

[image: _images/RaysectLogo_small.png]

Welcome

Welcome to Raysect, an OOP ray-tracing framework for Python. Raysect has been built with scientific ray-tracing in mind. Some of its features include:

	Fully spectral, high precision. Supports scientific ray-tracing of spectra from physical light sources such as plasmas.

	All core loops are written in cython for speed.

	Easily extensible, written with user customisation of materials and emissive sources in mind.

	Different observer types supported such as Pinhole cameras and optical fibres.

Quick Installation

The easiest way to install Raysect is using pip [https://pip.pypa.io/en/stable/]:

pip install raysect

For more detailed installation instructions see Downloading and Installation.

Table of Contents

	1. Introduction

	2. Downloading and Installation
	2.1. Prerequisites

	2.2. Installation

	2.3. Testing

	3. How it works
	3.1. What is a ray tracer?

	3.2. Key Concepts

	3.3. Process of raytracing

	4. Quickstart Guide
	4.1. Create Primitives

	4.2. Add Observer

	4.3. Build Scenegraph

	4.4. Observe()

	4.5. Simulated Spectrum

	5. Primitives
	5.1. Geometric Primitives

	5.2. CSG Operations

	5.3. Meshes

	6. Materials

	7. Conventions

	8. License

	9. Need Help?

Demonstrations

	1. Core Functionality

	2. Examples Gallery

API Reference

	1. Raysect Core
	1.1. Core Classes

	1.2. Math Module
	1.2.1. Points and Vectors

	1.2.2. Affine Matricies

	1.2.3. Functions and Interpolators

	1.2.4. Random

	1.2.5. Unit Conversions

	1.3. Scenegraph Module

	1.4. Utilities
	1.4.1. Containers

	2. Primitives Module
	2.1. Geometric Primitives

	2.2. Meshes

	2.3. CSG Operations

	3. Optical Module
	3.1. Main Optical Classes

	3.2. Observers

	3.3. Optical Materials

Indices and Tables

	Index

	Module Index

	Search Page

1. Introduction

	What is raysect

	An open-source python framework for geometrical optical simulations.

	
	Where to use raysect?

	
	Why instead of povray, etc?

	Science/engineering perspective.

	Robustness over speed, philosophy.

	Designed to be easy to extend by a physicist/engineer.

	
	Feature set

	
	Path tracer

	Full scenegraph for managing geometry and coordinate transforms.

	Set of geometric primitives, lens types, meshes and CSG.

	Simulated Physical Observers => CCDs, cameras, fibreoptics.

	Optical materials, associated material library (BRDFs), metals, glasses.

	multi-core.

	geometric optics => lenses, blah.

	
	Structure/Architecture

	
	OOP framework written in a combination of python and cython. All major functionality is accessible from python. It
is possible to extend all components from python, however to gain full speed, the cython api should be used.

	The core of raysect is actually completely generalised and can be used for other ray-tracing applications
such as neutron transport, etc. However, at the present time the optical model is the only application which has
been implemented.

	The core of Raysect is a generalised kernel for calculating interactions with rays and or volumes onto which
physics models that require raytracing (such as geometric optics) can be built.

	
	Contributions

	
	Welcome, but...

2. Downloading and Installation

2.1. Prerequisites

The Raysect package requires Python 3.3+, numpy, scipy and matplotlib. Scipy version 0.13 or
higher is recommended. Raysect has not been tested on Python 2, currently support for Python
2 is not planned. IPython is recommended for interactive use.

2.2. Installation

Raysect is available from the python package repository pypi [https://pypi.python.org/pypi/raysect]. The easiest way to install Raysect is using pip [https://pip.pypa.io/en/stable/]:

pip install raysect

If pip is not available, the source files can be downloaded from pypi [https://pypi.python.org/pypi/raysect] or from our development repository [https://github.com/raysect/source]. Once you have the source files, locate the folder containing setup.py and run:

python setup.py install

If all the required dependencies are present (cython, numpy, scipy and matplotlib), this should start the Raysect compilation and installation process.

If you would like to play with the bleeding-edge code or contribute to development, please see the Raysect development repository on github [https://github.com/raysect/source].

2.3. Testing

A selection of test scripts can be run with the nose testing framework. These are routinely
run on the development version. Running nosetests at the terminal in the source directory
should run all of these tests to completion without errors or failures.

Many of the demos used throughout the Raysect documentation are distributed with the source code in
the demo folder.

3. How it works

3.1. What is a ray tracer?

An algorithm for simulating light propogation, light is modelled as a bundle of rays that travel through a scene. The
paths of the rays follow a straight line unless they interact with objects in the scene. A wide variety of optical
interactions can be simulated such as reflection and refraction, scattering, and dispersion. The technique is used in
computer graphics to generate photo realistic images of a 3D scene that are ideally indistinguishable from a photo of
the same scene.

Same example scientific applications:

	Design of lenses and optical systems, such as cameras, microscopes and telescopes. Image-forming properties of a system to be modeled.

	Simulating optical diagnostics of plasmas through forward modelling, diagnostic design optimisation.

Ray-tracing is typically very computationally expensive and is best suited for applications that don’t require real-time
calculation.

3.2. Key Concepts

3.2.1. Rays

Represent a ray of light

	defines a line with an origin and direction

	wavelength range and number of spectral samples, centre of range used for refraction calculations

Ray objects must implement a tracing algorithm

	spectrum = ray.trace(world)

	causes the ray to start sampling the world

	returns a Spectrum object

	samples of spectral radiance: W/m 2 /str/nm

3.2.2. Observers

Represents objects that measure light, e.g. CCDs, cameras, photo diodes, eyes. Observers launch rays and accumulate
samples of the scene, which is more convenient than tracing individual rays manually.

	can be placed in the world and moved around

	observe() method triggers ray-tracing, i.e camera.observe()

3.2.3. Primitives

Scenes in Raysect consist of primitives, which are the basic objects making up the scene. These are objects that rays
can interact with, e.g light sources, lenses, mirrors, diffuse surfaces. Types of primitives:

	Mathematically defined surfaces and solids (i.e. sphere, box, cylinder, cone).

