

    
      
          
            
  
The RedPRL Proof Assistant

[image: Luminaries.]
RedPRL is an experimental proof assistant based on cubical computational type
theory, which extends the Nuprl [http://www.nuprl.org/] semantics by higher-dimensional features
inspired by homotopy type theory. RedPRL is created and maintained by the
RedPRL Development Team [https://github.com/RedPRL/sml-redprl/blob/master/CONTRIBUTORS.md].

RedPRL is written in Standard ML [http://sml-family.org/], and is available
for download on GitHub [http://github.com/redprl/sml-redprl].
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	computational canonicity and extraction


	univalence as a theorem


	strict (exact) equality types
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	functional extensionality
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	proof tactics
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Tutorial

We will walk through parts of examples/tutorial.prl, which was the live demo
of RedPRL in our POPL 2018 tutorial [https://existentialtype.wordpress.com/2018/01/15/popl-2018-tutorial/] on Computational (Higher) Type Theory.
For further guidance, we recommend that new users consult the many other proofs
in the examples/ subdirectory.

RedPRL is a program logic for a functional programming language extended with
constructs for higher-dimensional reasoning. A proof in RedPRL is a tactic
script that constructs a program (or extract) and demonstrates that it
inhabits the specified type.


Getting started

Let’s start by defining the function that negates a boolean:

theorem Not :
  (-> bool bool)
by {
  lam b =>
  if b then `ff else `tt
}.





The lam b => tactic introduces a variable b : bool in the context,
if then else performs a case split, and each branch is resolved by a boolean
literal (`ff and `tt). We can inspect the proof state at any point using
a hole. Replace `ff with ?the-tt-case, and run RedPRL again:

?the-tt-case.
Goal #0.
  b : bool
  ---------
  bool





That is, the current subgoal has type bool, and b : bool is in scope.
Replace ?the-tt-case with `ff once again, and follow this theorem by:

print Not.





The print command displays the theorem statement and its extract. In this
case, we can prove Not with the extract directly:

theorem NotDirect :
  (-> bool bool)
by {
  `(lam [b] (if [_] bool b ff tt))
}.





In general, we might not have a particular extract in mind, or establishing the
type of that extract may require non-trivial reasoning, so we typically choose
(or are forced) to use interactive tactics rather than specifying extracts.

RedPRL has a notion of exact, extensional equality of programs, written =.
For example, applying Not twice is equal to the identity function.
(Function application is written $.)

theorem NotNot :
  (->
   [b : bool]
   (= bool ($ Not ($ Not b)) b))
by {
  lam b => auto
}.





This instance of auto cases on b, and in each case simplifies the
left-hand side and supplies a reflexive equality.  (For example, the subgoal
(= bool tt tt) is handled by the refinement rule
refine bool/eq/tt.)

Families of types respect equality of indices. For example, suppose we have a
boolean-indexed family of types family. By virtue of the equation we just
proved, an element of the type ($ family b) is also an element of the type
($ family ($ Not ($ Not b))):

theorem RespectEquality :
  (->
   [family : (-> [b : bool] (U 0))]
   [b : bool]
   ($ family b)
   ($ family ($ Not ($ Not b))))
by {
  lam family b pf =>
  rewrite ($ NotNot b);       // equation to rewrite along
  [ with b' => `($ family b') // what to rewrite (i.e., b')
  , use pf
  ];
  auto
}.





Here, (U 0) is a universe (the “type of small types”). The rewrite
tactic rewrites the argument to family along the equality
(= bool ($ Not ($ Not b)) b) given by ($ NotNot b), taking
pf : ($ family b) to a proof of ($ family ($ Not ($ Not b)))).

Surprisingly, the extract is just a constant function: (lam [x0 x1 x2] x2)!
The reason is that at runtime, for any particular b, the types
($ family b) and ($ family ($ Not ($ Not b)))) will be exactly the same,
so there’s no need for a coercion.




Cubical reasoning

RedPRL also includes a notion of path similar to the identity type of
homotopy type theory. Like equations, paths are respected by the constructs of
type theory. However, while respect for equations is silent, respect for paths
affects the runtime behavior of programs.

In RedPRL, paths are mediated by dimension variables abstractly representing
how the path varies over an interval. Nested paths of paths are indexed by
multiple dimension variables, and therefore trace out squares, cubes,
hypercubes, etc., hence the name cubical type theory. A reflexive path depends
degenerately on a dimension variable:

theorem Refl :
  (->
   [ty : (U 0)]
   [a : ty]
   (path [_] ty a a))
by {
  lam ty a =>
  abs _ => `a
}.





The abs _ => tactic is analogous to lam a => but introduces dimension
variables rather than ordinary variables.

Paths form a groupoid: they can be composed and reversed; composition is
associative (up to a path) and has Refl as unit (up to a path); etc. These
operations all follow from a single operation, homogeneous Kan composition
(hcom), which produces the fourth side of a square given the other three, or
the sixth side of a cube given the other five, etc. The details of this
operation are beyond the scope of this tutorial, but the following illustration
demonstrates how to compose paths p and q using hcom:

 --- x         p
|          ---------
y         |         |
        a |         | q
          |         |
          a.........c





That is, if p goes from a to b, and q goes from b to c,
then we can form a square with p on top, q on the right, and the
constantly-a path on the left; the bottom must therefore be a path from
a to c. The concrete notation is given below (where (@ p x) applies
the path p to the dimension variable x as argument).

theorem PathConcat :
  (->
   [ty : (U 0 kan)]
   [a b c : ty]
   [p : (path [_] ty a b)]
   [q : (path [_] ty b c)]
   (path [_] ty a c))
by {
  lam ty a b c p q =>
  abs x =>
  `(hcom 0~>1 ty (@ p x) [x=0 [_] a] [x=1 [y] (@ q y)])
}.





Another source of paths is Voevodsky’s univalence principle, stating that any
equivalence (isomorphism-up-to-paths) between types gives rise to a path between
those types. We apply this principle to the isomorphism between (-> bool ty)
and (* ty ty) sending a function to the pair ({ , }) of its output on
tt and ff.

theorem FunToPair :
  (->
   [ty : (U 0 kan)]
   (-> bool ty)
   (* ty ty))
by {
  lam ty fun =>
  {`($ fun tt), `($ fun ff)}
}.

theorem PathFunToPair :
  (->
   [ty : (U 0 kan)]
   (path [_] (U 0 kan) (-> bool ty) (* ty ty)))
by {
  lam ty => abs x =>
  // see tutorial.prl for omitted proofs
}.





