
rCharts Documentation
Release 0.1.0

Ramnath Vaidyanathan

November 14, 2016

Contents

1 Quick Start 3
1.1 Credits . 4
1.2 License . 4
1.3 See Also . 4

2 Getting Started 7
2.1 Create . 7
2.2 Share . 9

3 Libraries 13
3.1 NVD3 . 13

4 Tutorials 17
4.1 Visualizing Strikeouts . 17

i

ii

rCharts Documentation, Release 0.1.0

rCharts is an R package to create, customize and publish interactive javascript visualizations from R using a familiar
lattice style plotting interface.

Contents 1

rCharts Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Quick Start

You can install rCharts from github using the devtools package

require(devtools)
install_github('rCharts', 'ramnathv')

The design philosophy behind rCharts is to make the process of creating, customizing and sharing interactive visual-
izations easy.

Create

rCharts uses a formula interface to specify plots, just like the lattice package. Here are a few examples you can try out
in your R console.

require(rCharts)

Example 1 Facetted Scatterplot
names(iris) = gsub("\\.", "", names(iris))
rPlot(SepalLength ~ SepalWidth | Species, data = iris, color = 'Species', type = 'point')

Example 2 Facetted Barplot
hair_eye = as.data.frame(HairEyeColor)
rPlot(Freq ~ Hair | Eye, color = 'Eye', data = hair_eye, type = 'bar')

Customize

rCharts supports multiple javascript charting libraries, each with its own strengths. Each of these libraries has multiple
customization options, most of which are supported within rCharts.

Share

rCharts allows you to share your visualization in multiple ways, as a standalone page, embedded in a shiny application,
or embedded in a tutorial/blog post.

Publish to Gist/RPubs

names(iris) = gsub("\\.", "", names(iris))
r1 <- rPlot(SepalLength ~ SepalWidth | Species, data = iris,

color = 'Species', type = 'point')
r1$publish('Scatterplot', host = 'gist')
r1$publish('Scatterplot', host = 'rpubs')

Use with Shiny

rCharts is easy to embed into a Shiny application using the utility functions renderChart and showOutput. Here is an
example of an rCharts Shiny App.

3

rCharts Documentation, Release 0.1.0

server.r
require(rCharts)
shinyServer(function(input, output) {
output$myChart <- renderChart({
names(iris) = gsub("\\.", "", names(iris))
p1 <- rPlot(input$x, input$y, data = iris, color = "Species",

facet = "Species", type = 'point')
return(p1)

})
})

ui.R
require(rCharts)
shinyUI(pageWithSidebar(

headerPanel("rCharts: Interactive Charts from R using polychart.js"),

sidebarPanel(
selectInput(inputId = "x",
label = "Choose X",
choices = c('SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth'),
selected = "SepalLength"),

selectInput(inputId = "y",
label = "Choose Y",
choices = c('SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth'),
selected = "SepalWidth")

),
mainPanel(
showOutput("myChart", "polycharts")

)
))

1.1 Credits

Most of the implementation in rCharts is inspired by rHighcharts and rVega. I have reused some code from these
packages verbatim, and would like to acknowledge the efforts of its author Thomas Reinholdsson, who has since
merged his rHighcharts package into rCharts. I would also like to thank @timelyportfolio for adding Dimple JS to
rCharts, as well as for his contagious enthusiasm, which has egged me on constantly.

1.2 License

rCharts is licensed under the MIT License. However, the JavaScript charting libraries that are included with this
package are licensed under their own terms. All of them are free for non-commercial and commercial use, with the
exception of Polychart and Highcharts, both of which require paid licenses for commercial use. For more details on
the licensing terms, you can consult the License.md file in each of the charting libraries.

1.3 See Also

There has been a lot of interest recently in creating packages that allow R users to make use of Javascript charting
libraries.

• ggvis by RStudio

4 Chapter 1. Quick Start

https://github.com/metagraf/rHighcharts
https://github.com/metagraf/rVega
https://github.com/reinholdsson
https://github.com/metagraf/rHighcharts
https://github.com/timelyportfolio
http://dimplejs.org
http://ggvis.rstudio.com
http://rstudio.com

rCharts Documentation, Release 0.1.0

• clickme by Nacho Caballero

1.3. See Also 5

https://github.com/nachocab/clickme
https://github.com/nachocab

rCharts Documentation, Release 0.1.0

6 Chapter 1. Quick Start

CHAPTER 2

Getting Started

You can install rCharts from github using the devtools package

require(devtools)
install_github('rCharts', 'ramnathv')

The design philosophy behind rCharts is to make the process of creating, customizing and sharing interactive visual-
izations easy.

