

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Change Log

v0.2.3 [https://github.com/recipy/recipy/tree/HEAD]

Full Changelog [https://github.com/recipy/recipy/compare/v0.2.3...HEAD]

This is a very small release to fix recipy to work with the latest version of TinyDB (v3.0.0).

Fixed bugs:

	TinyDB import error #92 [https://github.com/recipy/recipy/issues/92]

v0.2.1 [https://github.com/recipy/recipy/tree/v0.2.1]

Full Changelog [https://github.com/recipy/recipy/compare/v0.2.0...HEAD]

Minor bug-fix release.

Fixed bugs:

	Patching of Pillow does not work due to #52 [https://github.com/recipy/recipy/issues/52], which caused matplotlib imports to fail. Fixed by removing Pillow support for the moment

v0.2.0 [https://github.com/recipy/recipy/tree/v0.2.0] (2015-09-21)

Full Changelog [https://github.com/recipy/recipy/compare/v0.1.0...v0.2.0]

This is the first new release of recipy since its debut at EuroSciPy 2015. Sorry for the delay in getting this out, life has been rather chaotic for all of the members of the recipy team. We want to say a huge thank you to all of the people who have submitted issues and pull requests: we couldn’t have done this without you!

Full details are below, but the major new features include logging command-line arguments, exporting runs to JSON, adding more configuration options, and adding more commands to the GUI. A number of bugs have also been fixed.

Implemented enhancements:

	Add export option to the GUI #68 [https://github.com/recipy/recipy/issues/68]

	Add ‘latest’ option to CLI #59 [https://github.com/recipy/recipy/issues/59]

	Make DB path configurable #57 [https://github.com/recipy/recipy/issues/57]

	Configuration option not to track input or output files #56 [https://github.com/recipy/recipy/issues/56]

	Add search by id #49 [https://github.com/recipy/recipy/issues/49]

	Configuration file should be ~/.recipy/recipyrc #46 [https://github.com/recipy/recipy/issues/46]

	Add ‘quiet’ option to config file to stop display of ‘recipy run inserted xyz’ message #43 [https://github.com/recipy/recipy/issues/43]

	Add export of individual runs, or the whole database #50 [https://github.com/recipy/recipy/issues/50]

	Log command-line arguments #47 [https://github.com/recipy/recipy/issues/47]

Fixed bugs:

	Loading a numpy file gives error message, only after recipy import. #83 [https://github.com/recipy/recipy/issues/83]

	Config file reading doesn’t work as specified in the docs #64 [https://github.com/recipy/recipy/issues/64]

	recipyCommon is not a package #62 [https://github.com/recipy/recipy/issues/62]

Closed issues:

	GUI port number consistency #80 [https://github.com/recipy/recipy/issues/80]

	README.md example is inconsistent #78 [https://github.com/recipy/recipy/issues/78]

	Make UTC explicit in interfaces #75 [https://github.com/recipy/recipy/issues/75]

	Tidy up inputs/outputs lists when there are none of them #74 [https://github.com/recipy/recipy/issues/74]

	Add release notes #67 [https://github.com/recipy/recipy/issues/67]

	Make proper documentation about config file options #60 [https://github.com/recipy/recipy/issues/60]

	GUI Internal Server Error when viewing run with no git metadata #42 [https://github.com/recipy/recipy/issues/42]

	keeping track of in- and outfile versions #41 [https://github.com/recipy/recipy/issues/41]

	Logging of parameters #40 [https://github.com/recipy/recipy/issues/40]

	Convert to use TinyDB #39 [https://github.com/recipy/recipy/issues/39]

	Add ‘command’ functionality to recipy-cmd #37 [https://github.com/recipy/recipy/issues/37]

	Create text index on all fields in database #35 [https://github.com/recipy/recipy/issues/35]

	Upload to PyPI #23 [https://github.com/recipy/recipy/issues/23]

	Add recipy-cmd function to create DB and set text index #10 [https://github.com/recipy/recipy/issues/10]

Merged pull requests:

	GUI port number #81 [https://github.com/recipy/recipy/pull/81] (sjdenny [https://github.com/sjdenny])

	Add python highlighting in the README.md #79 [https://github.com/recipy/recipy/pull/79] (musically-ut [https://github.com/musically-ut])

	fixed typo in modulename of PatchPillow #73 [https://github.com/recipy/recipy/pull/73] (MichielCottaar [https://github.com/MichielCottaar])

	Command args #71 [https://github.com/recipy/recipy/pull/71] (oew1v07 [https://github.com/oew1v07])

	Allow running recipy as a module (python -m recipy) #66 [https://github.com/recipy/recipy/pull/66] (kynan [https://github.com/kynan])

	Nibabel support #51 [https://github.com/recipy/recipy/pull/51] (MichielCottaar [https://github.com/MichielCottaar])

v0.1.0 [https://github.com/recipy/recipy/tree/v0.1.0] (2015-08-16)

This is the first public release of recipy. The changes listed below are compared to early pre-release versions.