	Constructive Solid Geometry Operators (union, intersect, subtract).

	Tri-poly meshes optimised for millions of polygons, support instancing. Importers for STL and OBJ.

Primitive surfaces and volumes can be assigned materials, e.g. glass, metal, emitter properties.

3.2.4. Scene-graph

Primitives and Observers are typically defined in their own local coordinate system but need to be placed into the
“world”. There needs to be a system to keep track of the locations/co-ordinate transforms of all objects in the scene.

The Scene-graph is a tree structure consisting of nodes, which can be both primitives and observers. Each node has an
associated coordinate space and is translated/rotated relative to it’s parent node. I.e. a car node may have four
wheel nodes as children. Operations applied to a parent are automatically propogated down to all children. The resulting
data structure describes the spatial arrangement of primitives throughout a scene.

The World is the root node of the scene-graph - all primitives and observers must be attached to World. When adding
nodes to the world, nodes are always parented to another node (e.g. World) and given a transform (e.g. a translation
and/or rotation) relative to their parent. Allows us to build hierarchies of objects and manipulate the whole group with
one transform.

3.3. Process of raytracing

We desire the intensity/spectrum of light reaching an observer e.g. camera pixel. Our strategy is to sample light
(radiance) along paths reaching observer and accumulate many samples to obtain intensity. Raysect uses a “Path tracing”
algorithm where we trace a ray from the observer through all material interactions until it reaches a light source.
Finally, we propagate the resulting spectrum from the light source back through all material/volume interactions.

Rays are fired backwards from the observer towards light sources since this is more computationally efficient than the
other way round. The majority of light rays fired from a light source won’t reach the observer resulting in wasted
computation.

During ray propogation, rays are tested for intersection with objects in the scene. Once the nearest object has been
identified, the material properties of the object are inspected to determe the next step of the algorithm. Materials can
alter the path of ray propogation and alter the ray’s spectra through absorbtion and reflection curves. Some materials
will require more rays to be launched to return an accurate spectra.

4. Quickstart Guide

This example is based on the demo file demos/quickstart/demo_lambert.py. It outlines the typical workflow used in
raysect.

4.1. Create Primitives

Set-up your primitives by defining materials, meshes, etc:

Box defining the ground plane
ground = Box(lower=Point3D(-50, -1.51, -50), upper=Point3D(50, -1.5, 50), material=Lambert())

checker board wall that acts as emitter
emitter = Box(lower=Point3D(-10, -10, 10), upper=Point3D(10, 10, 10.1),
 material=Checkerboard(4, d65_white, d65_white, 0.1, 2.0), transform=rotate(45, 0, 0))

Sphere
Note that the sphere must be displaced slightly above the ground plane to prevent numerically issues that could
cause a light leak at the intersection between the sphere and the ground.
sphere = Sphere(radius=1.5, transform=translate(0, 0.0001, 0), material=schott("N-BK7"))

4.2. Add Observer

Add an observer and configure its sampling settings. All of these camera settings have sensible defaults, The camera
settings will be explained in detail in another section:

processing pipeline (human vision like camera response)
rgb = RGBPipeline2D()

camera
camera = PinholeCamera(pixels=(512, 512), fov=45, pipeline=[rgb], transform=translate(0, 10, -10) * rotate(0, -45, 0))

camera - pixel sampling settings
camera.pixel_samples = 250
camera.min_wavelength = 375.0
camera.max_wavelength = 740.0
camera.spectral_bins = 15
camera.spectral_rays = 1

4.3. Build Scenegraph

Assemble the scene-graph by linking primitives and observers to the World. Set their transforms:

world = World()

sphere.parent = world
ground.parent = world
emitter.parent = world
camera.parent = world

4.4. Observe()

Call observe() on an Observer or trace a ray manually:

plt.ion()
camera.observe()

plt.ioff()
rgb.save("render.png")
rgb.display()

The resulting image should render like this.

[image: _images/demo_lambert.png]

4.5. Simulated Spectrum

Lets simulate measuring a spectrum by launching a single ray:

ray = Ray(origin=Point3D(0, 0, -5),
 direction=Vector3D(0, 0, 1),
 min_wavelength=375,
 max_wavelength=785,
 bins=100)

ray.trace(world)

The resulting plot should look something like this.

[image: _images/example_spectra.png]
Due to the statistical nature of the path tracer, you may need to run the trace command more than once until you find a path that intersects with the light source.

You can ask the ray to trace repeatedly using the sample method instead. This will combine the results of multiple paths:

ray.sample(world, 10000)

5. Primitives

The raysect primitives: sphere; box; cylinder; and cone.

[image: _images/raysect_primitives.png]

5.1. Geometric Primitives

5.1.1. Sphere

	
class raysect.primitive.Sphere

	A sphere primitive.

The sphere is centered at the origin of the local co-ordinate system.

	Parameters:	
	radius (float) – Radius of the sphere in meters (default = 0.5).

	parent (Node) – Scene-graph parent node or None (default = None).

	transform (AffineMatrix3D) – An AffineMatrix3D defining the local co-ordinate system relative to the scene-graph parent (default = identity matrix).

	material (Material) – A Material object defining the sphere’s material (default = None).

	name (str) – A string specifying a user-friendly name for the sphere (default = “”).

	
__init__

	Initialize self. See help(type(self)) for accurate signature.

5.1.2. Box

	
class raysect.primitive.Box

	A box primitive.