Respect for paths follows from an explicit coercion operation (coe). We
can coerce along the path ($ PathFunToPair ty) from left to right
(0~>1), taking an element of (bool -> ty) to (ty * ty).

theorem RespectPaths :
  (->
   [ty : (U 0 kan)]
   (-> bool ty)
   (* ty ty))
by {
  lam ty fun =>
  `(coe 0~>1 [x] (@ ($ PathFunToPair ty) x) fun)
}.





Unlike rewrite, uses of coe are reflected in the extract, because they
affect computation. Indeed, an element of (bool -> ty) is not literally an
element of (ty * ty), and there is more than one isomorphism between these
types! A major benefit of cubical type theory over homotopy type theory is that
coercions actually compute: if we apply RespectPaths to the identity
function, we get exactly the pair {`tt,`ff}.

theorem ComputeCoercion :
  (=
   (* bool bool)
   ($ RespectPaths bool (lam [b] b))
   (tuple [proj1 tt] [proj2 ff]))
by {
  auto
}.





Experts: though paths in RedPRL are defined by dimension variables rather
than the refl and J operators of homotopy type theory, J is
definable using coercion and homogeneous Kan composition (but will not compute
to d on refl).

theorem J(#l:lvl) : // parametrized over any universe level #l
  (->
   [ty : (U #l kan)]
   [a : ty]
   [fam : (-> [x : ty] (path [_] ty a x) (U #l kan))]
   [d : ($ fam a (abs [_] a))]
   [x : ty]
   [p : (path [_] ty a x)]
   ($ fam x p))
by {
  lam ty a fam d x p =>
  `(coe 0~>1
    [i] ($ fam
           (hcom 0~>1 ty a [i=0 [_] a] [i=1 [j] (@ p j)])
           (abs [j] (hcom 0~>j ty a [i=0 [_] a] [i=1 [j] (@ p j)]))) d)
}.











          

      

      

    

  

    
      
          
            
  
Language reference

RedPRL documents contain expressions written in multiple languages: the
top-level vernacular, the object language, and the tactic language.


Top-level vernacular

The top-level vernacular is a very simple language of commands that interact
with the signature: this language is for declaring new theorems, definitional extensions and tactics; the top-level vernacular can also be used to print out an object
from the signature. This is the language that one writes in a .prl file.


Defining theorems

A theorem in RedPRL is given by a type (an object language expression)
together with a tactic script which establishes that the given type is
inhabited; when a theorem is declared, the tactic script is executed against
the goal, and if the result is successful, the generated evidence is added to
the signature.

theorem OpName(#p : ...) :
  // goal here (object language expression)
by {
  // script here (tactic expression)
}.





Most definitions in a RedPRL signature will take the form of theorems; but
other forms of definition may be preferable, depending on circumstances.




Defining new operators

The most primitive way to define a new operator in RedPRL is to use the define
command. A definition is specified by giving an operator name (which must be
capitalized), together with a (possibly empty) sequence of parameters together
with their valences, and an object-language term which shall be the definiens:

define OpName(#p : [dim].exp, ...) : exp =
  // object language expression here
.





A parameter is referenced using a metavariable (which is
distinguished syntactically using the # sigil); the valence of a parameter
specifies binding structure, with [tau1,tau2].tau being the valence of a
binder of sort tau that binds a variable of sort tau1 and a variable of
sort tau2.

A simple definition of sort exp without parameters can be abbreviated as follows:

define OpName =
  // object language expression here
.





Definitions of this kind are not subject to any typing conditions in CHTT;
instead, if you use a primitive definition within a proof, you will have to
prove that it is well-typed.




Defining tactics

A tactic can be defined using the special tactic command:

tactic OpName(#p : ...) =
  // tactic expression here
.





This desugars to an instance of the define command, and differs only in that the
body of the definiens is here parsed using the grammar of tactic expressions.




Printing objects

To print a previously-defined object from the signature, one can write the
following command:

print OpName.








When to use theorems or definitions?

As a rule of thumb, in most cases it is simpler to interactively construct an
element of a type using a theorem declaration than it is to define a code for
an element, and then prove that it has the intended type. This is why theorems
are usually preferred to definitions in RedPRL.

However, definitions may be preferable in some cases; consider the definition
of an abbreviation for the type family (lam [ty] (-> nat ty)) of sequences.
As a theorem, this definition must take a universe level as a parameter

define Sequence(#l : lvl) :
  (-> [ty : (U #l)] (U #l))
by {
  // apply function introduction rule in the tactic language
  lam ty =>
    // explicitly give the body of the function in the object language
    `(-> nat ty)
}.





Later, when using this definition, one would have to explicitly provide the
universe level, even though it does not play a part in the actual defined
object: for instance, (Sequence #lvl{0}). The parameter was present only in
order to express the type of the type family. On the other hand, with a
definition, we can write the following:

define Sequence =
  (lam [ty] (-> nat ty))
.





One advantage of theorems over definitions is that RedPRL knows their type
intrinsically; whereas definitions must be unfolded and proved to be well-typed
at each use-site.






Object language

RedPRL’s object language and tactic language share a common syntactic framework
based on multi-sorted second-order abstract syntax, which provides a uniform
treatment of binding with syntactic sorts. RedPRL has three main sorts: exp
(the sort of expressions), dim (the sort of dimension expressions) and tac
(the sort of tactic expressions).

The object language is written in a variant of s-expression notation, with
binding operators written systematically in the style of (lam [x] x). An
expression in the object language is an untyped program or realizer in the
language of Computational Higher Type Theory (CHTT).

These expressions include ordinary programming constructs like lambda
abstraction and application, records, projection, etc., as well as
cubical programming constructs inspired by cubical sets.
Below are summarized common forms overlapping with other calculi.







	Ordinary Operation

	Expression





	dependent function type

	(-> [x y ... : ty] ... ty)



	lambda abstraction

	(lam [x y ...] e)



	function application

	($ f e1 e2 ...)



	dependent record type

	(record [lbl ... : ty] ..)



	tuple (record element)

	(tuple [lbl e] ...)



	record projection

	(! lbl e)






The cubical extension is characterized by a new sort of expressions,
dimension expressions along with many new operations.
A dimension expression can be a dimension variable i, representing an interval,
or a dimension constant 0 or 1, representing one of its end point.







