
rcfdtdpy Documentation

Jack Roth

Jul 09, 2019

Contents:

1 Getting Started 3

2 RC-FDTD Simulations 11

3 Reference 15
3.1 Simulation . 15
3.2 Current . 17
3.3 Materials . 18

4 Indices and tables 27

Index 29

i

ii

rcfdtdpy Documentation

RC-FDTD simulations are a staple of electromagnetic field simulations, and can be found in many fields and applica-
tions. This package provides a framework for performing RC-FDTD simulations aimed at investigating a particular
problem: the simulation of materials that have rapidly evolving electric susceptibilities.

The scope of this problem is such that a few assumptions have been made that simplify the implementation of the
simulation as well as the computational complexity of the simulation. These are as follows

• All materials are linear dielectrics such that 𝑃 (𝑧, 𝜔) = 𝜖0𝜒𝐸(𝑧, 𝜔).

• The electric and magnetic fields are plane waves propagating along spatial coordinate 𝑧.

• Materials are uniform along spatial coordinates 𝑥 and 𝑦.

• The electric and magnetic fields are zero for all time prior to the start of the simulation (𝐸(𝑧, 𝑡) = 0 for all
𝑡 < 0).

• The electric field 𝐸(𝑧, 𝑡) is approximately constant over all time intervals of duration ∆𝑡.

• The magnetization of all materials is zero (�⃗� = 0⃗).

Refer to the RC-FDTD Simulations page in order to learn more about how RC-FDTD simulations work and how
simulation parameters might be tweaked to produce more accurate results. For a description of various simulations
run with this package refer to this report.

Contents: 1

rcfdtdpy Documentation

2 Contents:

CHAPTER 1

Getting Started

rcfdtdpy can be installed into an Anaconda 3.6 environment via

conda install -c jr137 rcfdtdpy

or using pip via

pip install rcfdtdpy

From here it is easy to start one’s first simulation. Perhaps we want to simulate a terahertz spectroscopy conductivity
measurement of a Drude metal using the NumericMaterial class. We must first import the required libraries and
define our simulation parameters.

Imports
from rcfdtdpy import Simulation, Current, NumericMaterial
import numpy as np
from scipy.fftpack import fft, fftfreq
from scipy.optimize import curve_fit
from matplotlib import pyplot as plt

Speed of light
c0 = 3e8 # m/s
Spatial step size
di = 0.03e-6 # 0.03 um
Temporal step size
dn = di / c0 # (0.03 um) / (3e8 m/s) = 0.1 fs
Permittivity of free space
epsilon0 = 8.854187e-12
Permeability of free space
mu0 = np.divide(1, np.multiply(epsilon0, np.square(c0)))
Define simulation bounds
i0 = -1e-6 # -1 um
i1 = 1e-6 # 1 um
n0 = -0.5e-12 # -0.5 ps
n1 = 2.5e-12 # 2.5 ps

(continues on next page)

3

rcfdtdpy Documentation

(continued from previous page)

Calculate simulation dimensions
ilen, nlen = Simulation.calc_dims(i0, i1, di, n0, n1, dn)
Calculate arrays that provide the spatial and temporal value of each cell
z, t = Simulation.calc_arrays(i0, i1, di, n0, n1, dn)

We next need to define the current present in our simulation. We do this by defining the location of the current pulse
and the time at which the center of the current pulse occurs and then determining the spatial and temporal indices at
which these space and time values correspond to.

Define current pulse location and time
thz_loc = -0.5e-6 # -0.5 um
thz_time = 0 # 0 fs
Find the corresponding location and time indices
thz_loc_ind = np.argmin(np.abs(np.subtract(z, thz_loc)))
thz_time_ind = np.argmin(np.abs(np.subtract(t, thz_time)))

We will define the terahertz pulse time profile as the second derivative of a Gaussian with FWHM of 90fs. We define
this pulse as follows

thzshape = np.append(np.diff(np.diff(np.exp(-(((t - thz_time)/90e-15) ** 2)))), [0,
→˓0])

We can now create our Current object

thzpulse = Current(thz_loc_ind, 0, ilen, nlen, thzshape)

Note that the length of the thzshape Numpy array is the same as the length of the simulation in time nlen. For
this reason the starting spatial index of the Current object must be set to 0. However the length of the thzshape
Numpy array can be less then the length of the simulation in time. If the user is worried about the Current object
taking up too much space in memory they might choose to define thzshape over a small number of indices and
simply define its starting index in space and time.

We are now prepared to define our material. Like with the Current object we begin by defining the location and
spatial and temporal extent of our material. We specify that our material starts at location 0 nm and is 50 nm thick.

Set material length
material_length = 0.050e-6 # 50 nm
Set locations
material_start = 0
material_end = material_start + material_length
Find the corresponding location and time indices
material_ind_start = np.argmin(np.abs(np.subtract(z, material_start)))
material_ind_end = np.argmin(np.abs(np.subtract(z, material_end)))
Determine matrix length in indices
material_ind_len = material_ind_end - material_ind_start

The electric susceptibility of a Drude metal in time is given by

𝜒(𝑡) = 𝐴 (1 − exp [−2𝛾𝑡])

If you have no idea where this definition of susceptibility comes from, read up on the Lorentz oscillator. It is very easy
to implement this material into our simulation.

Define constants
a = np.complex64(1e16)
gamma = np.complex64(1e12 * 2 * np.pi)

(continues on next page)

4 Chapter 1. Getting Started

rcfdtdpy Documentation

(continued from previous page)

Define electric susceptibility in time
def chi(t):

return a*(1-np.exp(-2*gamma*t))

Define the high frequency permittivity in time (simply a constant)
def inf_perm(t):

return 1

Create our material!
drude = NumericMaterial(di, dn, ilen, nlen, material_ind_start, material_ind_end, chi,
→˓ inf_perm)

Export the susceptibility of the material
drude_chi = drude.export_chi()

Now that 𝜒𝑚 has been calculated for each simulation time step, we can check that our Drude material has the expected
form of electric susceptibility in time. We plot the electric susceptibility versus time

plt.plot(t*1e12, drude_chi)
plt.xlabel('time [ps]')
plt.ylabel('$\chi(t)$')
plt.show()

The analytic and simulated values of 𝜒(𝑡) are in agreement. We must now specify what field values our simulation
will record.