The box is defined by lower and upper points in the local co-ordinate
system.

	Parameters:	
	lower (Point3D) – Lower point of the box (default = Point3D(-0.5, -0.5, -0.5)).

	upper (Point3D) – Upper point of the box (default = Point3D(0.5, 0.5, 0.5)).

	parent (Node) – Scene-graph parent node or None (default = None).

	transform (AffineMatrix3D) – An AffineMatrix3D defining the local co-ordinate system relative to the scene-graph parent (default = identity matrix).

	material (Material) – A Material object defining the box’s material (default = None).

	name (str) – A string specifying a user-friendly name for the box (default = “”).

	
__init__

	Initialize self. See help(type(self)) for accurate signature.

5.1.3. Cylinder

	
class raysect.primitive.Cylinder

	A cylinder primitive.

The cylinder is defined by a radius and height. It lies along the z-axis
and extends over the z range [0, height]. The ends of the cylinder are
capped with disks forming a closed surface.

	Parameters:	
	radius (float) – Radius of the cylinder in meters (default = 0.5).

	height (float) – Height of the cylinder in meters (default = 1.0).

	parent (Node) – Scene-graph parent node or None (default = None).

	transform (AffineMatrix3D) – An AffineMatrix3D defining the local co-ordinate
system relative to the scene-graph parent (default = identity matrix).

	material (Material) – A Material object defining the cylinder’s material (default = None).

	name (str) – A string specifying a user-friendly name for the cylinder (default = “”).

	
__init__

	Initialize self. See help(type(self)) for accurate signature.

5.1.4. Cone

	
class raysect.primitive.Cone

	A cone primitive.

The cone is defined by a radius and height. It lies along the z-axis
and extends over the z range [0, height]. The tip of the cone lies at
z = height. The base of the cone sits on the x-y plane and is capped
with a disk, forming a closed surface.

	Parameters:	
	radius (float) – Radius of the cone in meters in x-y plane (default = 0.5).

	height (float) – Height of the cone in meters (default = 1.0).

	parent (Node) – Scene-graph parent node or None (default = None).

	transform (AffineMatrix3D) – An AffineMatrix3D defining the local co-ordinate
system relative to the scene-graph parent (default = identity matrix).

	material (Material) – A Material object defining the cone’s material (default = None).

	name (str) – A string specifying a user-friendly name for the cone (default = “”).

	
__init__

	Initialize self. See help(type(self)) for accurate signature.

5.2. CSG Operations

Operations such as union, substract, intersect on some basic glass primitives:

Making the lense in the centre
s1 = Sphere(1.0, transform=translate(0, 0, 1.0-0.01))
s2 = Sphere(0.5, transform=translate(0, 0, -0.5+0.01))
Intersect(s1, s2, world, translate(0,0,-3.6)*rotate(50,50,0), glass)

More complex glass structure
cyl_x = Cylinder(1, 4.2, transform=rotate(90, 0, 0)*translate(0, 0, -2.1))
cyl_y = Cylinder(1, 4.2, transform=rotate(0, 90, 0)*translate(0, 0, -2.1))
cyl_z = Cylinder(1, 4.2, transform=rotate(0, 0, 0)*translate(0, 0, -2.1))
cube = Box(Point3D(-1.5, -1.5, -1.5), Point3D(1.5, 1.5, 1.5))
sphere = Sphere(2.0)

Intersect(sphere, Subtract(cube, Union(Union(cyl_x, cyl_y), cyl_z)), world, translate(-2.1,2.1,2.5)*rotate(30, -20, 0), glass)

[image: _images/csg_glass.png]

5.3. Meshes

It is easiest to import meshes from existing CAD files in either obj or stl with the helper methods.

	
raysect.primitive.mesh.obj.import_obj(cls, filename, scaling=1.0, **kwargs)

	Create a mesh instance from a Wavefront OBJ mesh file (.obj).

Some engineering meshes are exported in different units (mm for example)
whereas Raysect units are in m. Applying a scale factor of 0.001 would
convert the mesh into m for use in Raysect.

	Parameters:	
	filename (str) – Mesh file path.

	scaling (double) – Scale the mesh by this factor (default=1.0).

	**kwargs – Accepts optional keyword arguments from the Mesh class.

	Return type:	Mesh

	
raysect.primitive.mesh.stl.import_stl(cls, filename, scaling=1.0, mode=0, **kwargs)

	Create a mesh instance from a STereoLithography (STL) mesh file (.stl).

Some engineering meshes are exported in different units (mm for example)
whereas Raysect units are in m. Applying a scale factor of 0.001 would
convert the mesh into m for use in Raysect.

	Parameters:	
	filename (str) – Mesh file path.

	scaling (double) – Scale the mesh by this factor (default=1.0).

	**kwargs – Accepts optional keyword arguments from the Mesh class.

	Return type:	Mesh

An example:

from raysect.primitive.mesh import import_obj
mesh = import_obj("./resources/stanford_bunny.obj", scaling=1, parent=world,
 transform=translate(0, 0, 0)*rotate(165, 0, 0), material=gold)

[image: _images/gold_bunny.png]

6. Materials

[image: _images/metal_balls.png]
[image: _images/roughen_modifier_example.png]

7. Conventions

In raysect the following conventions apply:

	
	the coordinate system is right-handed

	
	the x-axis (-ve, +ve) maps to (right, left)

	the y-axis (-ve, +ve) maps to (down, up)

	the z-axis (-ve, +ve) maps to (back, forward)

	
	object orientation in local space (for general consistency)

	
	objects with a clear up and forward direction must be aligned such that
their forward direction is along the +ve z-axis and their up direction
is aligned to point along the +ve y direction

	where objects have an obvious axis of rotational symmetry (e.g. a
cylinder or cone) that axis should be aligned with the Z-axis

	where objects have an obvious plane of symmetry, that plane should be
aligned with the y-z plane

In raysect.optical:

	dimensions are in meters

	angles are in degrees

	solid angles are in steradians

	wavelength is in nanometers

	power is in Watts

	spectral radiance is in W/m^2/str/nm

8. License

Copyright (c) 2014-2017, Dr Alex Meakins, Raysect Project
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of the Raysect Project nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

9. Need Help?

Please post a question on the github issue queue [https://github.com/raysect/source/issues].