2.1 Create

rCharts uses a formula interface to specify plots, just like the lattice package. Here are a few examples you can try out
in your R console.

Note: Every example comes with an edit button that allows you to experiment with the code online. The online
playground was built using OpenCPU

First let us load the rCharts package

library(rCharts)

2.1.1 Polycharts

r1 <- rPlot(mpg ~ wt, data = mtcars, type = 'point')
r1

Standalone

7

http://opencpu.org

rCharts Documentation, Release 0.1.0

2.1.2 NVD3

hair_eye = as.data.frame(HairEyeColor)
p2 <- nPlot(Freq ~ Hair, group = 'Eye',

data = subset(hair_eye, Sex == "Female"),
type = 'multiBarChart'

)
p2$chart(color = c('brown', 'blue', '#594c26', 'green'))
p2

intro/_downloads/intro-nvd3.pdf

View Interactive

2.1.3 Morris

data(economics, package = "ggplot2")
econ <- transform(economics, date = as.character(date))
m1 <- mPlot(x = "date", y = c("psavert", "uempmed"), type = "Line", data = econ)
m1$set(pointSize = 0, lineWidth = 1)
m1

Standalone

2.1.4 Highcharts

h1 <- hPlot(x = "Wr.Hnd", y = "NW.Hnd",
data = MASS::survey,
type = c("line", "bubble", "scatter"),

8 Chapter 2. Getting Started

rCharts Documentation, Release 0.1.0

group = "Clap",
size = "Age"

)
h1

Standalone

2.1.5 Rickshaw

usp = reshape2::melt(USPersonalExpenditure)
usp$Var2 <- as.numeric(as.POSIXct(paste0(usp$Var2, "-01-01")))
p4 <- Rickshaw$new()
p4$layer(value ~ Var2, group = "Var1", data = usp, type = "area")
p4$set(slider = TRUE)
p4

Standalone

2.1.6 xCharts

require(reshape2)
uspexp <- melt(USPersonalExpenditure)
names(uspexp)[1:2] = c('category', 'year')
x1 <- xPlot(value ~ year, group = 'category', data = uspexp,

type = 'line-dotted')
x1

Standalone

2.2 Share

Any visualization is useful only when you are able to share it. rCharts tries to make it really easy to share the visu-
alizations you create. Let us first create a simple interactive scatterplot to illustrate the different sharing mechanisms
built into rCharts

• Save
• Publish
• Embed

library(rCharts)
r1 <- rPlot(mpg ~ wt, data = mtcars, type = 'point')

2.2.1 Save

You can save your chart using the save method. The additional parameters passed to the save method determine
how the js/css assets of the javascript visualization library are served. You can now email your visualization or embed
it in a blog post as an iframe.

2.2. Share 9

rCharts Documentation, Release 0.1.0

link js/css assets from an online cdn
r1$save('mychart1.html', cdn = TRUE)
create standalone chart with all assets included directly in the html file
r1$save('mychart2.html', standalone = TRUE)

2.2.2 Publish

Sometimes, you may want to directly publish the visualization you created, without having to bother with the steps of
saving it and then uploading it. rChart has you covered here, and provides a publish method that combines these
two steps. It currently supports publishing to RPubs and Gist and I expect to add more providers over time.

the host defaults to 'gist'
r1$publish("My Chart")
r1$publish("My Chart", host = 'rpubs')

Publishing a chart saves the html in a temporary file, uploads it to the specified host, and returns a link to where the
chart can be viewed. There are many gist viewers out there, and rCharts uses a custom viewer http://rcharts.io/viewer,
designed specifically for rCharts, and is a modified version of another excellent gist viewer http://www.pagist.info/.
Another popular gist viewer is http://blocks.org, built by Mike Bostock, the creator of d3.js.

If you wish to simply update a visualization you have already created and shared, you can pass the gist/rpubs id to the
publish method, and it will update instead of uploading it as a brand new chart.

r1$publish("My Chart", id = 9253202)

While using a provider like Gist that allows multiple files to be uploaded, you can use the extras argument to add
additional files that you want to upload. This is especially useful, if you want to provide a README.md or upload
external assets like js/css/json files that are required for your chart to render.

r1$publish("My Chart", id = 9253202, extras = "README.md")

2.2.3 Embed

RMarkdown

Suppose you wish to embed a visualization created using rCharts in an Rmd document.