We would like to view our simulation evolving in time, meaning that we must store field values at each step in time.
Lets say we would like to view the first third of the simulation.

nstore = np.arange(0, int(nlen/3), 100)

We choose to record the field values every 100 simulation steps for the first third of the simulation. We also would like
to be able to calculate the transmission of our material in time. Therefore we wish to record the field value at every
time step at the opposite side of the material from the current pulse. Since the material is 50 nm in length and starts at
location 0 nm, recording the field value near the end of the simulation space will provide us with the transmitted field.

We specify that the simulation will have absorbing boundaries. The Simulation object is initialized and the simu-
lation is run.

5

rcfdtdpy Documentation

s = Simulation(i0, i1, di, n0, n1, dn, epsilon0, mu0, 'absorbing', thzpulse, drude,
→˓nstore=nstore, istore=[ilen-6])
Run simulation
s.simulate()

Now that the simulation has been run we export the fields stored by the Simulation object. The Simulation
object simulates two sets of electric and magnetic fields: a field that interacts with materials and one that does not.
This provides every simulation with a reference set of field values. We export the stored field values as well as the
electric electric susceptibility.

Export field values
hfield, efield, hfield_ref, efield_ref = s.export_ifields()

We proceed to produce plots of the transmitted and reference fields in time and frequency.

Plot in time
plt.plot(t, np.real(efield), label='$E_{t}(t)$')
plt.plot(t, np.real(efield_ref), label='$E_{ref}(t)$')
plt.ylabel('Amplitude [?]')
plt.xlabel('time [s]')
plt.legend()
plt.show()

Calculate time difference
dt = np.diff(t)[0] # Calculate time step difference in fs

Calculate Fourier transforms
freq = fftfreq(nlen, dt) # in Hz
trans = fft(np.real(efield[:,0]))
ref = fft(np.real(efield_ref[:,0]))

Remove unwanted frequencies
freq = freq[1:int(nlen/2)]
trans = trans[1:int(nlen/2)]
ref = ref[1:int(nlen/2)]

Plot transformed fields
plt.plot(freq * 1e-12, np.abs(trans), label='$E_{t}(\omega)$')
plt.plot(freq * 1e-12, np.abs(ref), label='$E_{ref}(\omega)$')
plt.xlabel(r'frequency [THz]')
plt.xlim(0, 10)
plt.legend()
plt.show()

6 Chapter 1. Getting Started

rcfdtdpy Documentation

In the thin sample limit the conductivity of a material can be calculated via

𝜎(𝜔) =
2

𝑍0𝑑

(︂
1

𝑡(𝜔)
− 1

)︂
where 𝑍0 is the impedance of free space and 𝑡(𝜔) = 𝐸𝑡(𝜔)

𝐸𝑟𝑒𝑓 (𝜔) . We next extract the conductivity of our simulated
material and compare it to the analytical form of the conductivity of a Drude metal

𝜎(𝜔) =
𝜎0

1 + 𝑖𝜔𝜏

Remove zero indicies from all arrays
nonzero_ind = np.nonzero(ref)
freq = freq[nonzero_ind]
ref = ref[nonzero_ind]
trans = trans[nonzero_ind]

Calculate t
spec = np.divide(trans, ref)

Set constants
Z0 = np.multiply(mu0, c0) # Ohms (impedance of free space)

Calculate the angular frequency
ang_freq = 2 * np.pi * freq # THz * 2pi

(continues on next page)

7

rcfdtdpy Documentation

(continued from previous page)

Calculate conductivity
conductivity = np.multiply(np.divide(2, Z0*material_length), np.subtract(np.divide(1,
→˓spec), 1))

Only fit to frequencies below 14THz, as the terahertz pulse has approximately zero
→˓amplitude above 14THz
freq_max = np.argmin(np.abs(np.subtract(14e12, freq)))

Define fit functions
def cond_real(omega, sigma0, tau):

return sigma0/(1+(tau*omega)**2)

def cond_imag(omega, sigma0, tau):
return (-omega*tau*sigma0)/(1+(tau*omega)**2)

Take real and imaginary parts
cfreq = freq[:freq_max]
creal = np.real(conductivity)[:freq_max]
cimag = np.imag(conductivity)[:freq_max]

Run curve fit
popt_real, pcov_real = curve_fit(cond_real, cfreq, creal, p0=[1e5, 0.4e-12])
popt_imag, pcov_imag = curve_fit(cond_imag, cfreq, cimag, p0=[1e5, 0.2e-12])

fit_real = cond_real(freq, *popt_real)
fit_imag = cond_imag(freq, *popt_imag)

Setup plot
fig, (ax0, ax1) = plt.subplots(2, 1, sharex=True, dpi=100)
ax0.set_ylabel(r'σ_1', fontsize=15)
ax1.set_ylabel(r'σ_2', fontsize=15)
ax1.set_xlabel(r'ω [THz]', fontsize=15)
ax0.set_title(r'Drude Model (numeric)', fontsize=15)
ax1.set_xlim(0, 15)
ax0.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
ax0.tick_params(labelsize=15)
ax0.set_ylim(0, 1.1e5)
ax1.ticklabel_format(style='sci', scilimits=(0,0), axis='y')
ax1.tick_params(labelsize=15)
ax1.set_ylim(-6e4, 0)

Plot simulated conductivity
ax0.plot(freq*1e-12, np.real(conductivity), 'b-', label='simulation')
ax1.plot(freq*1e-12, np.imag(conductivity), 'b-', label='simulation')

Plot analytic conductivity
ax0.plot(freq*1e-12, fit_real, 'r--', label='analytic')
ax1.plot(freq*1e-12, fit_imag, 'r--', label='analytic')

ax0.legend()
ax1.legend()

plt.tight_layout()

plt.show()

8 Chapter 1. Getting Started

rcfdtdpy Documentation

That’s it! We have successfully simulated a Drude metal and examined how simulations are run with rcfdtdpy! You
can download the complete start.py file.