Fixed bugs:

	Not all pandas output methods are wrapped #11 [https://github.com/recipy/recipy/issues/11]

Closed issues:

	Make compatible with Python 3 (and still with Python 2) #34 [https://github.com/recipy/recipy/issues/34]

	Add configuration file support #33 [https://github.com/recipy/recipy/issues/33]

	Add working setup.py #31 [https://github.com/recipy/recipy/issues/31]

	Deal with git status of multiple files #29 [https://github.com/recipy/recipy/issues/29]

	Use PyMongo v3? #28 [https://github.com/recipy/recipy/issues/28]

	Add fuzzy searching option to recipy-cmd #27 [https://github.com/recipy/recipy/issues/27]

	Make recipy-cmd work to search for full paths when given file in current directory #26 [https://github.com/recipy/recipy/issues/26]

	Store diffs between script as executed and latest git commit #24 [https://github.com/recipy/recipy/issues/24]

	Add hooks for scikit-learn #16 [https://github.com/recipy/recipy/issues/16]

	Add hooks for scikit-image #15 [https://github.com/recipy/recipy/issues/15]

	Add hooks for scikit-image #14 [https://github.com/recipy/recipy/issues/14]

	Add hooks for PIL and Pillow #13 [https://github.com/recipy/recipy/issues/13]

	Get more details on the environment and store in the DB #9 [https://github.com/recipy/recipy/issues/9]

	Add a way to share entries from the DB #8 [https://github.com/recipy/recipy/issues/8]

	Add interfaces from more languages and other tools #7 [https://github.com/recipy/recipy/issues/7]

	Keep track of git commit version of script #6 [https://github.com/recipy/recipy/issues/6]

	Add automatic installation for various OS’s #5 [https://github.com/recipy/recipy/issues/5]

	Add proper setup.py file #4 [https://github.com/recipy/recipy/issues/4]

	Add hooks for more commonly-used Python modules #3 [https://github.com/recipy/recipy/issues/3]

	Store full paths to files #2 [https://github.com/recipy/recipy/issues/2]

	Make recipy-cmd search with fuzzy matches #1 [https://github.com/recipy/recipy/issues/1]

 Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

	Definitions.

“License” shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
“control” means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity
exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

“Object” form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, “submitted”
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

	Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

	Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

	Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

	Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

	Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

	Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

	Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

	Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "{}"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

Copyright {yyyy} {name of copyright owner}

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

recipy

What is it and who cares?

Imagine the situation: You’ve written some wonderful Python code which produces a beautiful graph as an output. You save that graph, naturally enough, as graph.png. You run the code a couple of times, each time making minor modifications. You come back to it the next week/month/year. Do you know how you created that graph? What input data? What version of your code? If you’re anything like me then the answer will often, frustratingly, be “no”. Of course, you then waste lots of time trying to work out how you created it, or even give up and never use it in that journal paper that will win you a Nobel Prize…

This talk will introduce ReciPy (from recipe and python), a Python module that will save you from this situation! (Although it can’t guarantee that your resulting paper will win a Nobel Prize!) With the addition of a single line of code to the top of your Python files, ReciPy will log each run of your code to a database, keeping track of the input files, output files and the version of your code, and then let you query this database to find out how you actually did create graph.png.

Installation:

The easiest way to install is by simply running

pip install recipy

Alternatively, you can clone this repository and run:

python setup.py install

If you want to install the dependencies manually (they should be installed automatically if you’re following the instructions above) then run:

pip install -r requirements.txt

You can upgrade from a previous release by running:

pip install -U recipy

To find out what has changed since the last release, see the changelog [https://github.com/recipy/recipy/blob/master/CHANGELOG.md]

Note: Previous (unreleased) versions of recipy required MongoDB to be installed and set up manually. This is no longer required, as a pure Python database (TinyDB) is used instead. Also, the GUI is now integrated fully into recipy and does not require installing separately.

Usage

Simply add the following line to the top of your Python script:

import recipy

Note that this must be the very top line of your script, before you import anything else.