	Cubical Operation

	Expression





	coercion

	(coe r~>s [i] ty e)



	homogeneous composition

	(hcom r~>s ty cap [i=0 [j] tube0] ...)



	path type

	(path [i] ty e0 e1)



	line type

	(-> [i : dim] ... ty)



	path/line abstraction

	(abs [i j ...] e)



	path/line application

	(@ e r1 r2 ...)



	univalence

	(V a b e)







Todo

Finish summary of object language terms.






Tactic language


Todo

Summarize tactic language









          

      

      

    

  

    
      
          
            
  
Atomic judgments

RedPRL currently has five forms of atomic (non-hypothetical) judgments that may appear in subgoals.


	Truth asserts that a type is inhabited.


	Type equality asserts an equality between two types.


	Subtyping asserts a subtyping relation.


	Subkinding asserts that some type is actually a universe in which
all types has a particular kind.


	Term lets the user give an expression.




Note that these judgment forms differ from our semantic presentations in papers.


Truth

A truth judgment

a true





or simply

a





means a is an inhabited type.
Any inhabitant can realize this judgment.
For example, the expression 1 realizes

int





because 1 is in the type int.
This is commonly used
to state a theorem or specify the type of the program to be implemented.
In fact, all top-level theorems (see Defining theorems) must be in this judgmental form.




Type equality

A type equality judgment

a = b type





means a are b are equal types (without regard to universe level),
and its realizer must be ax, the same as the realizer of equality types.
For example, we have

int = int type





realized by ax.
Multiverses are supported through kind markers such as kan or discrete:

a = b discrete type
a = b kan type
a = b coe type
a = b hcom type
a = b pre type





where a = b kan type means a and b are equal Kan types.
(The judgment a = b type is really an abbreviation of a = b pre type
because pre is the default kind.)
Following the PRL family of proof assistants
which use partial equivalence relations,
well-typedness is defined as the equality of the type and itself;
to save some typing, a type stands for a = a type
and a kan type stands for a = a kan type.

In the presence of universes and equality types,
one might wonder why we still have a dedicated judgmental form for type equality.
That is, one may intuitively treat the judgment

a = b type





as (= (U l) a b) true for some unknown universe level l.
It turns out to be very convenient to state type equality without specifying the universe levels;
with this, we survived without a universe level synthesizer as the one in Nuprl,
which was created to alleviate the burden of guessing universe levels.




Subtyping

A subtype judgment

a <= b type





states that a is a subtype of b. More precisely, the partial equivalence relation
associated with a is a subrelation of the one associated with b.
The realizer must be ax.
There is no support of kind markers because the subtyping relation
never takes additional structures into consideration.

This is currently used whenever we only need a subtyping relationship
rather than type equality. For example, if a function f is in type (-> a b),
the rule to determine whether the function application ($ f x) is in type b'
will only demand b <= b' type rather than b = b' type.
That said, the only non-trivial subtyping relation one can prove in RedPRL now
is the cumulativity of universes. One instance would be

(U 0 discrete) <= (U 1 kan)





realized by ax.




Subkinding

The following are subkind judgments:

a <= discrete universe
a <= kan universe
a <= coe universe
a <= hcom universe
a <= pre universe





They assert that a is a subuniverse of the universe of the specified kind at the omega level.
Intuitively, a <= k universe would be the subtyping judgment a <= (U omega k) type
if we could internalize universes at the omega level.
The realizer must be ax.
These judgments play the same role as subtyping judgments
except that they handle the cases where the right hand side is some omega-level universe.
Suppose a function f is in type (-> a b).
The rule to determine whether the function application ($ f x) is a type
will demand b <= pre universe rather than b = (U omega) type
(or b = (U l) type for some universe level l).




Term

A term judgment is displayed in the sort of the expression
it is asking for, for example:

dim
exp





The realizer is the received term from the user.
This is used to obtain motives or dimension expressions.
For example, the rewrite tactic requires users to specify
the parts to be rewritten by fulfilling term subgoals.







          

      

      

    

  

    
      
          
            
  
Multiverses


Todo

To Infinity… and Beyond!







          

      

      

    

  

    
      
          
            
  
Refinement rules


Booleans


bool/eqtype

H >> bool = bool in (U #l #k)








bool/eq/tt

H >> tt = tt in bool








bool/eq/ff

H >> ff = ff in bool








bool/eq/if

H >> (if [x] (#c0 x) #m0 #t0 #f0) = (if [x] (#c1 x) #m1 #t1 #f1) in #ty
where H >> #m0 = #m1 synth ~> bool, psi
| H >> #t0 = #t1 in (#c0 tt)
| H >> #f0 = #f1 in (#c0 ff)
| H, x:bool >> (#c0 x) = (#c1 x) type
| psi
| H >> (#c0 #m0) <= #ty type










Natural numbers and integers


nat/eqtype

H >> nat = nat in (U #l #k)








nat/eq/zero

H >> (nat 0) = (nat 0) in nat








nat/eq/succ

H >> (succ #n) = (succ #m) in nat
| H >> #n = #m in nat








nat/eq/nat-rec

H >> (nat-rec [x] (#c0 x) #m0 #n0 [a b] (#p0 a b)) = (nat-rec [x] (#c1 x) #m1 #n1 [a b] (#p1 a b)) in #ty
| H >> #m0 = #m1 in nat
| H >> #n0 = #n1 in (#c0 (nat 0))
| H, a:nat, b:(#c0 a) >> #p0 a b = #p1 a b in (#c0 (succ a))
| H, x:nat >> (#c0 x) = (#c1 x) type
| H >> (#c0 #m0) <= #ty type








int/eqtype

H >> int = int in (U #l #k)








int/eq/pos

H >> (pos #m) = (pos #n) in int
| H >> #m = #n in nat








int/eq/negsucc

H >> (negsucc #m) = (negsucc #n) in int
| H >> #m = #n in nat








int/eq/int-rec

H >> (int-rec [x] (#e0 x) #m0 [a] (#n0 a) [b] (#p0 b)) = (int-rec [x] (#e1 x) #m1 [a] (#n1 a) [b] (#p1 b)) in #ty
| H >> #m0 = #m1 in int
| H, b:nat >> (#p0 b) = (#p1 b) in #e0 (pos b)
| H, a:nat >> (#n0 a) = (#n1 a) in #e0 (negsucc a)
| H, x:int >> (#e0 x) = (#e1 x) type
| H >> (#e0 m0) <= #ty type










Void


void/eqtype

H >> void = void in (U #l #k)