IFrame

One way to do this would be to use the save method to save the chart, and then embed it as an iframe. rCharts saves
you the steps by allowing you to use the show method and specify that you want the chart to be embedded as an
iframe.

We need to set the chunk options comment = NA and results = "asis" so that the resulting html is rendered
asis and not marked up (which is the default in knitr).

```{r results = "asis", comment = NA}
r1$show('iframe', cdn = TRUE)
```

If you have several charts in your Rmd document, you can set these options globally in a setup chunk. Make sure to
set cache = F for this chunk so that it is always run.

```{r setup, cache = F}
options(rcharts.mode = 'iframe', rcharts.cdn = TRUE)
knitr::opts_chunk$set(results = "asis", comment = NA)
```

10 Chapter 2. Getting Started

http://rpubs.com
http://gist.github.com
http://rcharts.io/viewer
http://www.pagist.info/
http://blocks.org
http://d3js.org
http://gist.github.com
https://www.rstudio.com/ide/docs/r_markdown

rCharts Documentation, Release 0.1.0

You can now rewrite the earlier sourcecode chunk simply as

```{r}
r1
```

I prefer this style when writing, since it allows a user to simply copy paste sourcecode from the html and run it in their
R console.

IFrame Inline

The iframe mode requires users to upload the additional chart html files along with their document. This introduces
additional steps, and in the case of some providers like Rpubs, is not even possible. Hence, rCharts provides an
additional mode named iframesrc that embeds the chart as an inline iframe, which makes your document self
contained.

```{r results = "asis", comment = NA}
r1$show('iframesrc', cdn = TRUE)
```

This option has the advantage of keeping the html standalone, but isolating the chart from the html on the page, thereby
avoiding css and js conflicts. However, this feature is not supported by IE and Opera.

Inline

A third option to embed an rCharts created visualization is to inline the chart directly. Note that you need to add
include_assets = TRUE, only the first time you are creating a chart using a specific library.

```{r chart3}
r1$show('inline', include_assets = TRUE, cdn = TRUE)
```

This approach should work in all browsers, however, it is susceptible to css and js conflicts.

If you are using Slidify to author your Rmd, then you can specify the charting library as ext_widgets in the YAML
front matter. Here is a minimal reproducible example.

Note how you did not have to specify include_assets = TRUE. This is because slidify uses the ext_widgets
property to automatically pick up the required assets and include them in the header of the resulting html page.

Shiny

It is easy to embed visualizations created using rCharts into a Shiny application. The main idea is to make use of the
utility functions renderChart() and showOutput(). The shiny application created using the code below, can
be seen here

server.r
require(rCharts)
shinyServer(function(input, output) {
output$myChart <- renderChart({

names(iris) = gsub("\\.", "", names(iris))
p1 <- rPlot(input$x, input$y, data = iris, color = "Species",

facet = "Species", type = 'point')
p1$addParams(dom = 'myChart')
return(p1)

})
})

ui.R
require(rCharts)

2.2. Share 11

http://www.w3schools.com/tags/att_iframe_srcdoc.asp
http://slidify.github.io
http://rstudio.com/shiny
http://glimmer.rstudio.com/rChartsApp

rCharts Documentation, Release 0.1.0

shinyUI(pageWithSidebar(
headerPanel("rCharts: Interactive Charts from R using polychart.js"),

sidebarPanel(
selectInput(inputId = "x",
label = "Choose X",
choices = c('SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth'),
selected = "SepalLength"),

selectInput(inputId = "y",
label = "Choose Y",
choices = c('SepalLength', 'SepalWidth', 'PetalLength', 'PetalWidth'),
selected = "SepalWidth")

),
mainPanel(

showOutput("myChart", "polycharts")
)

))

12 Chapter 2. Getting Started

CHAPTER 3

Libraries

rCharts supports multiple javascript visualization libraries

3.1 NVD3

NVD3 is an elegant visualization library that provides re-usable chart components based on d3.js. Here is an excerpt
directly taken from the NVD3 website.

“This project is an attempt to build re-usable charts and chart components for d3.js without taking away
the power that d3.js gives you. This is a very young collection of components, with the goal of keeping
these components very customizeable, staying away from your standard cookie cutter solutions.”