Then just run your script as usual, and all of the data will be logged into the TinyDB database (don’t worry, the database is automatically created if needed). You can then use the recipy script to quickly query the database to find out what run of your code produced what output file. So, for example, if you run some code like this:

import recipy
import numpy

arr = numpy.arange(10)
arr = arr + 500

numpy.save('test.npy', arr)

(Note the addition of import recipy at the beginning of script - but there are no other changes from a standard script)

Alternatively, run an unmodified script with python -m recipy SCRIPT [ARGS ...] to enable recipy logging. This invokes recipy’s module entry point, which takes care of import recipy for you, before running your script.

it will produce an output called test.npy. To find out the details of the run which created this file you can search using

recipy search test.npy

and it will display information like the following:

Created by robin on 2015-05-25 19:00:15.631000
Ran /Users/robin/code/recipy/example_script.py using /usr/local/opt/python/bin/python2.7
Git: commit 91a245e5ea82f33ae58380629b6586883cca3ac4, in repo /Users/robin/code/recipy, with origin git@github.com:recipy/recipy.git
Environment: Darwin-14.3.0-x86_64-i386-64bit, python 2.7.9 (default, Feb 10 2015, 03:28:08)
Inputs:

Outputs:
 /Users/robin/code/recipy/test.npy

An alternative way to view this is to use the GUI. Just run recipy gui and a browser window will open with an interface that you can use to search all of your recipy ‘runs’:

[image: Screenshot of GUI]

If you want to log inputs and outputs of files read or written with built-in open, you need to do a little more work. Either use recipy.open (only requires import recipy at the top of your script), or add from recipy import open and just use open.
This workaround is required, because many libraries use built-in open internally, and you only want to record the files you explicitly opened yourself.

If you use Python 2, you can pass an encoding parameter to recipy.open. In this case codecs is used to open the file with proper encoding.

Once you’ve got some runs in your database, you can ‘annotate’ these runs with any notes that you want to keep about them. This can be particularly useful for recording which runs worked well, or particular problems you ran into. This can be done from the ‘details’ page in the GUI, or by running

recipy annotate

which will open an editor to allow you to write notes that will be attached to the run. These will then be viewable via the command-line and the GUI when searching for runs.

There are other features in the command-line interface too: recipy --help to see the other options. You can view diffs, see all runs that created a file with a given name, search based on ids, show the latest entry and more:

recipy - a frictionless provenance tool for Python

Usage:
 recipy search [options] <outputfile>
 recipy latest [options]
 recipy gui [options]
 recipy annotate [options]
 recipy (-h | --help)
 recipy --version

Options:
 -h --help Show this screen
 --version Show version
 -a --all Show all results (otherwise just latest result given)
 -f --fuzzy Use fuzzy searching on filename
 -r --regex Use regex searching on filename
 -i --id Search based on (a fragment of) the run ID
 -v --verbose Be verbose
 -d --diff Show diff
 -j --json Show output as JSON
 --no-browser Do not open browser window
 --debug Turn on debugging mode

Configuration

Recipy stores all of its configuration and the database itself in ~/.recipy. Recipy’s main configuration file is inside this folder, called recipyrc. The configuration file format is very simple, and is based on Windows INI files - and having a configuration file is completely optional: the defaults will work fine with no configuration file.

An example configuration is:

[ignored metadata]
diff

[general]
debug

This simply instructs recipy not to save git diff information when it records metadata about a run, and also to print debug messages (which can be really useful if you’re trying to work out why certain functions aren’t patched). At the moment, the only possible options are:

	[general]

	debug - print debug messages

	quiet - don’t print any messages

	port - specify port to use for the GUI

	[data]

	file_diff_outputs - store diff between the old output and new output file, if the output file exists before the script is executed

	[database]

	path = /path/to/file.json - set the path to the database file

	[ignored metadata]

	diff - don’t store the output of git diff in the metadata for a recipy run

	git - don’t store anything relating to git (origin, commit, repo etc) in the metadata for a recipy run

	input_hashes - don’t compute and store SHA-1 hashes of input files

	output_hashes - don’t compute and store SHA-1 hashes of output files

	[ignored inputs]

	List any module here (eg. numpy) to instruct recipy not to record inputs from this module, or all to ignore inputs from all modules

	[ignored outputs]

	List any module here (eg. numpy) to instruct recipy not to record outputs from this module, or all to ignore outputs from all modules

By default all metadata is stored (ie. no metadata is ignored) and debug messages are not shown. A .recipyrc file in the current directory takes precedence over the ~/.recipy/recipyrc file, allowing per-project configurations to be easily handled.

Note: No default configuration file is provided with recipy, so if you wish to configure anything you will need to create a properly-formatted file yourself.

How it works

When you import recipy it adds a number of classes to sys.meta_path. These are then used by Python as part of the importing procedure for modules. The classes that we add are classes derived from PatchImporter, often using the easier interface provided by PatchSimple, which allow us to wrap functions that do input/output in a function that calls recipy first to log the information.