1. Core Functionality

Core API examples

	Name
	Description
	Preview

	Ray Intersection Points
	Tracking of and visualisation of where rays intersect with objects in the scene.
	[image: ../_images/ray_intersection_points_fig1.png]

	Point Inside A Material
	Finding all primitives which contain a test point.
	[image: ../_images/test_point_inside_material.png]

2. Examples Gallery

Example scenes

	Name
	Description
	Preview

	Cornell Box
	An industry standard test scene for benchmarking rat-tracers.
	[image: ../_images/cornell_box_mis_1550_samples.png]

	Prism dispersion
	White light is split into its component colours as it passes through a glass prism.
	[image: ../_images/prism_720x360.jpg]

	Making animations
	Looping over the observe loop whilst changing the position of primitives generates an animation.
	[image: ../_images/animation_preview.jpg]

	Surface roughness
	Material properties can be varied from smooth to rough with a material roughness modifier.
	[image: ../_images/surface_roughness.jpg]

1. Raysect Core

The core module of raysect is made up of math, acceleration, and scenegraph classes.

	1.1. Core Classes

	1.2. Math Module
	1.2.1. Points and Vectors

	1.2.2. Affine Matricies

	1.2.3. Functions and Interpolators

	1.2.4. Random
	1.2.4.1. Random samplers

	1.2.4.2. Bulk sampling

	1.2.5. Unit Conversions

	1.3. Scenegraph Module

	1.4. Utilities
	1.4.1. Containers

1.1. Core Classes

	
class raysect.core.ray.Ray

	Describes a line in space with an origin and direction.

	Parameters:	
	origin (Point3D) – Point defining ray’s origin (default is Point3D(0, 0, 0)).

	direction (Vector3D) – Vector defining ray’s direction (default is Vector3D(0, 0, 1)).

	max_distance (double) – The terminating distance of the ray.

	
copy()

	Copy this ray to a new Ray instance.

	Parameters:	
	origin (Point3D) – Point defining origin (default is Point3D(0, 0, 0)).

	direction (Vector3D) – Vector defining direction (default is Vector3D(0, 0, 1)).

	Returns:	A new Ray instance.

	Return type:	Ray

	
point_on()

	Returns the point on the ray at the specified parametric distance from the ray origin.

Positive values correspond to points forward of the ray origin, along the ray direction.

	Parameters:	t (double) – The distance along the ray.

	Returns:	A point at distance t along the ray direction measured from its origin.

	Return type:	Point3D

	
class raysect.core.intersection.Intersection

	Describes the result of a ray-primitive intersection.

The inside and outside points are launch points for rays emitted from the hit point on the surface. Rays cannot be
launched from the hit point directly as they risk re-intersecting the same surface due to numerical accuracy. The
inside and outside points are slightly displaced from the primitive surface at a sufficient distance to prevent
re-intersection due to numerical accuracy issues. The inside_point is shifted backwards into the surface relative to
the surface normal. The outside_point is equivalently shifted away from the surface in the direction of the surface
normal.

	Parameters:	
	ray (Ray) – The incident ray object (world space).

	ray_distance (double) – The distance of the intersection along the ray path.

	primitive (Primitive) – The intersected primitive object.

	hit_point (Point3D) – The point of intersection between the ray and the primitive (primitive local space).

	inside_point (Point3D) – The interior ray launch point (primitive local space).

	outside_point (Point3D) – The exterior ray launch point (primitive local space).

	normal (Normal3D) – The surface normal (primitive local space)

	exiting (bool) – True if the ray is exiting the surface, False otherwise.

	world_to_primitive (AffineMatrix3D) – A world to primitive local transform matrix.

	primitive_to_world (AffineMatrix3D) – A primitive local to world transform matrix.

	
class raysect.core.boundingbox.BoundingBox2D

	Axis-aligned 2D bounding box.

	Parameters:	
	lower (Point2D) – (optional) starting point for lower box corner

	upper (Point2D) – (optional) starting point for upper box corner

	
contains()

	Returns true if the given 2D point lies inside the bounding box.

	Parameters:	point (Point2D) – A given test point.

	Return type:	boolean

	
extend()

	Enlarge this bounding box to enclose the given point.

The resulting bounding box will be larger so as to just enclose the existing bounding box and the new point.
This class instance will be edited in place to have the new bounding box dimensions.

	Parameters:	
	point (Point2D) – the point to use for extending the bounding box.

	padding (float) – optional padding parameter, gives extra margin around the new point.

	
extent()

	Returns the spatial extend of this bounding box along the given dimension.

	Parameters:	axis (int) – specifies the axis to return, {0: X axis, 1: Y axis}.

	Return type:	float

	
largest_axis()

	Find the largest axis of this bounding box.

	Returns:	an int specifying the longest axis, {0: X axis, 1: Y axis}.

	Return type:	int

	
largest_extent()

	Find the largest spatial extent across all axes.

	Returns:	distance along the largest bounding box axis.

	Return type:	float

	
lower

	The point defining the lower corner of the bounding box.

	Return type:	Point2D

	
pad()

	Makes the bounding box larger by the specified amount of padding.

Every bounding box axis will end up larger by a factor of 2 x padding.

	Parameters:	padding (float) – distance to use as padding margin

	
surface_area()

	Returns the surface area of the bounding box.