Circle


s1/eqtype

H >> S1 = S1 in (U #l #k)
where kan <= #k universe








s1/eq/base

H >> base = base in S1








s1/eq/loop

H >> loop #r = loop #r in S1








s1/eq/fcom

H >> (fcom #i~>#j #cap0 [#r/0=#s/0 [k] (#t0/0 k)] ... [#r/n=#s/n [k] (#t0/n k)])
     = (fcom #i~>#j #cap1 [#r/0=#s/0 [k] (#t1/0 k)] ... [#r/n=#s/n [k] (#t1/n k)]) in S1
| H >> #cap0 = #cap1 in S1
| H, k:dim, #r/0=#s/0 >> (#t0/0 k) = (#t1/0 k) in S1
| ...
| H, k:dim, #r/n=#s/n >> (#t0/n k) = (#t1/n k) in S1
| H, k:dim, #r/0=#s/0, #r/1=#s/1 >> (#t0/0 k) = (#t1/1 k) in S1
| H, k:dim, #r/0=#s/0, #r/2=#s/2 >> (#t0/0 k) = (#t1/2 k) in S1
| ...
| H, k:dim, #r/n-1=#s/n-1, #r/n=#s/n >> (#t0/n-1 k) = (#t1/n k) in S1
| H, #r/0=#s/0 >> #cap0 = (#t0/0 #i) in S1
| ...
| H, #r/n=#s/n >> #cap0 = (#t0/n #i) in S1








s1/eq/s1-rec

H >> (S1-rec [x] (#c0 x) #m0 #b0 [u] #l0) = (S1-rec [x] (#c1 x) #m1 #b1 [u] #l1) in #ty
| H >> #m0 = #m1 in S1
| H >> #b0 = #b1 in (#c0 base)
| H, u:dim >> (#l0 u) = (#l1 u) in (#c0 (loop u))
| H >> (#l0 0) = #b0 in (#c0 base)
| H >> (#l0 1) = #b0 in (#c0 base)
| H, x:S1 >> (#c0 x) = (#c1 x) kan type
| H >> (#c0 #m0) <= #ty type








s1/beta/loop

H >> (S1-rec [x] (#c x) (loop #r) #b [u] (#l u)) = #m in #ty
| H >> (#l #r) = #m in #ty
| H, #r=0 >> #b = #m in #ty
| H, #r=1 >> #b = #m in #ty










Dependent functions


fun/eqtype

H >> (-> [x : #a0] (#b0 x)) = (-> [x : #a1] (#b1 x)) in (U #l #k)
where
  (#k/dom, #k/cod) <-
    (discrete, discrete) if #k == discrete
    (coe, kan) if #k == kan
    (pre, hcom) if #k == hcom
    (coe, coe) if #k == coe
    (pre, pre) if #k == pre
| H >> #a0 = #a1 in (U #l #k/dom)
| H, x:#a0 >> (#b0 x) = (#b1 x) in (U #l #k/cod)








fun/eq/lam

H >> (lam [x] (#e0 x)) = (lam [x] (#e1 x)) in (-> [x : #a] (#b x))
| H, x:#a >> (#e0 x) = (#e1 x) in (#b x)
| H >> #a type








fun/intro

H >> (-> [x : #a] (#b x)) ext (lam [x] (#e x))
| H, x:#a >> (#b x) ext (#e x)
| H >> #a type








fun/eq/eta

H >> #e = #f in (-> [x : #a] (#b x))
| H >> (lam [x] ($ #e x)) = #f in (-> [x : #a] (#b x))
| H >> #e = #e in (-> [x : #a] (#b x))








fun/eq/app

H >> ($ #f0 #e0) = ($ #f1 #e1) in #ty
where H >> #f0 = #f1 synth ~> (-> [x : #a] (#b x)), psi
| H >> #e0 = #e1 in #a
| psi
| H >> (#cod #e0) <= #ty type










Records


record/eqtype

H >> (record [lbl/a : #a0] ... [lbl/b : (#b0 lbl/a ...)])
     = (record [lbl/a : #a1] ... [lbl/b : (#b1 lbl/a ...)])
     in (U #l #k)
where
  (#k/hd, #kltl) <-
    (discrete, discrete) if #k == discrete
    (kan, kan) if #k == kan
    (hcom, kan) if #k == hcom
    (coe, coe) if #k == coe
    (pre, pre) if #k == pre
| H >> #a0 = #a1 in (U #l #k/hd)
| ...
| H, x : #a0, ... >> (#b0 x ...) = (#b1 x ...) in (U #l #k/tl)






Todo

The choice of kinds #k/hd and #k/tl looks a little fishy; is this
exactly what would be generated if a record were encoded as an iterated sigma
type?






record/eq/tuple

H >> (tuple [lbl/a #p0] ... [lbl/b #q0])
     = (tuple [lbl/a #p1] ... [lbl/b #q1])
     in (record [lbl/a : #a] ... [lbl/b : (#b lbl/a ...)])
| H >> #p0 = #p1 in #a
| ...
| H >> #q0 = #q1 in (#b #p0 ...)
| ...
| H, x:#a, ... >> (#b x ...) type








record/eq/eta

H >> #e0 = #e1 in (record [lbl/a : #a] ... [lbl/b : (#b lbl/a ...)])
| H >> (tuple [lbl/a (! lbl/a #e0)] ... [lbl/b (! lbl/b #e0)])
|      = #e1 in (record [lbl/a : #a] ... [lbl/b : (#b lbl/a ...)])
| H >> #e0 in (record [lbl/a : #a] ... [lbl/b : (#b lbl/a ...)])








record/eq/proj

H >> (! lbl #e0) = (! lbl #e1) in #ty
where H >> #e0 = #e1 synth ~> (record [lbl0 : #a0] ... [lbl : (#a ...)] ...), psi
| psi
| H >> (#a (! lbl0  #e0) ...) <= #ty type








record/intro

H >> (record [lbl/a : #a] ... [lbl/b : (#b lbl/a ...)])
     ext (tuple [lbl/a #p/a] ... [lbl/b #p/b])
| H >> #a ext #p/a
| ...
| H >> (#b #p/a ...) ext #p/b
| ...
| H, x:#a, ... >> (#b x ...) type