3.1.1 Create

The NVD3 library supports most of the common chart types.

• Scatter Chart
• Multibar Chart
• Multibar Horizontal Chart
• Pie Chart
• Donut Chart
• Line Chart
• Line with Focus Chart
• Stacked Area Chart
• Multi Chart

You can create an interactive plot making use of the NVD3 library using the nPlot() function.

Argument Type Description
x formula A formula of the form y ~ x, with column names from the data frame.
data data frame A data frame containing the data to be plotted
type string The type of chart to plot
group string Name of column based on which data should be grouped.

13

http://nvd3.org
http://nvd3.org

rCharts Documentation, Release 0.1.0

Scatter Chart

p1 <- nPlot(mpg ~ wt, group = 'cyl', data = mtcars, type = 'scatterChart')
p1$xAxis(axisLabel = 'Weight')
p1

Standalone

Multibar Chart

hair_eye = as.data.frame(HairEyeColor)
p2 <- nPlot(Freq ~ Hair, group = 'Eye',

data = subset(hair_eye, Sex == "Female"),
type = 'multiBarChart'

)
p2$chart(color = c('brown', 'blue', '#594c26', 'green'))
p2

Standalone

Multibar Horizontal Chart

Standalone

Pie Chart

p4 <- nPlot(~ cyl, data = mtcars, type = 'pieChart')
p4

Standalone

Donut Chart

p5 <- nPlot(~ cyl, data = mtcars, type = 'pieChart')
p5$chart(donut = TRUE)
p5

Standalone

Line Chart

data(economics, package = 'ggplot2')
p6 <- nPlot(uempmed ~ date, data = economics, type = 'lineChart')
p6

Standalone

Line with Focus Chart

14 Chapter 3. Libraries

rCharts Documentation, Release 0.1.0

ecm <- reshape2::melt(
economics[,c('date', 'uempmed', 'psavert')],
id = 'date'

)
p7 <- nPlot(value ~ date, group = 'variable',

data = ecm,
type = 'lineWithFocusChart'

)
p7

Standalone

Stacked Area Chart

dat <- data.frame(
t = rep(0:23, each = 4),
var = rep(LETTERS[1:4], 4),
val = round(runif(4*24,0,50))

)
p8 <- nPlot(val ~ t, group = 'var', data = dat,
type = 'stackedAreaChart', id = 'chart'

)
p8

Standalone

Multi Chart

p12 <- nPlot(value ~ date, group = 'variable', data = ecm, type = 'multiChart')
p12$set(multi = list(
uempmed = list(type="area", yAxis=1),
psavert = list(type="line", yAxis=2)

))
p12$setTemplate(script = system.file(

"/libraries/nvd3/layouts/multiChart.html",
package = "rCharts"

))
p12

Standalone

3.1. NVD3 15

rCharts Documentation, Release 0.1.0

16 Chapter 3. Libraries

CHAPTER 4

Tutorials

4.1 Visualizing Strikeouts

This tutorial explains in detail, how I used rCharts to replicate this NY times interactive graphic on strikeouts in
baseball. The end result can be seen here as a shiny application.

4.1.1 Data

The first step is to get data on strikeouts by team across years. The NY Times graphic uses data scraped from baseball-
reference, using the XML package in R. However, I will be using data from the R package Lahman, which provides
tables from Sean Lahman’s Baseball Database as a set of data frames.

The data processing step involves using the plyr package to create two data frames:

1. team_data containing SOG (strikeouts per game) by yearID and team name

2. league_data containing SOG by yearID averaged across the league.

require(Lahman) ; require(plyr); library(ascii)
dat = Teams[,c('yearID', 'name', 'G', 'SO')]
team_data = na.omit(transform(dat, SOG = round(SO/G, 2)))
league_data = ddply(team_data, .(yearID), summarize, SOG = mean(SOG))
ascii(head(team_data), type = 'rst')

yearID name G SO SOG
1 1871.00 Boston Red Stockings 31.00 19.00 0.61
2 1871.00 Chicago White Stockings 28.00 22.00 0.79
3 1871.00 Cleveland Forest Citys 29.00 25.00 0.86
4 1871.00 Fort Wayne Kekiongas 19.00 9.00 0.47
5 1871.00 New York Mutuals 33.00 15.00 0.45
6 1871.00 Philadelphia Athletics 28.00 23.00 0.82

4.1.2 Charts

We will start by first creating a scatterplot of SOG by yearID across all teams. We use the rPlot function which uses
the PolyChartsJS library to create interactive visualizations. The formula interface specifies the x and y variables, the
data to use and the type of plot. We also specify a size and color argument to style the points. Finally, we pass a tooltip
argument, which is a javascript function that overrides the default tooltip to display the information we require. You
will see below the R code and the resulting chart.