	Return type:	float

	
union()

	Union this bounding box instance with the input bounding box.

The resulting bounding box will be larger so as to just enclose both bounding boxes. This class instance
will be edited in place to have the new bounding box dimensions.

	Parameters:	box (BoundingBox2D) – A bounding box instance to union with this bounding box instance.

	
upper

	The point defining the upper corner of the bounding box.

	Return type:	Point2D

	
vertices()

	Get the list of vertices for this bounding box.

	Returns:	A list of Point2D’s representing the corners of the bounding box.

	Return type:	list

	
class raysect.core.boundingbox.BoundingBox3D

	Axis-aligned bounding box.

Represents a bounding box around a primitive’s surface. The points defining
the lower and upper corners of the box must be specified in world space.

Axis aligned bounding box ray intersections are extremely fast to evaluate
compared to intersections with more general geometry. Prior to testing a
primitives hit() method the hit() method of the bounding box is called. If
the bounding box is not hit, then the expensive primitive hit() method is
avoided.

Combined with a spatial subdivision acceleration structure, the cost of ray-
primitive evaluations can be heavily reduced (O(n) -> O(log n)).

For optimal speed the bounding box is aligned with the world space axes. As
rays are propagated in world space, co-ordinate transforms can be avoided.

	Parameters:	
	lower (Point3D) – (optional) starting point for lower box corner

	upper (Point3D) – (optional) starting point for upper box corner

	
centre

	The point defining the geometric centre of the bounding box.

	Return type:	Point3D

	
contains()

	Returns true if the given 3D point lies inside the bounding box.

	Parameters:	point (Point3D) – A given test point.

	Return type:	boolean

	
enclosing_sphere()

	Returns the radius of a sphere guaranteed to enclose the bounding box.

The sphere is centred at the box centre. A small degree of padding is
added to avoid numerical accuracy issues.

	Returns:	Radius of sphere.

	Return type:	float

	
extend()

	Enlarge this bounding box to enclose the given point.

The resulting bounding box will be larger so as to just enclose the existing bounding box and the new point.
This class instance will be edited in place to have the new bounding box dimensions.

	Parameters:	
	point (Point3D) – the point to use for extending the bounding box.

	padding (float) – optional padding parameter, gives extra margin around the new point.

	
extent()

	Returns the spatial extend of this bounding box along the given dimension.

	Parameters:	axis (int) – specifies the axis to return, {0: X axis, 1: Y axis, 2: Z axis}.

	Return type:	float

	
full_intersection()

	Returns full intersection information for an intersection between a ray and a bounding box.

The first value is a boolean which is true if an intersection has occured, false otherwise. Each intersection
with a bounding box will produce two intersections, one on the front and back of the box. The remaining two
tuple parameters are floats representing the distance along the ray path to the respective intersections.

	Parameters:	ray – The ray to test for intersection

	Returns:	A tuple of intersection parameters, (hit, front_intersection, back_intersection).

	Return type:	tuple

	
hit()

	Returns true if the ray hits the bounding box.

	Parameters:	ray (Ray) – The ray to test for intersection.

	Return type:	boolean

	
largest_axis()

	Find the largest axis of this bounding box.

	Returns:	an int specifying the longest axis, {0: X axis, 1: Y axis, 2: Z axis}.

	Return type:	int

	
largest_extent()

	Find the largest spatial extent across all axes.

	Returns:	distance along the largest bounding box axis.

	Return type:	float

	
lower

	The point defining the lower corner of the bounding box.

	Return type:	Point3D

	
pad()

	Makes the bounding box larger by the specified amount of padding.

Every bounding box axis will end up larger by a factor of 2 x padding.

	Parameters:	padding (float) – distance to use as padding margin

	
surface_area()

	Returns the surface area of the bounding box.

	Return type:	float

	
union()

	Union this bounding box instance with the input bounding box.

The resulting bounding box will be larger so as to just enclose both bounding boxes. This class instance
will be edited in place to have the new bounding box dimensions.

	Parameters:	box (BoundingBox3D) – A bounding box instance to union with this bounding box instance.

	
upper

	The point defining the upper corner of the bounding box.

	Return type:	Point3D

	
vertices()

	Get the list of vertices for this bounding box.

	Returns:	A list of Point3D’s representing the corners of the bounding box.

	Return type:	list

	
volume()

	Returns the volume of the bounding box.

	Return type:	float

1.2. Math Module

	1.2.1. Points and Vectors

	1.2.2. Affine Matricies

	1.2.3. Functions and Interpolators

	1.2.4. Random
	1.2.4.1. Random samplers

	1.2.4.2. Bulk sampling

	1.2.5. Unit Conversions

1.2.1. Points and Vectors

	
class raysect.core.math.point.Point2D

	Represents a point in 2D affine space.

A 2D point is a location in 2D space which is defined by its x and y coordinates in a given coordinate system.
Vector2D objects can be added/subtracted from Point2D yielding another Vector2D. You can also find the Vector2D
and distance between two Point2Ds, and transform a Point2D from one coordinate system to another.

If no initial values are passed, Point2D defaults to the origin: Point2D(0.0, 0.0)

	Parameters:	
	x (float) – initial x coordinate, defaults to x = 0.0.

	y (float) – initial y coordinate, defaults to y = 0.0.

	Variables:	
	x (float) – x-coordinate

	y (float) – y-coordinate

	
__add__

	Addition operator.

>>> Point32D(1, 0) + Vector2D(0, 1)
Point2D(1.0, 1.0)

	
__getitem__

	Returns the point coordinates by index ([0,1] -> [x,y]).

>>> a = Point2D(1, 0)
>>> a[0]
1

	
__getstate__()

	Encodes state for pickling.

