
Rebar Documentation
Release 0.1

Nathan Yergler

May 03, 2017

Contents

1 Installation 3

2 Documentation 5
2.1 Form Groups . 5
2.2 State Validators . 8
2.3 Testing with Rebar . 10
2.4 API Documentation . 11
2.5 Developing Rebar . 14

3 Indices and tables 15

Python Module Index 17

i

ii

Rebar Documentation, Release 0.1

Rebar makes your Django forms stronger.

Rebar provides form-related tools for Django which enable complex form interactions.

Contents 1

Rebar Documentation, Release 0.1

2 Contents

CHAPTER 1

Installation

You can install Rebar using pip or easy_install:

$ pip install rebar

Once installed, Rebar provides three primary tools:

• Form Groups, for working with heterongenous collections of forms.

• State Validators, for validating that form data is in a specific state.

• Testing tools, which provide convenient helpers for writing unit tests for forms.

3

Rebar Documentation, Release 0.1

4 Chapter 1. Installation

CHAPTER 2

Documentation

Form Groups

Rebar Form Groups provide a way to manipulate a heterogenous set of Forms or FormSets as a single entity.

Warning: Restrictions

To treat a set of heterogenous Forms or FormSets as a single entity, some restrictions are necessary. Specifically,
every member of a Form Group will receive the same arguments at instantiation.

This means if you’re using ModelForms and ModelFormSets, every member has the same instance. If your
data model does not meet this requirement, you’ll need to work around it to use Form Groups.

Declaration

Form Groups classes are created using a factory function, much like Form Sets. The only required argument is the
sequence of members for the Form Group. A Form Group may contain any number of Forms or FormSets.

Let’s take an example where we might split form validation for a Contact into basic information and address informa-
tion.

from django import forms

class ContactForm(forms.Form):

first_name = forms.CharField(
label="First Name")

last_name = forms.CharField(
label="Last Name")

email = forms.EmailField(
label="Email Address")

5

https://docs.djangoproject.com/en/1.5/ref/forms/api/
https://docs.djangoproject.com/en/1.5/topics/forms/formsets/

Rebar Documentation, Release 0.1

class AddressForm(forms.Form):

street = forms.CharField()
city = forms.CharField()
state = forms.CharField()

A Form Group allows you to combine the two and treat them as one.

from rebar.group import formgroup_factory

ContactFormGroup = formgroup_factory(
(

(ContactForm, 'contact'),
(AddressForm, 'address'),

),
)

The ContactFormGroup class can now be instantiated like any other form.

>>> ContactFormGroup()
<rebar.group.FormGroup ...>

Using Form Groups

Form Groups attempt to “look” as much like a single form as possible. Note that I say as possible, since they are a
different creature, you can’t use them completely without knowledge. The goal is to make them similar enough to
work with Django’s class based views

Accessing Member Forms

Once you’ve instantiated a Form Group, its members are accesible either by index or name.

>>> form_group = ContactFormGroup()
>>> form_group.contact
<ContactForm ...>
>>> form_group.address
<AddressForm ...>
>>> form_group[0] == form_group.contact
True

The members are provided in the order of declaration.

Form Prefixes

Form Groups have a prefix, much like FormSets, and sets the prefix on each member.

>>> form_group = ContactFormGroup()
>>> form_group.prefix
'group'
>>> form_group.contact.prefix
'group-contact'

You can also override the default prefix.

6 Chapter 2. Documentation

https://docs.djangoproject.com/en/1.5/topics/class-based-views/
https://docs.djangoproject.com/en/1.5/ref/forms/api/#prefixes-for-forms

Rebar Documentation, Release 0.1

>>> form_group = ContactFormGroup(prefix='contact')
>>> form_group.prefix
'contact'
>>> form_group.contact.prefix
'contact-contact'

Validation

FormGroups use a similar approach to validation as FormSets. Calling is_valid() on a FormGroup instance will
return True if all members are valid.

The errors property is a list of ErrorLists, in group member order.

Just as FormSets support a clean method for performing any validation at the set level, FormGroups provide a clean
hook for performing any validation across the entire group. In order to take advantage of this hook, you’ll need to
subclass FormGroup.

from django.core.exceptions import ValidationError
from rebar.group import FormGroup

class BaseInvalidFormGroup(FormGroup):

def clean(self):
raise ValidationError("Group validation error.")

This class is passed to formgroup_factory and used as the base class for the new Form Group.

InvalidFormGroup = formgroup_factory(
(

(ContactForm, 'contact'),
(AddressForm, 'address'),

),
formgroup=BaseInvalidFormGroup,

)

When you instantiate the form group with data, any errors raised by the cleanmethod are available as “group errors”:

>>> bound_formgroup = InvalidFormGroup(data={})
>>> bound_formgroup.is_valid()
False
>>> bound_formgroup.group_errors()
[u'Group validation error.']