9

rcfdtdpy Documentation

10 Chapter 1. Getting Started

CHAPTER 2

RC-FDTD Simulations

Recursive convolution finite difference time domain (RC-FDTD) simulations have long been used to numerically solve
Maxwell’s equations. This simulation technique discretizes the time domain and evolves the electric and magnetic
fields in time using a set of update equations. Within the simulation, space is discretized into intervals of length ∆𝑧
and time into intervals of length ∆𝑡. A specific point in time and space is accessed via 𝑧 = 𝑖∆𝑧 and 𝑡 = 𝑛∆𝑡. The
simulation relies on a number of assumptions:

• All materials are linear dielectrics such that 𝑃 (𝑧, 𝜔) = 𝜖0𝜒𝐸(𝑧, 𝜔).

• The electric and magnetic fields are plane waves propagating along spatial coordinate 𝑧.

• Materials are uniform along spatial coordinates 𝑥 and 𝑦.

• The electric and magnetic fields are zero for all time prior to the start of the simulation (𝐸(𝑧, 𝑡) = 0 for all
𝑡 < 0).

• The electric field 𝐸(𝑧, 𝑡) is approximately constant over all time intervals of duration ∆𝑡.

• The magnetization of all materials is zero (�⃗� = 0⃗).

These assumptions allow the derivation of the discretized displacement field 𝐷𝑖,𝑛. The displacement field �⃗�(�⃗�, 𝜔),
with the requirement that simulated materials are linear dielectrics such that 𝑃 (𝑧, 𝜔) = 𝜖0𝜒(𝑧, 𝜔)𝐸(𝑧, 𝜔) and the
requirement that the field varies over only the spatial coordinate 𝑧 we find that 𝐷(𝑧, 𝜔) is

𝐷(𝑧, 𝜔) = 𝜖0 [1 + 𝜒(𝑧, 𝜔)]𝐸(𝑧, 𝜔)

The displacement field 𝐷(𝑧, 𝜔) can be transformed to the time domain via

𝐷(𝑧, 𝑡) =ℱ−1 {𝐷(𝑧, 𝜔)}
=ℱ−1 {𝜖0 [1 + 𝜒(𝜔)]𝐸(𝑧, 𝜔)}
=ℱ−1 {𝜖0ℱ {1 + 𝜒(𝑡)}ℱ {𝐸(𝑧, 𝑡)}}

where ℱ {𝑎(𝑡)} and ℱ−1 {𝑎(𝜈)} to denote Fourier and inverse Fourier transforms. Thus via the convolution theorem

𝐷(𝑧, 𝑡) = ℱ−1 {𝜖0ℱ {1 + 𝜒(𝑡)}ℱ {𝐸(𝑧, 𝑡)}}
= 𝜖0 [1 + 𝜒(𝑡)] * [𝐸(𝑧, 𝑡)]

= 𝜖0

[︂
𝜖∞𝐸(𝑧, 𝑡) +

∫︁ 𝑡

0

𝜒(𝜏)𝐸(𝑧, 𝑡− 𝜏)𝑑𝜏

]︂

11

rcfdtdpy Documentation

where * denotes a convolution. It is assumed that 𝐸(𝑧, 𝑡) = 0 for all 𝑡 < 0. We discretize this result by replacing the
𝑧 and 𝑡 coordinates via 𝑧 = 𝑖∆𝑧 and 𝑡 = 𝑛∆𝑡 where 𝑖, 𝑛 ∈ R, yielding

𝐷(𝑖∆𝑧, 𝑛∆𝑡) =𝜖0𝜖∞𝐸(𝑖∆𝑧, 𝑛∆𝑡)

+ 𝜖0

∫︁ 𝑛Δ𝑡

0

𝜒(𝜏)𝐸(𝑖∆𝑧, 𝑛∆ − 𝜏)𝑑𝜏

Assuming that 𝐸(𝑖∆𝑧, 𝑛∆ − 𝜏) is constant over all time intervals of duration ∆𝑡 the integral is replaced with a sum

𝐷𝑖,𝑛 = 𝜖0𝜖∞𝐸
𝑖,𝑛 + 𝜖0

𝑛−1∑︁
𝑚=0

𝐸𝑖,𝑛−𝑚𝜒𝑚

where

𝜒𝑚 =

∫︁ (𝑚+1)Δ𝑡

𝑚Δ𝑡

𝜒(𝜏)𝑑𝜏

It is not assumed 𝜒(𝑡) is constant over any time interval. This result is consistent with the result derived in Luebbers
et al. and Beard et al..

𝐷𝑖,𝑛 = 𝜖0𝜖∞𝐸
𝑖,𝑛 + 𝜖0

𝑛−1∑︁
𝑚=0

𝐸𝑖,𝑛−𝑚𝜒𝑚

where

𝜒𝑚 =

∫︁ (𝑚+1)Δ𝑡

𝑚Δ𝑡

𝜒(𝜏)𝑑𝜏

This result is significant for the RC-FDTD simulation framework implmented here as it means a material can be
simulated as long as one can define $chi(t)$ for that material.

We proceed by deriving the update equations for the electric and magnetic fields. With the requirement that �⃗� = 0⃗
and the requirement that the electric and magnetic fields are uniform in spatial coordinates 𝑥 and 𝑦, Faraday’s law of
induction and Ampere’s law with Maxwell’s addition reduce to

𝜕𝐸

𝜕𝑧
= −𝜇0

𝜕𝐻

𝜕𝑡
− 𝜕𝐻

𝜕𝑧
= 𝐼𝑓 +

𝜕𝐷

𝜕𝑡

where 𝐼𝑓 is along 𝑧. Noting the definition of a derivative we find

lim
Δ𝑧→0

𝐸(𝑧 + ∆𝑧, 𝑡) − 𝐸(𝑧, 𝑡)

∆𝑧
= −𝜇0 lim

Δ𝑡→0

𝐻(𝑧, 𝑡+ ∆𝑡) −𝐻(𝑧, 𝑡)

∆𝑡

− lim
Δ𝑧→0

𝐻(𝑧 + ∆𝑧, 𝑡) −𝐻(𝑧, 𝑡)

∆𝑧
= 𝐼𝑓 + lim

Δ𝑡→0

𝐷(𝑧, 𝑡+ ∆𝑡) −𝐷(𝑧, 𝑡)

∆𝑡

From here the discretization process is simple. We simply remove each limit from the equations, define an appropriate
value of ∆𝑧 and ∆𝑡, and replace the fields with their discretized forms.