Paths


path/eqtype

H >> (path [u] (#a0 u) #m0 #n0) = (path [u] (#a1 u) #m1 #n1) in (U #l #k)
where
  #ka <-
    discrete if #k == discrete
    kan if #k == kan
    hcom if #k == hcom
    kan if #k == coe
    pre if #k == pre
| H, u:dim >> (#a0 u) = (#a1 u) in (U #l #ka)
| H >> #m0 = #m1 in (#a0 0)
| H >> #n0 = #n1 in (#a0 1)








path/eq/abs

H >> (abs [v] (#m0 v)) = (abs [v] (#m1 v)) in (path [v] (#a v) #p0 #p1)
| H, v:dim >> #m0 v = #m1 v in (#a v)
| H >> (#m0 0) = #p0 in (#a 0)
| H >> (#m0 1) = #p1 in (#a 1)








path/intro

H >> (path [u] (#a u) #p0 #p1) ext (abs [u] (#m u))
| H, u:dim >> (#a u) ext (#m u)
| H >> (#m 0) = #p0 in (#a 0)
| H >> (#m 1) = #p1 in (#a 1)








path/eq/eta

H >> #m = #n in (path [u] (#a u) #p0 #p1)
| H >> (abs [u] (#m u)) = #n in (path [u] (#a u) #p0 #p1)
| H >> #m = #m in (path [u] (#a u) #p0 #p1)








path/eq/app

H >> (@ #m0 #r) = (@ #m1 #r) in #ty
where H >> #m0 = #m1 synth ~> (path [u] (#a u) #p0 #p1), psi
| psi
| H >> (#a #r) = #ty type








path/eq/app/const

H >> (@ #m #r) = #p in #a
where
  H >> #m = #m synth ~> (path [x] (#ty x) #p0 #p1), psi
  #pr <-
    #p0 if #r == 0
    #p1 if #r == 1
| H >> #pr = #p in #a
| psi
| H >> #ty #r <= #a type








path/eq/from-line

H >> #m0 = #m1 in (path [x] (#ty x) #n0 #n1)
| H >> #m0 = #m1 in (line [x] (#ty x))
| H >> #n0 = (@ #m0 0) in (#ty 0)
| H >> #n1 = (@ #m1 1) in (#ty 1)










Lines


line/eqtype

H >> (line [u] (#a0 u)) = (line [u] (#a1 u)) in (U #l #k)
where
  #ka <-
    discrete if #k == discrete
    kan if #k == kan
    hcom if #k == hcom
    kan if #k == coe
    pre if #k == pre
| H, u:dim >> (#a0 u) = (#a1 u) in (U #l #ka)








line/eq/abs

H >> (abs [u] (#m0 u)) = (abs [u] (#m1 u)) in (line [u] (#a u))
| H, u:dim >> #m0 u = #m1 u in (#a u)








line/intro

H >> (line [u] (#a u)) ext (abs [u] (#m u))
| H, u:dim >> (#a u) ext (#m u)








line/eq/eta

H >> #m = #n in (line [u] (#a u))
| H >> #m in (line [u] (#a u))
| H >> (abs [u] (@ m u)) = #n in (line [u] (#a u))








line/eq/app

H >> (@ #m0 #r) = (@ #m0 #r) in #ty
where H >> #m0 = #m1 synth ~> (line [u] (#a u)), psi
| psi
| H >> (#a #r) <= #ty type










Pushouts


pushout/eqtype

H >> (pushout #a0 #b0 #c0 [x] (#f0 x) [x] (#g0 x)) = (pushout #a1 #b1 #c1 [x] (#f1 x) [x] (#g1 x)) in (U #l #k)
where
  (#k/end, #k/apex) <-
    (coe, coe) if #k == kan
    (coe, coe) if #k == coe
    (pre, pre) if #k == hcom
    (pre, pre) if #k == pre
| H, x:#c0 >> (#f0 x) = (#f1 x) in #a0
| H, x:#c0 >> (#g0 x) = (#g1 x) in #b0
| H >> #a0 = #a1 in (U #l #k/end)
| H >> #b0 = #b1 in (U #l #k/end)
| H >> #c0 = #c1 in (U #l #k/apex)








pushout/eq/left

H >> (left #m0) = (left #m1) in (pushout #a #b #c [x] (#f x) [x] (#g x))
| H >> #m0 = #m1 in #a
| H, x:#c >> (#f x) in #a
| H, x:#c >> (#g x) in #b
| H >> #b type
| H >> #c type








pushout/eq/right

H >> (right #m0) = (right #m1) in (pushout #a #b #c [x] (#f x) [x] (#g x))
| H >> #m0 = #m1 in #b
| H, x:#c >> (#f x) in #a
| H, x:#c >> (#g x) in #b
| H >> #a type
| H >> #c type








pushout/eq/glue

H >> (glue #r #m0 #fm0 #gm0) = (glue #r #m1 #fm1 #gm1) in (pushout #a #b #c [x] (#f x) [x] (#g x))
| H >> #m0 = #m1 in #c
| H >> #fm0 = #fm1 in #a
| H >> #gm0 = #gm1 in #b
| H >> (#f #m0) = #fm0 in #a
| H >> (#g #m0) = #gm0 in #b
| H, x:#c >> (#f x) in #a
| H, x:#c >> (#g x) in #b








pushout/eq/fcom

H >> (fcom #i~>#j #cap0 [#r/0=#s/0 [k] (#t0/0 k)] ... [#r/n=#s/n [k] (#t0/n k)])
     = (fcom #i~>#j #cap1 [#r/0=#s/0 [k] (#t1/0 k)] ... [#r/n=#s/n [k] (#t1/n k)])
     in (pushout #a #b #c [x] (#f x) [x] (#g x))
where
  #ty <- (pushout #a #b #c [x] (#f x) [x] (#g x))
| H, x:#c >> (#f x) in #a
| H, x:#c >> (#g x) in #b
| H >> #a type
| H >> #b type
| H >> #c type
| H >> #cap0 = #cap1 in #ty
| H, k:dim, #r/0=#s/0 >> (#t0/0 k) = (#t1/0 k) in #ty
| ...
| H, k:dim, #r/n=#s/n >> (#t0/n k) = (#t1/n k) in #ty
| H, k:dim, #r/0=#s/0, #r/1=#s/1 >> (#t0/0 k) = (#t1/1 k) in #ty
| H, k:dim, #r/0=#s/0, #r/2=#s/2 >> (#t0/0 k) = (#t1/2 k) in #ty
| ...
| H, k:dim, #r/n-1=#s/n-1, #r/n=#s/n >> (#t0/n-1 k) = (#t1/n k) in #ty
| H, #r/0=#s/0 >> #cap0 = (#t0/0 #i) in #ty
| ...
| H, #r/n=#s/n >> #cap0 = (#t0/n #i) in #ty








