
recurring Documentation
Release 1.0.0

Jeremiah Dodds

May 30, 2018

Contents

1 Use this if: 3

2 This is probably not appropriate for your project if: 5

3 Installation: 7

4 Usage: 9

5 Changelog 11
5.1 2.0.0 - 2018-05-30 . 11
5.2 1.0.1 - 2018-05-24 . 11
5.3 1.0.0 - 2018-05-22 . 11

6 Indices and tables 13

i

ii

recurring Documentation, Release 1.0.0

This is a simple library for running a function or callable every N seconds. It’s meant for applications that need
to schedule small, self-contined callable(s) on a relatively long, potentially changing period . alive-checks, state
snapshots, that sort of thing.

Contents 1

https://travis-ci.org/jdodds/recurring
https://coveralls.io/github/jdodds/recurring?branch=master

recurring Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Use this if:

• You want to call something periodically over the lifetime of your application.

• You want to be able to change the time between calls.

• You want or need to avoid the overhead of joining and starting a thread every time. (up to 1/5 of a second
according to my sample-size of one machine under no other load)

• The stuff you’re going to call isn’t going to destroy machines if it’s killed abruptly at the end of the application’s
life.

3

recurring Documentation, Release 1.0.0

4 Chapter 1. Use this if:

CHAPTER 2

This is probably not appropriate for your project if:

• You’re already using or likely will be using a fleshed-out concurrency framework.

• You have many things you’d like to repeatedly schedule and run.

• Your callables absolutely must execute some cleanup code to avoid disaster on kill.

This is not a library intended for top-level program composition.

5

recurring Documentation, Release 1.0.0

6 Chapter 2. This is probably not appropriate for your project if:

CHAPTER 3

Installation:

pip install recurring

7

recurring Documentation, Release 1.0.0

8 Chapter 3. Installation:

CHAPTER 4

Usage:

import recurring

def stuff():
do stuff ...

seconds_between_stuff = 30

job = recurring.job(stuff, seconds_between_stuff)
job.start()

...

seconds_between_stuff = 300000000 # this will be *from when rate is set*, not *from
→˓the next scheduled call*
job.rate = seconds_between_stuff

...

stop making calls until start() is called again
job.stop()

some time later
job.start()

stop making calls permanently
job.terminate()
job.start() # raises RuntimeError
job.rate = 3000 # raises RuntimeError

9

recurring Documentation, Release 1.0.0

10 Chapter 4. Usage:

CHAPTER 5

Changelog

5.1 2.0.0 - 2018-05-30

• replaced sched backend with threading.Timer-like implementation, saving us from needing to respawn
when a job’s rate is changed.

• jobs can now be permanently stopped by calling job.terminate()

5.1.1 Backwards-Incompatible Changes

• job.stop() no longer takes an optional timeout argument

5.2 1.0.1 - 2018-05-24

• Corrected an assumption about the number of events that could be queued at once.

5.3 1.0.0 - 2018-05-22

• Initial release

11

recurring Documentation, Release 1.0.0

12 Chapter 5. Changelog

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

13

	Use this if:
	This is probably not appropriate for your project if:
	Installation:
	Usage:
	Changelog
	2.0.0 - 2018-05-30
	1.0.1 - 2018-05-24
	1.0.0 - 2018-05-22

	Indices and tables