𝐸𝑖+1,𝑛 − 𝐸𝑖,𝑛

∆𝑧
= −𝜇0

𝐻𝑖,𝑛+1 −𝐻𝑖,𝑛

∆𝑡

−𝐻
𝑖+1,𝑛 −𝐻𝑖,𝑛

∆𝑧
= 𝐼𝑓 +

𝐷𝑖,𝑛+1 −𝐷𝑖,𝑛

∆𝑡

If ∆𝑧 and ∆𝑡 aren’t small enough such that the derivative is accurate then the RC-FDTD simulation will break down.

We solve Eq.(ref{eq:faraday}) for 𝐻𝑖,𝑛+1, finding the following update equation

𝐻𝑖,𝑛+1 = 𝐻𝑖,𝑛 − 1

𝜇0

∆𝑡

∆𝑧

[︀
𝐸𝑖+1,𝑛 − 𝐸𝑖,𝑛

]︀
12 Chapter 2. RC-FDTD Simulations

rcfdtdpy Documentation

In order to solve Eq.(ref{eq:ampere}) we use the result of Eq.(ref{eq:disp}) to determine 𝐷𝑖,𝑛+1 −𝐷𝑖,𝑛 in terms of
𝐸𝑖+1,𝑛 and 𝐸𝑖,𝑛

𝐷𝑖,𝑛+1 −𝐷𝑖,𝑛 = 𝜖0𝜖∞𝐸
𝑖,𝑛+1 + 𝜖0

𝑛∑︁
𝑚=0

𝐸𝑖,𝑛+1−𝑚𝜒𝑚 − 𝜖0𝜖∞𝐸
𝑖,𝑛 − 𝜖0

𝑛−1∑︁
𝑚=0

𝐸𝑖,𝑛−𝑚𝜒𝑚

= 𝜖0𝜖∞
[︀
𝐸𝑖,𝑛+1 − 𝐸𝑖,𝑛

]︀
+ 𝜖0

[︃
𝑛∑︁

𝑚=0

𝐸𝑖,𝑛+1−𝑚𝜒𝑚 −
𝑛−1∑︁
𝑚=0

𝐸𝑖,𝑛−𝑚𝜒𝑚

]︃
Noting that

𝑛∑︁
𝑚=0

𝐸𝑖,𝑛+1−𝑚𝜒𝑚 −
𝑛−1∑︁
𝑚=0

𝐸𝑖,𝑛−𝑚𝜒𝑚 = 𝐸𝑖,𝑛+1𝜒0 +

𝑛∑︁
𝑚=1

𝐸𝑖,𝑛+1−𝑚𝜒𝑚 −
𝑛−1∑︁
𝑚=0

𝐸𝑖,𝑛−𝑚𝜒𝑚

= 𝐸𝑖,𝑛+1𝜒0 +

𝑛−1∑︁
𝑚=0

𝐸𝑖,𝑛+1−(𝑚+1)𝜒𝑚+1 −
𝑛−1∑︁
𝑚=0

𝐸𝑖,𝑛−𝑚𝜒𝑚

= 𝐸𝑖,𝑛+1𝜒0 +

𝑛−1∑︁
𝑚=0

𝐸𝑖,𝑛−𝑚
[︀
𝜒𝑚+1 − 𝜒𝑚

]︀
and letting

∆𝜒𝑚 = 𝜒𝑚 − 𝜒𝑚+1

𝜓𝑛 =

𝑛−1∑︁
𝑚=0

𝐸𝑖,𝑛−𝑚∆𝜒𝑚

we find

𝐷𝑖,𝑛+1 −𝐷𝑖,𝑛 = 𝜖0𝜖∞
[︀
𝐸𝑖,𝑛+1 − 𝐸𝑖,𝑛

]︀
+ 𝜖0

[︀
𝐸𝑖,𝑛+1𝜒0 − 𝜓𝑛

]︀
= 𝜖0

[︀
𝜖∞ + 𝜒0

]︀
𝐸𝑖,𝑛+1 − 𝜖0𝜖∞𝐸

𝑖,𝑛 − 𝜖0𝜓
𝑛

Substituting this result into Eq.(ref{eq:ampere}) and solving for 𝐸𝑖,𝑛+1 we find

𝐸𝑖,𝑛+1 =
𝜖∞

𝜖∞ + 𝜒0
𝐸𝑖,𝑛 +

1

𝜖∞ + 𝜒0
𝜓𝑛 − ∆𝑡𝐼𝑓

𝜖0 [𝜖∞ + 𝜒0]

− 1

𝜖0 [𝜖∞ + 𝜒0]

∆𝑡

∆𝑧

[︀
𝐻𝑖+1,𝑛 −𝐻𝑖,𝑛

]︀
We then implement the Yee cell in the simulation by offsetting the electric and magnetic field cells by half a spatial
and temporal incrementcite{beard}, producing

𝐻𝑖+1/2,𝑛+1/2 =𝐻𝑖+1/2,𝑛−1/2 − 1

𝜇0

∆𝑡

∆𝑧

[︀
𝐸𝑖+1,𝑛 − 𝐸𝑖,𝑛

]︀
𝐸𝑖,𝑛+1 =

𝜖∞
𝜖∞ + 𝜒0

𝐸𝑖,𝑛 +
1

𝜖∞ + 𝜒0
𝜓𝑛 − ∆𝑡𝐼𝑓

𝜖0 [𝜖∞ + 𝜒0]

− 1

𝜖0 [𝜖∞ + 𝜒0]

∆𝑡

∆𝑧

[︁
𝐻𝑖+1/2,𝑛+1/2 −𝐻𝑖−1/2,𝑛+1/2

]︁
where

∆𝜒𝑚 = 𝜒𝑚 − 𝜒𝑚+1

𝜓𝑛 =

𝑛−1∑︁
𝑚=0

𝐸𝑖,𝑛−𝑚∆𝜒𝑚

The accuracy of the derivative approximation inherent to these update equations relies on choosing some ∆𝑧 and
∆𝑡 small enough such that the electric and magnetic fields are approximately linear over spatial intervals ∆𝑧 and

13

rcfdtdpy Documentation

time intervals ∆𝑡. If this condition is not met then the accuracy of the derivative approximation breaks down. The
update equations derived here are significant as they reveal that any linear dielectric can be accurately simulated via
the RC-FDTD method as long as the electric susceptibility of the material 𝜒(𝑡) is well defined. We turn our attention
to modeling the electric susceptibility of materials in section ref{sec:susceptibility}.

rcfdtdpy provides a framework in which the user need only provide the electric susceptibility 𝜒(𝑡) to run a simulation.