pushout/eq/pushout-rec

H >> (pushout-rec [p] (#d0 p) #m0 [a] (#n0 a) [b] (#p0 b) [v x] (#q0 v x))
     = (pushout-rec [x] (#d1 x) #m1 [a] (#n1 a) [b] (#p1 b) [v x] (#q1 v x)) in #ty
where H >> #m0 = #m1 synth ~> (pushout #a #b #c [x] (#f x) [x] (#g x)), psi
| H, a:#a >> (#n0 a) = (#n1 a) in (#d0 (left a))
| H, b:#b >> (#p0 b) = (#p1 b) in (#d1 (right b))
| H, v:dim, x:#c >> (#q0 v x) = (#q1 v x) in (#d0 (glue v x (#f x) (#g x)))
| H, x:#c >> (#q0 0 x) = (#n0 (#f x)) in (#d0 (left (#f x)))
| H, x:#c >> (#q0 1 x) = (#p0 (#g x)) in (#d0 (right (#g x)))
| H, p:(pushout #a #b #c [x] (#f x) [x] (#g x)) >> (#d0 p) = (#d1 p) kan type
| psi
| H >> (#d0 #m0) <= #ty type








pushout/beta/glue

H >> (pushout-rec [p] (#d p) (glue #r #t #ft #gt) [a] (#n a) [b] (#p b) [v x] (#q v x)) = #s in #ty
| H >> (#q #r #t) = #s in #ty
| H, #r=0 >> (#n #ft) = #s in #ty
| H, #r=1 >> (#p #gt) = #s in #ty










Coequalizers


coeq/eqtype

H >> (coeq #a0 #b0 [x] (#f0 x) [x] (#g0 x)) = (coeq #a1 #b1 [x] (#f1 x) [x] (#g1 x)) in (U #l #k)
where
  (#k/cod, #k/dom) <-
    (coe, coe) if #k == kan
    (coe, coe) if #k == coe
    (pre, pre) if #k == hcom
    (pre, pre) if #k == pre
| H, x:#a0 >> (#f0 x) = (#f1 x) in #b0
| H, x:#a0 >> (#g0 x) = (#g1 x) in #b0
| H >> #a0 = #a1 in (U #l #k/dom)
| H >> #b0 = #b1 in (U #l #k/cod)








coeq/eq/cod

H >> (cecod #m0) = (cecod #m1) in (coeq #a #b [x] (#f x) [x] (#g x))
| H >> #m0 = #m1 in #b
| H, x:#a >> (#f x) in #b
| H, x:#a >> (#g x) in #b
| H >> #a type








coeq/eq/dom

H >> (cedom #r #m0 #fm0 #gm0) = (cedom #r #m0 #fm0 #gm0) in (coeq #a #b [x] (#f x) [x] (#g x))
| H >> #m0 = #m1 in #a
| H >> #fm0 = #fm1 in #b
| H >> #gm0 = #gm1 in #b
| H >> (#f #m0) = #fm0 in #b
| H >> (#g #m0) = #gm0 in #b
| H, x:#a >> (#f x) in #b
| H, x:#a >> (#g x) in #b








coeq/eq/fcom

H >> (fcom #i~>#j #cap0 [#r/0=#s/0 [k] (#t0/0 k)] ... [#r/n=#s/n [k] (#t0/n k)])
     = (fcom #i~>#j #cap1 [#r/0=#s/0 [k] (#t1/0 k)] ... [#r/n=#s/n [k] (#t1/n k)])
     in (coeq #a #b [x] (#f x) [x] [x] (#g x))
where
  #ty <- (coeq #a #b [x] (#f x) [x] [x] (#g x))
| H, x:#a >> (#f x) in #b
| H, x:#a >> (#g x) in #b
| H >> #a type
| H >> #b type
| H >> #cap0 = #cap1 in #ty
| H, k:dim, #r/0=#s/0 >> (#t0/0 k) = (#t1/0 k) in #ty
| ...
| H, k:dim, #r/n=#s/n >> (#t0/n k) = (#t1/n k) in #ty
| H, k:dim, #r/0=#s/0, #r/1=#s/1 >> (#t0/0 k) = (#t1/1 k) in #ty
| H, k:dim, #r/0=#s/0, #r/2=#s/2 >> (#t0/0 k) = (#t1/2 k) in #ty
| ...
| H, k:dim, #r/n-1=#s/n-1, #r/n=#s/n >> (#t0/n-1 k) = (#t1/n k) in #ty
| H, #r/0=#s/0 >> #cap0 = (#t0/0 #i) in #ty
| ...
| H, #r/n=#s/n >> #cap0 = (#t0/n #i) in #ty








coeq/beta/dom

H >> (coeq-rec [c] (#p c) (cedom #r #t #ft #gt) [b] (#n b) [v a] (#q v a)) = #s in #ty
| H >> (#q #r #t) = #s in #ty
| H, #r=0 >> (#n #ft) = #s in #ty
| H, #r=1 >> (#n #gt) = #s in #ty








coeq/eq/coeq-rec

H >> (coeq-rec [c] (#p0 c) #m0 [b] (#n0 b) [v a] (#q0 v a))
     = (coeq-rec [c] (#p1 c) #m1 [b] (#n1 b) [v a] (#q1 v a)) in #ty
where H >> #m0 = #m1 synth (coeq #a #b [x] (#f x) [x] (#g x)), psi
| H, b:#b >> (#n0 b) = (#n1 b) in (#p0 (cecod b))
| H, v:dim, a:#a >> (#q0 v a) = (#q1 v a) in (#p0 (cedom v a (#f a) (#g a))
| H, a:#a >> (#q0 0 a) = (#n0 (#f a)) in (#p0 (cecod (#f a)))
| H, a:#a >> (#q0 1 a) = (#n0 (#g a)) in (#p0 (cecod (#g a)))
| H, c:(coeq #a #b [x] (#f x) [x] (#g x)) >> (#p0 c) = (#p1 c) kan type
| psi
| H >> (#p0 #m0) <= #ty type