	
__iter__

	Iterates over the coordinates (x, y)

	
__setitem__

	Sets the point coordinates by index ([0,1] -> [x,y]).

>>> a = Point2D(1, 0)
>>> a[1] = 2
>>> a
Point2D(1.0, 2.0)

	
__setstate__()

	Decodes state for pickling.

	
__sub__

	Subtraction operator.

>>> Point2D(1, 0) - Vector2D(0, 1)
Point2D(1.0, -1.0)

	
copy()

	Returns a copy of the point.

	Return type:	Point2D

	
distance_to()

	Returns the distance between this point and the passed point.

	Parameters:	p (Point2D) – the point to which the distance will be calculated

	Return type:	float

	
vector_to()

	Returns a vector from this point to the passed point.

	Parameters:	p (Point2D) – point to which a vector will be calculated

	Return type:	Vector2D

	
class raysect.core.math.point.Point3D

	Represents a point in 3D affine space.

A point is a location in 3D space which is defined by its x, y and z coordinates in a given coordinate system.
Vectors can be added/subtracted from Points yielding another Vector3D. You can also find the Vector3D and distance
between two Points, and transform a Point3D from one coordinate system to another.

If no initial values are passed, Point3D defaults to the origin:
Point3D(0.0, 0.0, 0.0)

	Parameters:	
	x (float) – initial x coordinate, defaults to x = 0.0.

	y (float) – initial y coordinate, defaults to y = 0.0.

	z (float) – initial z coordinate, defaults to z = 0.0.

	Variables:	
	x (float) – x-coordinate

	y (float) – y-coordinate

	z (float) – z-coordinate

	
__add__

	Addition operator.

>>> Point3D(1, 0, 0) + Vector3D(0, 1, 0)
Point3D(1.0, 1.0, 0.0)

	
__getitem__

	Returns the point coordinates by index ([0,1,2] -> [x,y,z]).

>>> a = Point3D(1, 0, 0)
>>> a[0]
1

	
__getstate__()

	Encodes state for pickling.

	
__iter__

	Iterates over the coordinates (x, y, z)

	
__mul__

	Multiplication operator.

	Parameters:	
	x (AffineMatrix3D) – transformation matrix x

	y (Point3D) – point to transform

	Returns:	Matrix multiplication of a 3D transformation matrix with the input point.

	Return type:	Point3D

	
__setitem__

	Sets the point coordinates by index ([0,1,2] -> [x,y,z]).

>>> a = Point3D(1, 0, 0)
>>> a[1] = 2
>>> a
Point3D(1.0, 2.0, 0.0)

	
__setstate__()

	Decodes state for pickling.

	
__sub__

	Subtraction operator.

>>> Point3D(1, 0, 0) - Vector3D(0, 1, 0)
Point3D(1.0, -1.0, 0.0)

	
copy()

	Returns a copy of the point.

	Return type:	Point3D

	
distance_to()

	Returns the distance between this point and the passed point.

	Parameters:	p (Point3D) – the point to which the distance will be calculated

	Return type:	float

	
transform()

	Transforms the point with the supplied Affine Matrix.

The point is transformed by premultiplying the point by the affine
matrix.

For cython code this method is substantially faster than using the
multiplication operator of the affine matrix.

This method expects a valid affine transform. For speed reasons, minimal
checks are performed on the matrix.

	Parameters:	m (AffineMatrix3D) – The affine matrix describing the required coordinate transformation.

	Returns:	A new instance of this point that has been transformed with the supplied Affine Matrix.

	Return type:	Point3D

	
vector_to()

	Returns a vector from this point to the passed point.

	Parameters:	p (Point3D) – the point to which a vector will be calculated.

	Return type:	Vector3D

	
class raysect.core.math.vector.Vector2D

	Represents a vector in 2D space.

2D vectors are described by their (x, y) coordinates. Standard Vector2D operations are
supported such as addition, subtraction, scaling, dot product, cross product and normalisation.

If no initial values are passed, Vector2D defaults to a unit vector
aligned with the x-axis: Vector2D(1.0, 0.0)

	Parameters:	
	x (float) – initial x coordinate, defaults to x = 0.0.

	y (float) – initial y coordinate, defaults to y = 0.0.

	Variables:	
	x (float) – x-coordinate

	y (float) – y-coordinate

	
copy()

	Returns a copy of the vector.

	Return type:	Vector2D

	
cross()

	Calculates the 2D cross product analogue between this vector and the supplied vector

C = A.cross(B) <=> C = A x B <=> det(A, B) = A.x B.y - A.y B.x

Note that for 2D vectors, the cross product is the equivalent of the determinant of a
2x2 matrix. The result is a scalar.

	Parameters:	v (Vector2D) – An input vector with which to calculate the cross product.

	Return type:	float

	
dot()

	Calculates the dot product between this vector and the supplied vector.

Returns a scalar.

	
length

	The vector’s length.

Raises a ZeroDivisionError if an attempt is made to change the length of
a zero length vector. The direction of a zero length vector is
undefined hence it can not be lengthened.

	
normalise()

	Returns a normalised copy of the vector.

The returned vector is normalised to length 1.0 - a unit vector.

	Return type:	Vector2D

	
orthogonal()

	Returns a unit vector that is guaranteed to be orthogonal to the vector.

	Return type:	vector2D

	
class raysect.core.math.vector.Vector3D

	Represents a vector in 3D affine space.

Vectors are described by their (x, y, z) coordinates in the chosen coordinate system. Standard Vector3D operations are
supported such as addition, subtraction, scaling, dot product, cross product, normalisation and coordinate
transformations.

If no initial values are passed, Vector3D defaults to a unit vector
aligned with the z-axis: Vector3D(0.0, 0.0, 1.0)

	Parameters:	
	x (float) – initial x coordinate, defaults to x = 0.0.

	y (float) – initial y coordinate, defaults to y = 0.0.

	z (float) – initial z coordinate, defaults to z = 0.0.