14 Chapter 2. RC-FDTD Simulations

CHAPTER 3

Reference

3.1 Simulation

The Simulation class treats field indices as follows

class rcfdtdpy.sim.Simulation(i0, i1, di, n0, n1, dn, epsilon0, mu0, boundary, currents=[], mate-
rials=[], nstore=[], istore=[])

Represents a single simulation. Field is initialized to all zeros.

Parameters

• i0 – The spatial value at which the field starts

• i1 – The spatial value at which the field ends

• di – The spatial step size

15

rcfdtdpy Documentation

• n0 – The temporal value at which the field starts

• n1 – The temporal value at which the field ends

• dn – The temporal step size

• epsilon0 – 𝜖0, the vacuum permittivity

• mu0 – 𝜇0, the vacuum permeability

• boundary – The boundary type of the field, either ‘zero’, for fields bounded by zeros or
‘absorbing’ for absorbing boundary conditions

• currents – A Current object or a list of Current objects that represent the currents present
in the simulation, defaults to none

• materials – A Material object or a list of Material objects that represent the materials
present in the simulation, defaults to none

• nstore – A list of time indices to save field values at in all points in space

• istore – A list of spatial indices to save field values at in all points in time

static calc_arrays(i0, i1, di, n0, n1, dn)
Calculates spatial and time arrays of the same dimensions of the simulation. Array values are populated
by their the spatial and temporal values at their respective simulation spatial and temporal indices.

Parameters

• i0 – The spatial value at which the field starts

• i1 – The spatial value at which the field ends

• di – The spatial step size

• n0 – The temporal value at which the field starts

• n1 – The temporal value at which the field ends

• dn – The temporal step size

Returns A tuple (z, t) of the spatial and temporal arrays

static calc_dims(i0, i1, di, n0, n1, dn)
Calculates the dimensions of the simulation in cells.

Parameters

• i0 – The spatial value at which the field starts

• i1 – The spatial value at which the field ends

• di – The spatial step size

• n0 – The temporal value at which the field starts

• n1 – The temporal value at which the field ends

• dn – The temporal step size

Returns A tuple (ilen, nlen) of the spatial and temporal dimensions

export_ifields()
Exports the field values at spatial indices specified by istore at the Simulation object’s initialization, where
an index along axis=1 corresponds to the corresponding spatial index in istore. Values along axis=0 corre-
spond to the temporal index.

16 Chapter 3. Reference

rcfdtdpy Documentation

Returns (hfield, efield, hfieldr, efieldr) where the suffix r corresponds to a reference field. If
istore is unspecified returns None

export_nfields()
Exports the field values at temporal indices specified by nstore at the Simulation object’s initialization,
where an index along axis=0 corresponds to the corresponding temporal index in nstore. Values along
axis=1 correspond to the spatial index.

Returns (hfield, efield, hfieldr, efieldr) where the suffix r corresponds to a reference field. If
nstore is unspecified returns None

get_dims()
Returns the dimensions of the simulation.

Returns A tuple (ilen, nlen) containing the spatial and temporal dimensions in cells

get_materials()
Returns the list of Material objects present in the simulation.

Returns A list of Material objects

simulate(tqdmarg={})
Executes the simulation.

Parameters tqdmarg – The arguments to pass the tdqm iterator (lookup arguments on the
tqdm documentation)

3.2 Current

The Current class is used to represent currents in the simulation. The current argument passed to the Current
object at initialization is represented using the following two dimensional array

3.2. Current 17

rcfdtdpy Documentation

where 𝑛 represents the time index of the current and 𝑖 represents the spatial index of the current.

class rcfdtdpy.sim.Current(i0, n0, ilen, nlen, current)
The Current class is used to represent a current in the simulation.

Parameters

• i0 – The starting spatial index of the current

• n0 – The starting temporal index of the current

• ilen – The number of spatial indices in the simulation

• nlen – The number of temporal indices in the simulation

• current – A matrix representing the current, where axis=0 represents locations in time 𝑛
and axis=1 represents locations in space 𝑖

get_current(n)
Returns the current at time index 𝑛 as an array the length of the simulation

3.3 Materials

There are a number of material types that have been implemented for use with the RC-FDTD simulation.

18 Chapter 3. Reference

rcfdtdpy Documentation

3.3.1 Material

The Material class is an abstract class containing the properties and functions that any material implementation
should have. Any subclass of material should call to super at initialization and implement each function defined here.

class rcfdtdpy.sim.Material(di, dn, ilen, nlen, material_i0, material_i1, material_n0, mate-
rial_n1)

The Material class is an abstract class that defines the minimum requirements for a Material object to have in
the simulation. All Materials in the simulation must inherit Material.

Parameters

• di – The spatial time step of the simulation

• dn – The temporal step size of the simulation

• ilen – The number of spatial indices in the simulation

• nlen – The number of temporal indices in the simulation

• material_i0 – The starting spatial index of the material

• material_i1 – The ending spatial index of the material

• material_n0 – The starting temporal index of the material

• material_n1 – The ending temporal index of the material

get_chi0()
Returns the value of 𝜒0 at the current time step in the simulation at each spatial location in the simulation.

Returns The current value of 𝜒0 at each spatial location in the simulation

get_epsiloninf()
Returns the value of 𝜖∞ at the current time step in the simulation at each spatial location in the simulation.

Returns The current value of 𝜖∞ at each spatial location in the simulation

get_psi()
Returns the value of 𝜓 at the current time step in the simulation at each spatial location in the simulation.

Returns The current value of 𝜓 at each spatial location in the simulation

reset_material()
This function is called before each simulation. It should reset any material values that are calculated during
the simulation to their initial values.

update_material(n, efield)
This function is called at the start of each simulation time step. It should update the 𝜒 and 𝜓 values of the
material to their values at n.

Parameters

• n – The current temporal index of the simulation.

• efield – The previous electric field of the simulation.