Generally, most of the complexity is hidden away in PatchImporter and PatchSimple (plus utils.py), so the actual code to wrap a module, such as numpy is fairly simple:

Inherit from PatchSimple
class PatchNumpy(PatchSimple):
 # Specify the full name of the module
 modulename = 'numpy'

 # List functions that are involved in input/output
 # these can be anything that can go after "modulename."
 # so they could be something like "pyplot.savefig" for example
 input_functions = ['genfromtxt', 'loadtxt', 'load', 'fromfile']
 output_functions = ['save', 'savez', 'savez_compressed', 'savetxt']

 # Define the functions that will be used to wrap the input/output
 # functions.
 # In this case we are calling the log_input function to log it to the DB
 # and we are giving it the 0th argument from the function (because all of
 # the functions above take the filename as the 0th argument), and telling
 # it that it came from numpy.
 input_wrapper = create_wrapper(log_input, 0, 'numpy')
 output_wrapper = create_wrapper(log_output, 0, 'numpy')

A class like this must be implemented for each module whose input/output needs logging. At the moment the following input and output functions are patched:

Patched modules

This table lists the modules recipy has patches for, and the input and output functions that are patched.

	Module
	Input functions
	Output functions

	pandas
	read_csv, read_table, read_excel, read_hdf, read_pickle, read_stata, read_msgpack
	DataFrame.to_csv, DataFrame.to_excel, DataFrame.to_hdf, DataFrame.to_msgpack, DataFrame.to_stata, DataFrame.to_pickle, Panel.to_excel, Panel.to_hdf, Panel.to_msgpack, Panel.to_pickle, Series.to_csv, Series.to_hdf, Series.to_msgpack, Series.to_pickle

	matplotlib.pyplot
	
	savefig

	numpy
	genfromtxt, loadtxt, fromfile
	save, savez, savez_compressed, savetxt

	lxml.etree
	parse, iterparse
	

	bs4
	BeautifulSoup
	

	gdal
	Open
	Driver.Create, Driver.CreateCopy

	sklearn
	datasets.load_svmlight_file
	datasets.dump_svmlight_file

	nibabel
	nifti1.Nifti1Image.from_filename, nifti2.Nifti2Image.from_filename, freesurfer.mghformat.MGHImage.from_filename, spm99analyze.Spm99AnalyzeImage.from_filename, minc1.Minc1Image.from_filename, minc2.Minc2Image.from_filename, analyze.AnalyzeImage.from_filename, parrec.PARRECImage.from_filename, spm2analyze.Spm2AnalyzeImage.from_filename
	nifti1.Nifti1Image.to_filename, nifti2.Nifti2Image.to_filename, freesurfer.mghformat.MGHImage.to_filename, spm99analyze.Spm99AnalyzeImage.to_filename, minc1.Minc1Image.to_filename, minc2.Minc2Image.to_filename, analyze.AnalyzeImage.to_filename, parrec.PARRECImage.to_filename, spm2analyze.Spm2AnalyzeImage.to_filename

However, the code example above shows how easy it is to write a class to wrap a new module - so please feel free to submit a Pull Request to make recipy work with your favourite scientific modules!

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_images/RecipyGUI.png
RecipyGui ~ Runs Latestrun

Search runs

Runs

Run ID: 65c47cc8-1ca6-4171-9cd3-e33dgdafeat
Created by Robin Wilson on 2015/08/19 16:18

Ran c:\Code\test-recipy\example_script.py USiNg C:\Anaconda3\python.exe

Environment: Windows-7-6.1.7601-SP1, python 3.4.3 |Anaconda 2.2.0 (64-bit) (default, Mar & 2015, 12:06:10) [MSC v.1600 64 bit (AMDE4)]
Input: c:\Code\test-recipy\data. csv

Outputs: c:\Code\test-recipy\newplot.png . c:\Code\test-recipy\output2.csv

View details

Run ID: 7102c094-714e-46b4-b490-7ddc0a570b4
Created by Robin Wilson on 2015/08/19 16:18

Ran c:\Code\test-recipy\example_script.py USiNg C:\Anaconda3\python.exe

Environment: Windows-7-6.1.7601-SP1, python 3.4.3 |Anaconda 2.2.0 (64-bit) (default, Mar & 2015, 12:06:10) [MSC v.1600 64 bit (AMDE4)]
Input: c:\Code\test-recipy\data. csv

Outputs: c:\Code\test-recipy\neuplot.png ., c:\Code\test-recipy\output2.csv

View details

_static/ajax-loader.gif

_static/comment-close.png