	Variables:	
	x (float) – x-coordinate

	y (float) – y-coordinate

	z (float) – z-coordinate

	
__add__

	Addition operator.

>>> Vector3D(1, 0, 0) + Vector3D(0, 1, 0)
Vector3D(1.0, 1.0, 0.0)

	
__getitem__

	Returns the vector coordinates by index ([0,1,2] -> [x,y,z]).

>>> a = Vector3D(1, 0, 0)
>>> a[0]
1

	
__getstate__()

	Encodes state for pickling.

	
__iter__

	Iterates over the vector coordinates (x, y, z)

	
__mul__

	Multiplication operator.

3D vectors can be multiplied with both scalars and transformation matrices.

>>> 2 * Vector3D(1, 2, 3)
Vector3D(2.0, 4.0, 6.0)
>>> rotate_x(90) * Vector3D(0, 0, 1)
Vector3D(0.0, -1.0, 0.0)

	
__neg__

	Returns a vector with the reverse orientation (negation operator).

	
__setitem__

	Sets the vector coordinates by index ([0,1,2] -> [x,y,z]).

>>> a = Vector3D(1, 0, 0)
>>> a[1] = 2
>>> a
Vector3D(1.0, 2.0, 0.0)

	
__setstate__()

	Decodes state for pickling.

	
__sub__

	Subtraction operator.

>>> Vector3D(1, 0, 0) - Vector3D(0, 1, 0)
Vector3D(1.0, -1.0, 0.0)

	
__truediv__

	Division operator.

>>> Vector3D(1, 1, 1) / 2
Vector3D(0.5, 0.5, 0.5)

	
copy()

	Returns a copy of the vector.

	Return type:	Vector3D

	
cross()

	Calculates the cross product between this vector and the supplied vector

C = A.cross(B) <=> \(\vec{C} = \vec{A} \times \vec{B}\)

	Parameters:	v (Vector3D) – An input vector with which to calculate the cross product.

	Return type:	Vector3D

	
dot()

	Calculates the dot product between this vector and the supplied vector.

Returns a scalar.

	
length

	The vector’s length.

Raises a ZeroDivisionError if an attempt is made to change the length of
a zero length vector. The direction of a zero length vector is
undefined hence it can not be lengthened.

	
normalise()

	Returns a normalised copy of the vector.

The returned vector is normalised to length 1.0 - a unit vector.

	Return type:	Vector3D

	
orthogonal()

	Returns a unit vector that is guaranteed to be orthogonal to the vector.

	Return type:	vector3D

	
transform()

	Transforms the vector with the supplied AffineMatrix3D.

The vector is transformed by pre-multiplying the vector by the affine
matrix.

\[\vec{C} = \textbf{A} \times \vec{B}\]

This method is substantially faster than using the multiplication
operator of AffineMatrix3D when called from cython code.

	Parameters:	m (AffineMatrix3D) – The affine matrix describing the required coordinate transformation.

	Returns:	A new instance of this vector that has been transformed with the supplied Affine Matrix.

	Return type:	Vector3D

1.2.2. Affine Matricies

	
class raysect.core.math.affinematrix.AffineMatrix3D

	A 4x4 affine matrix.

These matrices are used for transforming between coordinate systems. Every
primitive in Raysect works in its own local coordinate system, so it is common
to need to transform 3D points from local to world spave and vice versa. Even
though the vectors themselves are 3D, a 4x4 matrix is needed to completely
specify a transformation from one 3D space to another.

The coordinate transformation is applied by multiplying the column vector for
the desired Point3D/Vector3D against the transformation matrix. For example,
if the original vector \(\vec{V_a}\) is in space A and the transformation matrix
\(\mathbf{T_{AB}}\) describes the position and orientation of Space A relative
to Space B, then the multiplication

\[\vec{V_{b}} = \mathbf{T_{AB}} \times \vec{V_a}\]

yields the same vector transformed into coordinate Space B, \(\vec{V_b}\).

The individual terms of the transformation matrix can be visualised in terms of
the way they change the underlying basis vectors.

\[\begin{split}\mathbf{T_{AB}} = \left(\begin{array}{cccc} \vec{x_b}.x & \vec{y_b}.x & \vec{z_b}.x & \vec{t}.x \\
\vec{x_b}.y & \vec{y_b}.y & \vec{z_b}.y & \vec{t}.y \\
\vec{x_b}.z & \vec{y_b}.z & \vec{z_b}.z & \vec{t}.z \\
0 & 0 & 0 & 1 \end{array} \right)\end{split}\]

Here the unit x-axis vector in space A, \(\vec{x}_a = (1, 0, 0)\), has been transformed
into space B, \(\vec{x_b}\). The same applies to \(\vec{y_b}\) and \(\vec{z_b}\) for
the \(\vec{y}_a\) and \(\vec{z}_a\) unit vectors respectively. Together the new basis
vectors describe a rotation of the original coordinate system.

The vector \(\vec{t}\) in the last column corresponds to a translation vector between the
origin’s of space A and space B.

Strictly speaking, the new rotation vectors don’t have to be normalised which
corresponds to a scaling in addition to the rotation. For example, a scaling matrix
would look like the following.

\[\begin{split}\mathbf{T_{scale}} = \left(\begin{array}{cccc} \vec{s}.x & 0 & 0 & 0 \\
0 & \vec{s}.y & & 0 \\
0 & 0 & \vec{s}.z & 0 \\
0 & 0 & 0 & 1 \end{array} \right)\end{split}\]

Multiple transformations can be chained together by multiplying the
matrices together, the resulting matrix will encode the full transformation.
The order in which transformations are applied is very important. The operation
\(\mathbf{M_{translate}} \times \mathbf{M_{rotate}}\) is different to
\(\mathbf{M_{rotate}} \times \mathbf{M_{translate}}\) because matrices don’t
commute, and physically these are different operations.