3.3.2 EmptyMaterial

The EmptyMaterial class represents vacuum

class rcfdtdpy.sim.EmptyMaterial(di, dn, ilen, nlen)
Represents an empty Material, i.e. vacuum

3.3. Materials 19

rcfdtdpy Documentation

get_chi0()
Returns the value of 𝜒0 at the current time step in the simulation at each spatial location in the simulation.

Returns The current value of 𝜒0 at each spatial location in the simulation

get_epsiloninf()
Returns the value of 𝜖∞ at the current time step in the simulation at each spatial location in the simulation.

Returns The current value of 𝜖∞ at each spatial location in the simulation

get_psi()
Returns the value of 𝜓 at the current time step in the simulation at each spatial location in the simulation.

Returns The current value of 𝜓 at each spatial location in the simulation

reset_material()
This function is called before each simulation. It should reset any material values that are calculated during
the simulation to their initial values.

update_material(n, efield)
This function is called at the start of each simulation time step. It should update the 𝜒 and 𝜓 values of the
material to their values at n.

Parameters

• n – The current temporal index of the simulation.

• efield – The previous electric field of the simulation.

3.3.3 StaticMaterial

The StaticMaterial class is an implementation of the Material class. The variables 𝐴1, 𝐴2, 𝛾, and 𝛽 are
represented using the following two dimensional array

20 Chapter 3. Reference

rcfdtdpy Documentation

where 𝑚0 is the starting index of the material. Increments along the vertical axis represent increments in the oscillator
index 𝑗, and increments along the horizontal axis represent increments in space.

The StaticMaterial class uses the update equations for 𝜓𝑛 derived in Beard et al..

class rcfdtdpy.sim.StaticMaterial(di, dn, ilen, nlen, material_i0, epsiloninf, a1, a2, g, b, opac-
ity=None, istore=[])

The StaticMaterial class allows for the simulation of a static material, that is a material that has a constant
definition of electric susceptibility in time. The electric susceptibility is modeled using a harmonic oscillator.
This material is more computationally efficient than NumericMaterial, and uses the update equations specified
in Beard et al..

Parameters

• di – The spatial time step of the simulation

• dn – The temporal step size of the simulation

• ilen – The number of spatial indices in the simulation

• nlen – The number of temporal indices in the simulation

• material_i0 – The starting spatial index of the material

• epsiloninf – The 𝜖∞ of the material, which is constant over space and time.

• a1 – A matrix representing 𝐴1 where axis=0 represents the 𝑗 th oscillator and axis=1 rep-
resents the 𝑖 th spatial index

3.3. Materials 21

rcfdtdpy Documentation

• a2 – A matrix representing 𝐴2 where axis=0 represents the 𝑗 th oscillator and axis=1 rep-
resents the 𝑖 th spatial index

• g – A matrix representing 𝛾 where axis=0 represents the 𝑗 th oscillator and axis=1 represents
the 𝑖 th spatial index

• b – A matrix representing 𝑒𝑡𝑎 where axis=0 represents the 𝑗 th oscillator and axis=1 repre-
sents the 𝑖 th spatial index

• opacity – A vector representing the opacity of the material in time. Each index corre-
sponds to the 𝑛 th time index of the material where 1 corresponds to the material being
opaque and 0 corresponds to the material being transparent. Values can be real numbers.
Defaults to an opaque material for all time.

• istore – A list of spatial indices to save 𝜒 values at in all points in time

export_ifields()
Exports the 𝜒 values at spatial indices specified by istore at the Material object’s initialization, where an in-
dex along axis=1 corresponds to the corresponding spatial index in istore. Values along axis=0 correspond
to the temporal index.

Returns chi or None if istore is unspecified.

get_chi0()
Returns the value of 𝜒0 at all spatial indices resulting from the material.

Returns 𝜒0 at all values of the simulation resulting from the material.

get_epsiloninf()
Returns the value of 𝜖∞ at all spatial indices resulting from the material.

Returns 𝜖∞ at all values of the simulation resulting from the material.

get_psi()
Calculates psi at all points in the simulation using the current value of psi_1 and psi_2. Scaled by the
opacity array passed in at initialization.

Returns 𝜓𝑛 at all values of the simulation resulting from the material where 𝑛 is given by the
number of times update_material has been called by the Material’s corresponding Simulation
object, which is once per simulation step.

reset_material()
This function is called before each simulation. It should reset any material values that are calculated during
the simulation to their initial values.

update_material(n, efield)
Updates the values of 𝜓 and 𝜒 Saves the values of 𝑐ℎ𝑖 requested via the istore parameter.

Parameters

• n – The iteration index 𝑛

• efield – The efield to use in update calculations

3.3.4 NumericMaterial

The NumericMaterial class is an implementation of the Material class designed to simulate a material with
any arbitrary definition of electric susceptibility 𝜒(𝑡). The value of 𝜒𝑚 at each simulation step is calculated at the
initialization of the NumericMaterial.

22 Chapter 3. Reference

rcfdtdpy Documentation

class rcfdtdpy.sim.NumericMaterial(di, dn, ilen, nlen, material_i0, material_i1, chi_func, ep-
siloninf_func, tqdmarg={})

The NumericMaterial class represents a material that has a non-constant definition of electric susceptibility in
time. Currently this Material can only represent materials that have a constant definition of electric susceptibility
in space.

Parameters

• di – The spatial time step of the simulation

• dn – The temporal step size of the simulation

• ilen – The number of spatial indices in the simulation

• nlen – The number of temporal indices in the simulation

• material_i0 – The starting spatial index of the material

• material_i1 – The ending spatial index of the material

• chi_func – A function representing the electric susceptibility 𝜒 as a function of time. The
function should accept a single argument n corresponding to the time index.

• epsiloninf – A function representing the 𝜖∞ of the material as a function of time. The
function should accept a single argument n corresponding to the time index.

• tqdmarg – The arguments to pass the tdqm iterator (lookup arguments on the tqdm docu-
mentation).

export_chi()
Exports the electric susceptibility 𝜒 at each time index.

Returns The electric susceptibility 𝜒

get_chi0()
Returns the value of 𝜒0 at the current time step in the simulation at each spatial location in the simulation.

Returns The current value of 𝜒0 at each spatial location in the simulation

get_epsiloninf()
Returns the value of 𝜖∞ at the current time step in the simulation at each spatial location in the simulation.