Exact equalities


eq/eqtype

H >> (= #a0 #m0 #n0) = (= #a1 #m1 #n1) in (U #l #k)
where
  #ka <-
    discrete if #k == discrete
    discrete if #k == kan
    pre if #k == hcom
    discrete if #k == coe
    pre if #k == pre
| H >> #m0 = #m1 in #a0
| H >> #n0 = #n1 in #a0
| H >> #a0 = #a1 in (U #l #ka)








eq/eq/ax

H >> ax = ax in (= #a #m #n)
| H >> #m = #n in #a








eq/eta

H >> #x = #y in (= #a #m #n)
| H >> ax = #y in (= #a #m #n)
| H >> #x in (= #a #m #n)










Composite types


fcom/eqtype

H >> (fcom #i~>#j #Cap0 [#r/0=#s/0 [k] (#T0/0 k)] ... [#r/n=#s/n [k] (#T0/n k)])
     = (fcom #i~>#j #Cap1 [#r/0=#s/0 [k] (#T1/0 k)] ... [#r/n=#s/n [k] (#T1/n k)])
     in (U #l #k)
where
  (#k/cap, #k/tube) <-
    (kan, kan) if #k == kan
    (hcom, kan) if #k == hcom
    (kan, kan) if #k == coe
    (pre, coe) if #k == pre
| H >> #Cap0 = #Cap1 in (U #l #k/cap)
| H, k:dim, #r/0=#s/0 >> (#T0/0 k) = (#T1/0 k) in (U #l #k/tube)
| ...
| H, k:dim, #r/n=#s/n >> (#T0/n k) = (#T1/n k) in (U #l #k/tube)
| H, k:dim, #r/0=#s/0, #r/1=#s/1 >> (#T0/0 k) = (#T1/1 k) in (U #l #k/tube)
| H, k:dim, #r/0=#s/0, #r/2=#s/2 >> (#T0/0 k) = (#T1/2 k) in (U #l #k/tube)
| ...
| H, k:dim, #r/n-1=#s/n-1, #r/n=#s/n >> (#T0/n-1 k) = (#T1/n k) in (U #l #k/tube)
| H, #r/0=#s/0 >> #Cap0 = (#T0/0 #i) in (U #l #k/cap)
| ...
| H, #r/n=#s/n >> #Cap0 = (#T0/n #i) in (U #l #k/cap)








fcom/eq/box

H >> (box #i~>#j #cap0 [#r/0=#s/0 #b0/0] ... [#r/n=#s/n #b0/n])
     = (box #i~>#j #cap1 [#r/0=#s/0 #b1/0] ... [#r/n=#s/n #b1/n])
     in (fcom #i~>#j #Cap [#r/0=#s/0 [k] (#T/0 k)] ... [#r/n=#s/n [k] (#T/n k)])
| H >> #cap0 = #cap1 in #Cap
| H, #r/0=#s/0 >> #b0/0 = #b1/0 in (#T/0 #j)
| ...
| H, #r/n=#s/n >> #b0/n = #b1/n in (#T/n #j)
| H, #r/0=#s/0, #r/1=#s/1 >> #b0/0 = #b1/1 in (#T/0 #j)
| H, #r/0=#s/0, #r/2=#s/2 >> #b0/0 = #b1/2 in (#T/0 #j)
| ...
| H, #r/n-1=#s/n-1, #r/n=#s/n >> #b0/n-1 = #b1/n in (#T/n-1 #j)
| H, #r/0=#s/0 >> #cap0 = (coe #j~>#i #T/0 #b0/0) in #Cap
| ...
| H, #r/n=#s/n >> #cap0 = (coe #j~>#i #T/n #b0/n) in #Cap
| H, k:dim, #r/0=#s/0 >> (#T/0 k) coe type
| ...
| H, k:dim, #r/n=#s/n >> (#T/n k) coe type
| H, k:dim, #r/0=#s/0, #r/1=#s/1 >> (#T/0 k) = (#T/1 k) coe type
| H, k:dim, #r/0=#s/0, #r/2=#s/2 >> (#T/0 k) = (#T/2 k) coe type
| ...
| H, k:dim, #r/n-1=#s/n-1, #r/n=#s/n >> (#T/n-1 k) = (#T/n k) coe type
| H, #r/0=#s/0 >> #Cap = (#T/0 #i) type
| ...
| H, #r/n=#s/n >> #Cap = (#T/n #i) type








fcom/intro

H >> (fcom #i~>#j #Cap [#r/0=#s/0 [k] (#T/0 k)] ... [#r/n=#s/n [k] (#T/n k)])
     ext (box #i~>#j #cap [#r/0=#s/0 #b/0] ... [#r/n=#s/n #b/n])
| H >> #Cap ext #cap
| H, #r/0=#s/0 >> (#T/0 #j) ext #b/0
| ...
| H, #r/n=#s/n >> (#T/n #j) ext #b/n
| H, #r/0=#s/0, #r/1=#s/1 >> #b/0 = #b/1 in (#T/0 #j)
| H, #r/0=#s/0, #r/2=#s/2 >> #b/0 = #b/2 in (#T/0 #j)
| ...
| H, #r/n-1=#s/n-1, #r/n=#s/n >> #b/n-1 = #b/n in (#T/n-1 #j)
| H, #r/0=#s/0 >> #cap = (coe #j~>#i #T/0 #b/0) in #Cap
| ...
| H, #r/n=#s/n >> #cap = (coe #j~>#i #T/n #b/n) in #Cap
| H, k:dim, #r/0=#s/0 >> (#T/0 k) coe type
| ...
| H, k:dim, #r/n=#s/n >> (#T/n k) coe type
| H, k:dim, #r/0=#s/0, #r/1=#s/1 >> (#T/0 k) = (#T/1 k) coe type
| H, k:dim, #r/0=#s/0, #r/2=#s/2 >> (#T/0 k) = (#T/2 k) coe type
| ...
| H, k:dim, #r/n-1=#s/n-1, #r/n=#s/n >> (#T/n-1 k) = (#T/n k) coe type
| H, #r/0=#s/0 >> #Cap = (#T/0 #i) type
| ...
| H, #r/n=#s/n >> #Cap = (#T/n #i) type