There are two things to note about group level validation:

• Unlike Form.clean(), the return value of FormGroup.clean() is unimportant

• Unlike accessing the errors property of Forms, FormSets, or FormGroups, FormGroup.
group_errors() does not trigger validation.

Passing Extra Arguments

Most arguments that you pass to a Form Group will be passed in to its members, as well. Sometimes, however, you
want to pass arguments to specific members of the Form Group. The member_kwargs parameter allows you to do
this.

2.1. Form Groups 7

https://docs.djangoproject.com/en/1.5/topics/forms/formsets/#custom-formset-validation

Rebar Documentation, Release 0.1

member_kwargs is a dict, where each key is the name of a Form Group member, and the value is a dict of keyword
arguments to pass to that member.

For example:

>>> form_group = ContactFormGroup(
... member_kwargs={
... 'address': {
... 'prefix': 'just_address',
... },
... },
...)
>>> form_group.contact.prefix
'group-contact'
>>> form_group.address.prefix
'just_address'

In this example we override the prefix argument. A more realistic application is when you have a heavily customized
form subclass that requires some additional piece of information.

Form Groups in Views

Using in Class Based Views

Form Groups are designed to be usable with Django’s class based views. The group class can be specified as the
form_class for an edit view. If you need to pass additional arguments, you can override the get_form_kwargs method
to add the member_kwargs.

Rendering Form Groups

Form Groups do not provide shortcuts for rendering in templates. The shortest way to emit the members is to simply
iterate over the members:

{% for form in formgroup.forms %}

{{ form.as_p }}

{% endfor %}

Form Groups do provide media definitions that roll-up any media found in members.

State Validators

There are times when it’s useful to have validation logic above and beyond what a form applies. For example, a CMS
might have very lax validation for saving a document in progress, but enforce additional validation for publication.

State Validators provide a method for encapsulating validation logic for states above and beyond basic form or model
validation.

State Validators are made up of individual validation functions, and provides error information about failures, if any.
They are similar to the validators in Forms or Models, in that you describe validators on a field basis. State Validators
can be used to validate forms, models, and dicts of values.

8 Chapter 2. Documentation

https://docs.djangoproject.com/en/1.5/topics/class-based-views/
https://docs.djangoproject.com/en/1.5/ref/class-based-views/mixins-editing/#django.views.generic.edit.FormMixin.form_class
https://docs.djangoproject.com/en/1.5/ref/class-based-views/mixins-editing/#django.views.generic.edit.FormMixin.get_form_kwargs
https://docs.djangoproject.com/en/1.5/topics/forms/media/

Rebar Documentation, Release 0.1

Creating Validators

A State Validator consists of a collection of validation functions. A validation function takes an input value and raises
a ValidationError if the value is invalid.

For example, validation functions that enforce a field as “required” and one that require an integer value might be
written as follows.

from django.core.exceptions import ValidationError

def required(value):
if not bool(value):

raise ValidationError("This field is required.")

def is_int(value):
try:

int(value)
except (ValueError, TypeError):

raise ValidationError("An integer is required.")

These are wrapped into a State Validator using the statevalidator_factory().

from rebar.validators import statevalidator_factory

AgeValidator = statevalidator_factory(
{

'age': (required, is_int,),
},

)

statevalidator_factory takes a dict which maps field names to one or more validator functions, and returns
a StateValidator class.

Note that when validating, all validators will be called for each field, regardless of whether a preceeding validator
raises an exception. The goal is to collect all errors that need to be corrected.

Validating Data

Once a StateValidator class has been created, it can be used to validate data. State Validators can validate a simple dict
of fields, a form, or a model. When validating a form, its cleaned_data will be validated if it is bound, otherwise
the initial data values will be used.

>>> validator = AgeValidator()
>>> validator.is_valid({'age': 10})
True
>>> validator.is_valid({'age': 'ten'})
False
>>> validator.is_valid({})
False

Accessing Errors

In addition to determining if the data is valid or not, the errors raised by the validation functions can be retrieved
through the errors method. StateValidator.errors() returns a dict, where the keys correspond to field
names, and the values are a sequence of errors. errors returns an empty dict if there are no errors.

2.2. State Validators 9

Rebar Documentation, Release 0.1

>>> validator = AgeValidator()
>>> validator.errors({'age': 10})
{}
>>> validator.errors({'age': 'ten'})
{'age': [u'An integer is required.']}
>>> validator.errors({})
{'age': [u'This field is required.', u'An integer is required.']}

Enabling & Disabling Validators

State Validators may be disabled or re-enabled. A disabled validator is always valid, and returns no errors.