Returns The current value of 𝜖∞ at each spatial location in the simulation

get_psi()
Returns the value of 𝜓 at the current time step in the simulation at each spatial location in the simulation.

Returns The current value of 𝜓 at each spatial location in the simulation

reset_material()
This function is called before each simulation. It should reset any material values that are calculated during
the simulation to their initial values.

update_material(n, efield)
This function is called at the start of each simulation time step. It should update the 𝜒 and 𝜓 values of the
material to their values at n.

Parameters

• n – The current temporal index of the simulation.

• efield – The previous electric field of the simulation.

3.3. Materials 23

rcfdtdpy Documentation

3.3.5 TwoStateMaterial

The TwoStateMaterial class is possibly unstable. Its use is not recommended.

class rcfdtdpy.sim.TwoStateMaterial(di, dn, ilen, nlen, n_ref_ind, material_i0, e_a1, e_a2,
e_b, e_g, g_a1, g_a2, g_b, g_g, v_a1, v_a2, v_b, v_g,
alpha, Gamma, t_diff, tau, b, epsiloninf, tqdmarg_f={},
tqdmarg_c={})

The TwoStateMaterial class represents a material that has a non-constant definition of electric susceptibil-
ity in time. This material is represents the same material proposed in Beard and Schmuttenmaer 2001
(www.doi.org/10.1063/1.1338526). The ground state electric susceptibility oscillator is defined by

𝜒𝑔,𝑗(𝑡) = 𝑒−𝛾𝑔,𝑗𝑡
[︀
𝐴𝑔,1,𝑗𝑒

𝛽𝑔,𝑗𝑡 +𝐴𝑔,2,𝑗𝑒
−𝛽𝑔,𝑗𝑡

]︀
and the excited state electric susceptibility oscillator is defined by

𝜒𝑒,𝑗(𝑡) = 𝑒−𝛾𝑒,𝑗𝑡
[︀
𝐴𝑒,1,𝑗𝑒

𝛽𝑒,𝑗𝑡 +𝐴𝑒,2,𝑗𝑒
−𝛽𝑒,𝑗𝑡

]︀
There is also an visual electric susceptibility oscillator that represents any susceptibility change resulting directly
from the incident visual pulse. This is defined by

𝜒vis,𝑗(𝑡) = 𝑒−𝛾vis,𝑗𝑡
[︀
𝐴vis,1,𝑗𝑒

𝛽vis,𝑗𝑡 +𝐴vis,2,𝑗𝑒
−𝛽vis,𝑗𝑡

]︀
The total susceptibility is defined as

𝜒(𝑡, 𝑡′′, 𝑧) =
∑︀

𝑗 [𝑓𝑒(𝑡, 𝑡
′′, 𝑧)𝜒𝑒,𝑗(𝑡) + (1 − 𝑓𝑒(𝑡, 𝑡

′′, 𝑧))𝜒𝑔,𝑗(𝑡) + 𝑔(𝑡, 𝑡′′, 𝑧)𝜒vis,𝑗(𝑡)]

where 𝑓𝑒(𝑡, 𝑡′′, 𝑧) the the fraction of excited oscillators and 𝑔(𝑡, 𝑡′′, 𝑧) is the incident visual pulse. We define
𝑓𝑒(𝑡, 𝑡

′′, 𝑧) as a decay as a function of distance into the material times the convolution of the visual pulse and
the excited state decay

𝑓𝑒(𝑡, 𝑡
′′, 𝑧) = exp (−𝛼𝑧)

∫︀ 𝑡

0
exp

[︂
−
(︁

𝑡′′−𝑡′

Γ

)︁2
]︂(︁

exp
[︁
− 𝑡′

𝜏

]︁
+ 𝑏

)︁
d𝑡′

where 𝛼 is the spatial decay of the visual pulse in the material, Γ is the width of the visual pulse, 𝑡′′ is the time
delay between the visual and simulation pulses, 𝜏 is the time decay of an excited oscillator, 𝑏 is the offset that
the excited oscillators have (used if not all excited oscillators ultimately de-excite), and 𝑡′ = 𝑡−𝑧𝑣vis. We define
𝑔(𝑡, 𝑡′′, 𝑧) as the visual pulse multiplied by the spatial decay of the pulse in the material

𝑔(𝑡, 𝑡′′, 𝑧) = exp (−𝛼𝑧) exp

[︂
−
(︁

𝑡′′−𝑡′

Γ

)︁2
]︂

The user supplies 𝛼, Γ, 𝑡′′, 𝜏 , and 𝑏 at the simulation initialization to define 𝑓𝑒(𝑡, 𝑡′′, 𝑧) and 𝑔(𝑡, 𝑡′′, 𝑧). The user
must also supply the constants that define the ground, excited, and visual oscillators. Initializing the material
will trigger the computation of the fraction of excited oscillators followed by the computation of the discretized
electric susceptibility.

Parameters

• di – The spatial time step of the simulation

• dn – The temporal step size of the simulation

• ilen – The number of spatial indices in the simulation

• nlen – The number of temporal indices in the simulation

• n_ref_ind – The time index to use as a reference for the the t_diff argument

• material_i0 – The starting spatial index of the material

• e_a1 – The excited state oscillator 𝐴𝑒,1, where axis=0 represents the 𝑗 th oscillator and
axis=1 represents the 𝑖 th spatial oscillator in the material.

24 Chapter 3. Reference

rcfdtdpy Documentation

• e_a2 – The excited state oscillator 𝐴𝑒,2, where axis=0 represents the 𝑗 th oscillator and
axis=1 represents the 𝑖 th spatial oscillator in the material.

• e_b – The excited state oscillator 𝛽𝑒,1, where axis=0 represents the 𝑗 th oscillator and
axis=1 represents the 𝑖 th spatial oscillator in the material.

• e_g – The excited state oscillator 𝛾𝑒,1, where axis=0 represents the 𝑗 th oscillator and axis=1
represents the 𝑖 th spatial oscillator in the material.

• g_a1 – The ground state oscillator 𝐴𝑒,1, where axis=0 represents the 𝑗 th oscillator and
axis=1 represents the 𝑖 th spatial oscillator in the material.