V types


v/eqtype

H >> (V #r #a0 #b0 #e0) = (V #r #a1 #b1 #e1) in (U #l #k)
where
  (#ka, #kb) <-
    (kan, kan) if #k == kan
    (hcom, hcom) if #k == hcom
    (coe, com) if #k == coe
    (pre, pre) if #k == pre
| H, #r=0 >> #e0 = #e1 in (Equiv #a0 #b0)
| H, #r=0 >> #a0 = #a1 in (U #l #ka)
| H >> #b0 = #b1 in (U #l #kb)





where Equiv is defined by

define HasAllPathsTo (#C,#c) = (-> [center : #C] (path [_] #C center #c)).
define IsContr (#C) = (* [c : #C] (HasAllPathsTo #C c)).
define Fiber (#A,#B,#f,#b) = (* [a : #A] (path [_] #B ($ #f a) #b)).
define IsEquiv (#A,#B,#f) = (-> [b : #B] (IsContr (Fiber #A #B #f b))).
define Equiv (#A,#B) = (* [f : (-> #A #B)] (IsEquiv #A #B f)).








v/eq/vin

H >> (vin #r #m0 #n0) = (vin #r #m1 #n1) in (V #r #a #b #e)
| H, #r=0 >> #m0 = #m1 in #a
| H >> #n0 = #n1 in #b
| H, #r=0 >> ($ (! proj1 #e) #m0) = #n0 in #b
| H, #r=0 >> #e in (Equiv #a #b)








v/intro

H >> (V #r #a #b #e) ext (vin #r #m #n)
| H, #r=0 >> #a ext #m
| H >> #b ext #n
| H, #r=0 >> ($ (! proj1 #e) #m) = #n in #b
| H, #r=0 >> #e in (Equiv #a #b)








v/eq/proj

H >> (vproj #r #m0 #f0) = (vproj #r #m1 #f1) in #ty
where
  #r /= 0 and #r /= 1
  H >> #m0 = #m1 synth ~> (v #r #a #b #e), psi
| H, #r=0 >> #f0 = #f1 in (-> #a #b)
| H, #r=0 >> #f0 = (! proj1 #e) in (-> #a #b)
| psi
| H >> #b <= #ty type










Kan operations


hcom/eq

H >> (hcom #i~>#j #ty0 #cap0 [#r/0=#s/0 [k] (#t0/0 k)] ... [#r/n=#s/n [k] (#t0/n k)])
     = (hcom #i~>#j #ty1 #cap1 [#r/0=#s/0 [k] (#t1/0 k)] ... [#r/n=#s/n [k] (#t1/n k)]) in #ty
| H >> #cap0 = #cap1 in #ty0
| H, k:dim, #r/0=#s/0 >> (#t0/0 k) = (#t1/0 k) in #ty0
| ...
| H, k:dim, #r/n=#s/n >> (#t0/n k) = (#t1/n k) in #ty0
| H, k:dim, #r/0=#s/0, #r/1=#s/1 >> (#t0/0 k) = (#t1/1 k) in #ty0
| H, k:dim, #r/0=#s/0, #r/2=#s/2 >> (#t0/0 k) = (#t1/2 k) in #ty0
| ...
| H, k:dim, #r/n-1=#s/n-1, #r/n=#s/n >> (#t0/n-1 k) = (#t1/n k) in #ty0
| H, #r/0=#s/0 >> #cap0 = (#t0/0 #i) in #ty0
| ...
| H, #r/n=#s/n >> #cap0 = (#t0/n #i) in #ty0
| H >> #ty0 = #ty1 hcom type
| H >> #ty0 <= #ty type








hcom/eq/cap

H >> (hcom #i~>#i #ty' #cap [#r/0=#s/0 [k] (#t/0 k)] ... [#r/n=#s/n [k] (#t/n k)]) = #m in #ty
| H >> #cap = #m in #ty
| H, k:dim, #r/0=#s/0 >> (#t/0 k) in #ty'
| ...
| H, k:dim, #r/n=#s/n >> (#t/n k) in #ty'
| H, k:dim, #r/0=#s/0, #r/1=#s/1 >> (#t0 k) = (#t1 k) in #ty'
| H, k:dim, #r/0=#s/0, #r/2=#s/2 >> (#t0 k) = (#t2 k) in #ty'
| ...
| H, k:dim, #r/n-1=#s/n-1, #r/n=#s/n >> (#t/n-1 k) = (#t/n k) in #ty'
| H, #r/0=#s/0 >> #cap = (#t/0 #i) in #ty'
| ...
| H, #r/n=#s/n >> #cap = (#t/n #i) in #ty'
| H >> #ty' hcom type
| H >> #ty' <= #ty type








hcom/eq/tube

H >> (hcom #i~>#j #ty' #cap [#r/0=#s/0 [k] (#t/0 k)] ... [#r/n=#s/n [k] (#t/n k)]) = #m in #ty
where
  #r/0 /= #s/0, ..., #r/l-1 /= #s/l-1 and #r/l = #s/l
| H >> (#t/l #j) = #m in #ty'
| H, k:dim, #r/0=#s/0 >> (#t/0 k) in #ty'
| ...
| H, k:dim, #r/n=#s/n >> (#t/n k) in #ty'
| H, k:dim, #r/0=#s/0, #r/1=#s/1 >> (#t/0 k) = (#t/1 k) in #ty'
| H, k:dim, #r/0=#s/0, #r/2=#s/2 >> (#t/0 k) = (#t/2 k) in #ty'
| ...
| H, k:dim, #r/n-1=#s/n-1, #rn=#sn >> (#t/n-1 k) = (#tn k) in #ty'
| H, #r/0=#s/0 >> #cap = (#t/0 #i) in #ty'
| ...
| H, #r/n=#s/n >> #cap = (#t/n #i) in #ty'
| H >> #ty' hcom type
| H >> #ty' <= #ty type








coe/eq

H >> (coe #i~>#j [u] (#a0 u) #m0) = (coe #i~>#j [u] (#a1 u) #m1) in #ty
| H >> #m0 = #m1 in (#a0 #i)
| H, u:dim >> #a0 = #a1 coe type
| H >> (#a0 #j) <= #ty type








coe/eq/cap

H >> (coe #i~>#i [u] (#a u) #m) = #n in #ty
| H >> #m = #n in #ty
| H, u:dim >> (#a u) coe type
| H >> (#a #i) <= #ty type










Universes


subtype/eq

H >> #a <= #b type
| H >> #a = #b type








universe/eqtype

H >> (U #l #k) = (U #l #k) in (U #l' #k')
where
  #k/univ <-
    discrete if #k == discrete
    kan if #k == kan
    kan if #k == hcom
    coe if #k == coe
    kan if #k == pre
  #l < #l'
  #k/univ <= #k'








universe/subtype

H >> (U #l0 #k0) <= (U #l1 #k1) type
where
  #l0 <= #l1
  #k0 <= #k1
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