17

http://www.nytimes.com/interactive/2013/03/29/sports/baseball/Strikeouts-Are-Still-Soaring.html?ref=baseball
http://glimmer.rstudio.com/ramnathv/strikeouts
http://www.baseball-reference.com/
http://www.baseball-reference.com/
http://cran.r-project.org/web/packages/Lahman/index.html
http://www.seanlahman.com/baseball-archive/statistics/
http://cran.r-project.org/web/packages/plyr/index.html

rCharts Documentation, Release 0.1.0

require(rCharts)
p1 <- rPlot(SOG ~ yearID, data = team_data,

type = "point",
size = list(const = 2),
color = list(const = "#888"),
tooltip = "#! function(item){
return item.SOG + ' ' + item.name + ' ' + item.yearID

} !#"
)
p1

Standalone

tutorials/_downloads/chart1.pdf

Now, we need to add a line plot of the average SOG for the league by yearID. We do this by adding a second layer to
the chart, which copies the elements of the previous layer and overrides the data, type, color and tooltip argu-
ments. The R code is shown below and you will note that the resulting chart now shows a blue line chart corresponding
to the league average SOG.

p1$layer(data = league_data, type = 'line',
color = list(const = 'blue'), copy_layer = T, tooltip = NULL)

p1

Standalone

tutorials/_downloads/chart2.pdf

Finally, we will overlay a line plot of SOG by yearID for a specific team name. Later, while building the shiny app,
we will turn this into an input variable that a user can choose from a dropdown menu. We use the layer approach used
earlier and this time override the data and color arguments so that the line plot for the team stands out from the league
average.

myteam = "Boston Red Sox"
p1$layer(data = team_data[team_data$name == myteam,],

color = list(const = 'red'),
copy_layer = T)

p1$set(dom = 'chart3')
p1

Standalone

tutorials/_downloads/chart3.pdf

Let us add a little more interactivity to the chart. To keep it simple, we will use handlers in PolychartJS to initiate an
action when a user clicks on a point. The current handler is a simple one, which just displays the name of the team
clicked on. If you are familiar with Javascript event handlers, the code should be self explanatory.

18 Chapter 4. Tutorials

rCharts Documentation, Release 0.1.0

p2 <- p1$copy()
p2$setTemplate(afterScript = '

<script>
graph_chart3.addHandler(function(type, e) {

var data;
data = e.evtData;
if (type === "click") {

return alert("You clicked on the team: " + data.name["in"][0]);
}

});
</script>

')
p2

Standalone

4.1.3 Application

Now it is time to convert this into a Shiny App. We will throw the data processing code into global.R so that it can be
accessed both by ui.R and server.R. For the dropdown menu allowing users to choose a specific team, we will restrict
the choices to only those which have data for more than 30 years. Accordingly, we have the following global.R.

global.R
require(Lahman); require(plyr)
dat = Teams[,c('yearID', 'name', 'G', 'SO')]
team_data = na.omit(transform(dat, SOG = round(SO/G, 2)))
league_data = ddply(team_data, .(yearID), summarize, SOG = mean(SOG))
THRESHOLD = 30
team_appearances = count(team_data, .(name))
teams_in_menu = subset(team_appearances, freq > THRESHOLD)$name

For the UI, we will use a bootstrap page with controls being displayed in the sidebar. Shiny makes it really easy to
create a page like this. See the annotated graphic below and the ui.R code that accompanies it to understand how the
different pieces fit together.

We now need to write the server part of the shiny app. Thankfully, this is the easiest part, since it just involves wrapping
the charting code inside renderChart and replacing user inputs to enable reactivity. We add a few more lines of code
to set the height and title and remove the axis titles, since they are self explanatory.

4.1. Visualizing Strikeouts 19

	Quick Start
	Credits
	License
	See Also

	Getting Started
	Create
	Share

	Libraries
	NVD3

	Tutorials
	Visualizing Strikeouts