>>> validator.enabled
True
>>> validator.disable()
>>> validator.is_valid({})
True
>>> validator.errors({})
{}

>>> validator.enabled
False
>>> validator.enable()
>>> validator.is_valid({})
False

Testing with Rebar

Rebar includes some helpers for writing unit tests for Django Forms.

Generating Form Data

A common pattern for testing Forms and Formsets is to create a dict of form data to use when instantiating the form.
When dealing with a large form, or a form with lots of initial values, keeping the test in sync can be cumbersome.

rebar.testing.flatten_to_dict() takes a Form, Formset, or FormGroup, and returns its fields as a dict.
This allows you to create an unbound form, flatten it, and use the resulting dict as data to test with.

If passed a FormSet, the return of flatten_to_dict will include the ManagementForm.

For example, if you have a form with a required field:

from django import forms

class NameForm(forms.Form):

first_name = forms.CharField(required=True)

You can create an unbound version of the form to generate the form data dict from.

>>> from rebar.testing import flatten_to_dict
>>> unbound_form = NameForm()
>>> form_data = flatten_to_dict(unbound_form)

10 Chapter 2. Documentation

https://docs.djangoproject.com/en/1.5/topics/forms/formsets/#understanding-the-managementform

Rebar Documentation, Release 0.1

>>> form_data['first_name'] = 'Larry'
>>> NameForm(data=form_data).is_valid() is True
True

This is an obviously oversimplified example, but flatten_to_dict allows you to focus your test on the fields that
actually matter in that context.

If a ModelForm is passed to flatten_to_dict with a foreign key, the related object’s primary key, if any, will be
used as the value for that field. This correlates with how Django treats those fields in form proessing.

Empty Form Data for Formsets

FormSets allow you to create a view that contains multiple instances of the same form. FormSets have a convenience
property, empty_form, which returns an empty copy of the form, with its index set to the placeholder __prefix__.

Rebar provides a convience function, rebar.testing.empty_form_data(), which takes the empty form and
returns the form data dict with the prefix correctly filled in. For example, if the FormSet contains a single item, the
prefix will be set to 2.

For example, assume we make a FormSet from our example NameForm above.

from django.forms import formsets
NameFormSet = formsets.formset_factory(form=NameForm)

When we instantiate that FormSet, it will have a single form in it, which is empty (ie, we didn’t start with any forms).
That forms prefix contains “1”, indicating its place in the sequence.

>>> formset = NameFormSet()
>>> len(formset)
1
>>> formset[0].prefix
u'form-0'

The empty_form property contains a copy of the NameForm, with its prefix set to the __prefix__ sentinel.

>>> formset.empty_form
<NameForm ...>
>>> formset.empty_form.prefix
u'form-__prefix__'

If we pass the FormSet to empty_form_data, we’ll get a dict of data for the next form in the sequence.

>>> from rebar.testing import empty_form_data
>>> empty_form_data (formset)
{u'form-1-first_name': None}

You can also specify a specific index for the generated form data.

>>> empty_form_data (formset, index=42)
{u'form-42-first_name': None}

API Documentation

rebar Package

2.4. API Documentation 11

https://docs.djangoproject.com/en/1.5/topics/forms/formsets/#empty-form

Rebar Documentation, Release 0.1

rebar Package

group Module

class rebar.group.FormGroup(data=None, files=None, auto_id=’id_%s’, prefix=None, initial=None,
label_suffix=’:’, instance=<rebar.group.Unspecified object>, er-
ror_class=None, member_kwargs=None)

Bases: object

Form-like wrapper for a heterogenous collection of Forms.

A FormGroup collects an ordered set of Forms and/or FormSets, and provides convenience methods for validat-
ing the group as a whole.

add_prefix(field_name)
Return the field name with a prefix prepended.

clean()
Hook for doing formgroup-wide cleaning/validation.

Subclasses can override this to perform validation after .clean() has been called on every member.

Any ValidationError raised by this method will be accessible via formgroup.group_errors().()

errors

forms

get_default_prefix()

group_errors()
Return the group level validation errors.

Returns an ErrorList of errors that aren’t associated with a particular form. Returns an empty ErrorList if
there are none.

html_id(field_name, form=None)
Return the html ID for the given field_name.

is_valid()

media

save()
Save the changes to the instance and any related objects.

class rebar.group.StateValidatorFormGroup(*args, **kwargs)
Bases: rebar.validators.StateValidatorFormMixin, rebar.group.FormGroup

Subclasses are expected to define the state_validators property, which is a mapping of states to StateValidator
objects.

get_errors(*states)

is_valid(*states)
Returns True if no errors are thrown for the specified state.

rebar.group.formgroup_factory(form_classes, formgroup=None, state_validators=None)
Return a FormGroup class for the given form[set] form_classes.

testing Module

Tools for testing Forms, FormSets, and FormGroups.

