#sn >> (#t/n-1 k) = (#tn k) in #ty'
| H, #r/0=#s/0 >> #cap = (#t/0 #i) in #ty'
| ...
| H, #r/n=#s/n >> #cap = (#t/n #i) in #ty'
| H >> #ty' hcom type
| H >> #ty' <= #ty type

coe/eq

H >> (coe #i~>#j [u] (#a0 u) #m0) = (coe #i~>#j [u] (#a1 u) #m1) in #ty
| H >> #m0 = #m1 in (#a0 #i)
| H, u:dim >> #a0 = #a1 coe type
| H >> (#a0 #j) <= #ty type

coe/eq/cap

H >> (coe #i~>#i [u] (#a u) #m) = #n in #ty
| H >> #m = #n in #ty
| H, u:dim >> (#a u) coe type
| H >> (#a #i) <= #ty type

30 Chapter 3. RedPRL User Guide

RedPRL Documentation

3.5.15 Universes

subtype/eq

H >> #a <= #b type
| H >> #a = #b type

universe/eqtype

H >> (U #l #k) = (U #l #k) in (U #l' #k')
where

#k/univ <-
discrete if #k == discrete
kan if #k == kan
kan if #k == hcom
coe if #k == coe
kan if #k == pre

#l < #l'
#k/univ <= #k'

universe/subtype

H >> (U #l0 #k0) <= (U #l1 #k1) type
where

#l0 <= #l1
#k0 <= #k1

3.6 Indices

• genindex

• search

3.7 Acknowledgments

This research was sponsored by the Air Force Office of Scientific Research under grant number FA9550-15-1-0053
and the National Science Foundation under grant number DMS-1638352. We also thank the Isaac Newton Institute for
Mathematical Sciences for its support and hospitality during the program “Big Proof” when part of this work was un-
dertaken; the program was supported by the Engineering and Physical Sciences Research Council under grant number
EP/K032208/1. The views and conclusions contained here are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, government or any other
entity.

3.6. Indices 31

RedPRL Documentation

32 Chapter 3. RedPRL User Guide

Index

B
bool/eq/ff, 16
bool/eq/if, 16
bool/eq/tt, 16
bool/eqtype, 16

C
coe/eq, 30
coe/eq/cap, 30
coeq/beta/dom, 26
coeq/eq/cod, 25
coeq/eq/coeq-rec, 26
coeq/eq/dom, 25
coeq/eq/fcom, 25
coeq/eqtype, 25

E
eq/eq/ax, 26
eq/eqtype, 26
eq/eta, 27

F
fcom/eq/box, 27
fcom/eqtype, 27
fcom/intro, 28
fun/eq/app, 19
fun/eq/eta, 19
fun/eq/lam, 19
fun/eqtype, 19
fun/intro, 19

H
hcom/eq, 29
hcom/eq/cap, 30
hcom/eq/tube, 30

I
int/eq/int-rec, 17
int/eq/negsucc, 17

int/eq/pos, 17
int/eqtype, 17

L
line/eq/abs, 22
line/eq/app, 23
line/eq/eta, 22
line/eqtype, 22
line/intro, 22

N
nat/eq/nat-rec, 17
nat/eq/succ, 16
nat/eq/zero, 16
nat/eqtype, 16

P
path/eq/abs, 21
path/eq/app, 21
path/eq/app/const, 22
path/eq/eta, 21
path/eq/from-line, 22
path/eqtype, 21
path/intro, 21
pushout/beta/glue, 24
pushout/eq/fcom, 24
pushout/eq/glue, 23
pushout/eq/left, 23
pushout/eq/pushout-rec, 24
pushout/eq/right, 23
pushout/eqtype, 23

R
record/eq/eta, 20
record/eq/proj, 20
record/eq/tuple, 20
record/eqtype, 19
record/intro, 20

33

RedPRL Documentation

S
s1/beta/loop, 18
s1/eq/base, 18
s1/eq/fcom, 18
s1/eq/loop, 18
s1/eq/s1-rec, 18
s1/eqtype, 17
subtype/eq, 31

U
universe/eqtype, 31
universe/subtype, 31

V
v/eq/proj, 29
v/eq/vin, 29
v/eqtype, 28
v/intro, 29
void/eqtype, 17

34 Index

	Features
	Papers & Talks
	RedPRL User Guide
	Tutorial
	Language reference
	Atomic judgments
	Multiverses
	Refinement rules
	Indices
	Acknowledgments

