recurring Documentation
Release 1.0.0

Jeremiah Dodds

May 30, 2018

Contents

Use this if:

This is probably not appropriate for your project if:

Installation:
Usage:

Changelog

5.1 2.0.0-2018-05-30
52 1.0.1-2018-05-24
53 1.0.0-2018-05-22

Indices and tables

recurring Documentation, Release 1.0.0

This is a simple library for running a function or callable every N seconds. It’s meant for applications that need
to schedule small, self-contined callable(s) on a relatively long, potentially changing period . alive-checks, state
snapshots, that sort of thing.

Contents 1

https://travis-ci.org/jdodds/recurring
https://coveralls.io/github/jdodds/recurring?branch=master

recurring Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Use this if:

You want to call something periodically over the lifetime of your application.
You want to be able to change the time between calls.

You want or need to avoid the overhead of joining and starting a thread every time. (up to 1/5 of a second
according to my sample-size of one machine under no other load)

The stuff you’re going to call isn’t going to destroy machines if it’s killed abruptly at the end of the application’s
life.

recurring Documentation, Release 1.0.0

4 Chapter 1. Use this if:

CHAPTER 2

This is probably not appropriate for your project if:

* You’re already using or likely will be using a fleshed-out concurrency framework.
* You have many things you’d like to repeatedly schedule and run.
* Your callables absolutely must execute some cleanup code to avoid disaster on kill.

This is not a library intended for top-level program composition.

recurring Documentation, Release 1.0.0

6 Chapter 2. This is probably not appropriate for your project if:

CHAPTER 3

Installation:

pip install recurring

recurring Documentation, Release 1.0.0

8 Chapter 3. Installation:

CHAPTER 4

Usage:

import recurring
def stuff():

do stuff
seconds_between_stuff = 30
job = recurring.job (stuff, seconds_between_stuff)
job.start ()
#
seconds_between_stuff = 300000000 # this will be xfrom when rate is setx, not xfrom_
—the next scheduled callx
job.rate = seconds_between_stuff
#

stop making calls until start() is called again
job.stop ()

some time later
job.start ()

stop making calls permanently
job.terminate ()

job.start () # raises RuntimeError
job.rate 3000 # raises RuntimeError

recurring Documentation, Release 1.0.0

10 Chapter 4. Usage:

CHAPTER B

Changelog

5.1 2.0.0 - 2018-05-30

¢ replaced sched backend with threading. Timer-like implementation, saving us from needing to respawn
when a job’s rate is changed.

* jobs can now be permanently stopped by calling job.terminate ()

5.1.1 Backwards-Incompatible Changes

* job.stop () no longer takes an optional t imeout argument

5.2 1.0.1 - 2018-05-24

* Corrected an assumption about the number of events that could be queued at once.

5.3 1.0.0 - 2018-05-22

e Initial release

11

recurring Documentation, Release 1.0.0

12 Chapter 5. Changelog

CHAPTER O

Indices and tables

* genindex
* modindex

e search

13

	Use this if:
	This is probably not appropriate for your project if:
	Installation:
	Usage:
	Changelog
	2.0.0 - 2018-05-30
	1.0.1 - 2018-05-24
	1.0.0 - 2018-05-22

	Indices and tables