12 Chapter 2. Documentation

Rebar Documentation, Release 0.1

rebar.testing.empty_form_data(formset, index=None)
Return a form data dictionary for a “new” form in a formset.

Given a formset and an index, return a copy of the empty form data. If index is not provided, the index of the
first empty form will be used as the new index.

rebar.testing.flatten_to_dict(item)
Recursively flatten a Form-like object to a data dict.

Given a Form-like object such as a Form, ModelForm, FormSet, or FormGroup, flatten the members into a
single dict, similar to what is provided by request.POST.

If item is a FormSet, all member Forms will be included in the resulting data dictionary

validators Module

class rebar.validators.StateValidator
Bases: object

Field Validators which must pass for an object to be in a state.

disable()
Disable the validator; when disabled, no errors will be returned.

enable()
Enable the validators.

enabled

errors(instance)
Run all field validators and return a dict of errors.

The keys of the resulting dict coorespond to field names. instance can be a dict (ie, form.cleaned_data), a
form, a formset, or a model instance.

If instance is a form, full_clean() will be called if the form is bound.

If instance is a formset, full_clean() will be called on each member form, if bound.

is_valid(instance)
Return True if no errors are raised when validating instance.

instance can be a dict (ie, form.cleaned_data), a form, or a model instance. If instance is a form,
full_clean() will be called.

validators = {}

class rebar.validators.StateValidatorFormMixin(*args, **kwargs)
Bases: object

Mixin for adding state validators to forms.

Subclasses are expected to define the state_validators property, which is a mapping of states to StateValidator
objects.

get_errors(state)
Return any validation errors raised for the specified state.

is_valid(*states)
Returns True if no errors are thrown for the specified state.

state_validators = {}

2.4. API Documentation 13

Rebar Documentation, Release 0.1

rebar.validators.statevalidator_factory(field_validators, validator=<class ‘re-
bar.validators.StateValidator’>)

Return a StateValidator Class with the given validators.

Developing Rebar

To run the Rebar unittests, ensure the package is set up for development (ie, you’ve run python setup.py
develop), and then run:

$ python setup.py test

14 Chapter 2. Documentation

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

15

Rebar Documentation, Release 0.1

16 Chapter 3. Indices and tables

Python Module Index

r
rebar.__init__, 12
rebar.group, 12
rebar.testing, 12
rebar.validators, 13

17

Rebar Documentation, Release 0.1

18 Python Module Index

Index

A
add_prefix() (rebar.group.FormGroup method), 12

C
clean() (rebar.group.FormGroup method), 12

D
disable() (rebar.validators.StateValidator method), 13

E
empty_form_data() (in module rebar.testing), 12
enable() (rebar.validators.StateValidator method), 13
enabled (rebar.validators.StateValidator attribute), 13
errors (rebar.group.FormGroup attribute), 12
errors() (rebar.validators.StateValidator method), 13

F
flatten_to_dict() (in module rebar.testing), 13
FormGroup (class in rebar.group), 12
formgroup_factory() (in module rebar.group), 12
forms (rebar.group.FormGroup attribute), 12

G
get_default_prefix() (rebar.group.FormGroup method),

12
get_errors() (rebar.group.StateValidatorFormGroup

method), 12
get_errors() (rebar.validators.StateValidatorFormMixin

method), 13
group_errors() (rebar.group.FormGroup method), 12

H
html_id() (rebar.group.FormGroup method), 12

I
is_valid() (rebar.group.FormGroup method), 12
is_valid() (rebar.group.StateValidatorFormGroup

method), 12

is_valid() (rebar.validators.StateValidator method), 13
is_valid() (rebar.validators.StateValidatorFormMixin

method), 13

M
media (rebar.group.FormGroup attribute), 12

R
rebar.__init__ (module), 12
rebar.group (module), 12
rebar.testing (module), 12
rebar.validators (module), 13

S
save() (rebar.group.FormGroup method), 12
state_validators (rebar.validators.StateValidatorFormMixin

attribute), 13
StateValidator (class in rebar.validators), 13
statevalidator_factory() (in module rebar.validators), 13
StateValidatorFormGroup (class in rebar.group), 12
StateValidatorFormMixin (class in rebar.validators), 13

V
validators (rebar.validators.StateValidator attribute), 13

19

	Installation
	Documentation
	Form Groups
	State Validators
	Testing with Rebar
	API Documentation
	Developing Rebar

	Indices and tables
	Python Module Index