• g_a2 – The ground state oscillator 𝐴𝑒,2, where axis=0 represents the 𝑗 th oscillator and
axis=1 represents the 𝑖 th spatial oscillator in the material.

• g_b – The ground state oscillator 𝛽𝑒,1, where axis=0 represents the 𝑗 th oscillator and axis=1
represents the 𝑖 th spatial oscillator in the material.

• g_g – The ground state oscillator 𝛾𝑒,1, where axis=0 represents the 𝑗 th oscillator and axis=1
represents the 𝑖 th spatial oscillator in the material.

• v_a1 – The visual oscillator 𝐴𝑒,1, where axis=0 represents the 𝑗 th oscillator and axis=1
represents the 𝑖 th spatial oscillator in the material.

• v_a2 – The visual oscillator 𝐴𝑒,2, where axis=0 represents the 𝑗 th oscillator and axis=1
represents the 𝑖 th spatial oscillator in the material.

• v_b – The visual oscillator 𝛽𝑒,1, where axis=0 represents the 𝑗 th oscillator and axis=1
represents the 𝑖 th spatial oscillator in the material.

• v_g – The visual oscillator 𝛾𝑒,1, where axis=0 represents the 𝑗 th oscillator and axis=1
represents the 𝑖 th spatial oscillator in the material.

• alpha – The spatial decay constant 𝛼 in meters

• Gamma – The visual pulse width Γ in seconds

• t_diff – The time difference 𝑡′′ in seconds between the visual pulse and index n_ref_ind

• tau – The oscillator time decay constant 𝜏 in seconds

• b – The excited oscillator decay offset
¯

• epsiloninf – The 𝜖∞ of the material, which is constant over space and time.

• tqdmarg_f – The arguments to pass the tdqm iterator during the fraction of excited oscillators calculation (lookup
arguments on the tqdm documentation).

• tqdmarg_c – The arguments to pass the tdqm iterator during the electric susceptibility calculation (lookup arguments
on the tqdm documentation).

get_chi0()
Returns the value of 𝜒0 at the current time step in the simulation at each spatial location in the simulation.

Returns The current value of 𝜒0 at each spatial location in the simulation

get_epsiloninf()
Returns the value of 𝜖∞ at the current time step in the simulation at each spatial location in the simulation.

Returns The current value of 𝜖∞ at each spatial location in the simulation

get_psi()
Returns the value of 𝜓 at the current time step in the simulation at each spatial location in the simulation.

Returns The current value of 𝜓 at each spatial location in the simulation

3.3. Materials 25

rcfdtdpy Documentation

reset_material()
This function is called before each simulation. It should reset any material values that are calculated during
the simulation to their initial values.

update_material(n, efield)
This function is called at the start of each simulation time step. It should update the 𝜒 and 𝜓 values of the
material to their values at n.

Parameters

• n – The current temporal index of the simulation.

• efield – The previous electric field of the simulation.

26 Chapter 3. Reference

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

27

rcfdtdpy Documentation

28 Chapter 4. Indices and tables

Index

C
calc_arrays() (rcfdtdpy.sim.Simulation static

method), 16
calc_dims() (rcfdtdpy.sim.Simulation static method),

16
Current (class in rcfdtdpy.sim), 18

E
EmptyMaterial (class in rcfdtdpy.sim), 19
export_chi() (rcfdtdpy.sim.NumericMaterial

method), 23
export_ifields() (rcfdtdpy.sim.Simulation

method), 16
export_ifields() (rcfdtdpy.sim.StaticMaterial

method), 22
export_nfields() (rcfdtdpy.sim.Simulation

method), 17

G
get_chi0() (rcfdtdpy.sim.EmptyMaterial method), 19
get_chi0() (rcfdtdpy.sim.Material method), 19
get_chi0() (rcfdtdpy.sim.NumericMaterial method),

23
get_chi0() (rcfdtdpy.sim.StaticMaterial method), 22
get_chi0() (rcfdtdpy.sim.TwoStateMaterial method),

25
get_current() (rcfdtdpy.sim.Current method), 18
get_dims() (rcfdtdpy.sim.Simulation method), 17
get_epsiloninf() (rcfdtdpy.sim.EmptyMaterial

method), 20
get_epsiloninf() (rcfdtdpy.sim.Material method),

19
get_epsiloninf() (rcfdtdpy.sim.NumericMaterial

method), 23
get_epsiloninf() (rcfdtdpy.sim.StaticMaterial

method), 22
get_epsiloninf() (rcfdtdpy.sim.TwoStateMaterial

method), 25

get_materials() (rcfdtdpy.sim.Simulation method),
17

get_psi() (rcfdtdpy.sim.EmptyMaterial method), 20
get_psi() (rcfdtdpy.sim.Material method), 19
get_psi() (rcfdtdpy.sim.NumericMaterial method), 23
get_psi() (rcfdtdpy.sim.StaticMaterial method), 22
get_psi() (rcfdtdpy.sim.TwoStateMaterial method),

25

M
Material (class in rcfdtdpy.sim), 19

N
NumericMaterial (class in rcfdtdpy.sim), 22

R
reset_material() (rcfdtdpy.sim.EmptyMaterial

method), 20
reset_material() (rcfdtdpy.sim.Material method),

19
reset_material() (rcfdtdpy.sim.NumericMaterial

method), 23
reset_material() (rcfdtdpy.sim.StaticMaterial

method), 22
reset_material() (rcfdtdpy.sim.TwoStateMaterial

method), 25

S
simulate() (rcfdtdpy.sim.Simulation method), 17
Simulation (class in rcfdtdpy.sim), 15
StaticMaterial (class in rcfdtdpy.sim), 21

T
TwoStateMaterial (class in rcfdtdpy.sim), 24

U
update_material() (rcfdtdpy.sim.EmptyMaterial

method), 20

29

rcfdtdpy Documentation

update_material() (rcfdtdpy.sim.Material
method), 19

update_material() (rcfdtdpy.sim.NumericMaterial
method), 23

update_material() (rcfdtdpy.sim.StaticMaterial
method), 22

update_material() (rcfdt-
dpy.sim.TwoStateMaterial method), 26

30 Index

	Getting Started
	RC-FDTD Simulations
	Reference
	Simulation
	Current
	Materials

	Indices and tables
	Index