Warning

Because we are using column vectors, transformations should be
applied right to left.

An an example operation, let us consider the case of moving and rotating a camera in
our scene. Suppose we want to rotate our camera at an angle of \(\theta_x=45\)
around the x-axis and translate the camera to position \(p=(0, 0, 3.5)\). This set
of operations would be equivalent to:

\[\mathbf{T} = \mathbf{T_{translate}} \times \mathbf{T_{rotate}}\]

In code this would be equivalent to:

>>> transform = translate(0, 0, -3.5) * rotate_x(45)

If no initial values are passed to the matrix, it defaults to an identity matrix.

	Parameters:	m (object) – Any 4 x 4 indexable or 16 element object can be used to
initialise the matrix. 16 element objects must be specified in
row-major format.

	
inverse()

	Calculates the inverse of the affine matrix.

Returns an AffineMatrix3D containing the inverse.

Raises a ValueError if the matrix is singular and the inverse can not be
calculated. All valid affine transforms should be invertable.

	
raysect.core.math.transform.translate()

	Returns an affine matrix representing a translation of the coordinate space.

Equivalent to the transform matrix, \(\mathbf{T_{AB}}\), where \(\vec{t}\)
is the vector from the origin of space A to space B.

\[\begin{split}\mathbf{T_{AB}} = \left(\begin{array}{cccc} 1 & 0 & 0 & \vec{t}.x \\
0 & 1 & 0 & \vec{t}.y \\
0 & 0 & 1 & \vec{t}.z \\
0 & 0 & 0 & 1 \end{array} \right)\end{split}\]

	Parameters:	
	x (float) – x-coordinate

	y (float) – y-coordinate

	z (float) – z-coordinate

	Return type:	AffineMatrix3D

	
raysect.core.math.transform.rotate_x()

	Returns an affine matrix representing the rotation of the coordinate space
about the X axis by the supplied angle.

The rotation direction is clockwise when looking along the x-axis.

\[\begin{split}\mathbf{T_{AB}} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\
0 & \cos{\theta} & -\sin{\theta} & 0 \\
0 & \sin{\theta} & \cos{\theta} & 0 \\
0 & 0 & 0 & 1 \end{array} \right)\end{split}\]

	Parameters:	angle (float) – The angle \(\theta\) specified in degrees.

	Return type:	AffineMatrix3D

	
raysect.core.math.transform.rotate_y()

	Returns an affine matrix representing the rotation of the coordinate space
about the Y axis by the supplied angle.

The rotation direction is clockwise when looking along the y-axis.

\[\begin{split}\mathbf{T_{AB}} = \left(\begin{array}{cccc} \cos{\theta} & 0 & \sin{\theta} & 0 \\
0 & 1 & 0 & 0 \\
-\sin{\theta} & 0 & \cos{\theta} & 0 \\
0 & 0 & 0 & 1 \end{array} \right)\end{split}\]

	Parameters:	angle (float) – The angle \(\theta\) specified in degrees.

	Return type:	AffineMatrix3D

	
raysect.core.math.transform.rotate_z()

	Returns an affine matrix representing the rotation of the coordinate space
about the Z axis by the supplied angle.

The rotation direction is clockwise when looking along the z-axis.

\[\begin{split}\mathbf{T_{AB}} = \left(\begin{array}{cccc} \cos{\theta} & -\sin{\theta} & 0 & 0 \\
\sin{\theta} & \cos{\theta} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \end{array} \right)\end{split}\]

	Parameters:	angle (float) – The angle \(\theta\) specified in degrees.

	Return type:	AffineMatrix3D

	
raysect.core.math.transform.rotate()

	Returns an affine transform matrix representing an intrinsic rotation with
an axis order (-Y)(-X)’Z’‘.

For an object aligned such that forward is the +ve Z-axis, left is the +ve
X-axis and up is the +ve Y-axis then this rotation operation corresponds to
the yaw, pitch and roll of the object.

	Parameters:	
	yaw (float) – Yaw angle in degrees.

	pitch (float) – Pitch angle in degrees.

	roll (float) – Roll angle in degrees.

	Return type:	AffineMatrix3D

	
raysect.core.math.transform.rotate_vector()

	Returns an affine matrix representing the rotation of the coordinate space
about the supplied vector by the specified angle.

	Parameters:	
	angle (float) – The angle specified in degrees.

	v (Vector3D) – The vector about which to rotate.

	Return type:	AffineMatrix3D

	
raysect.core.math.transform.rotate_basis()

	Returns a rotation matrix defined by forward and up vectors.

The +ve Z-axis of the resulting coordinate space will be aligned with the
forward vector. The +ve Y-axis will be aligned to lie in the plane defined
the forward and up vectors, along the projection of the up vector that
lies orthogonal to the forward vector. The X-axis will lie perpendicular to
the plane.

The forward and upwards vectors need not be orthogonal. The up vector will
be rotated in the plane defined by the two vectors until it is orthogonal.

	Parameters:	
	forward (Vector3D) – A Vector3D object defining the forward direction.

	up (Vector3D) – A Vector3D object defining the up direction.

	Return type:	AffineMatrix3D

1.2.3. Functions and Interpolators

	
class raysect.core.math.function.function1d.Function1D

	Cython optimised class for representing an arbitrary 1D function.

Using __call__() in cython is slow. This class provides an overloadable
cython cdef evaluate() method which has much less overhead than a python
function call.

For use in cython code only, this class cannot be extended via python.

To create a new function object, inherit this class and implement the
evaluate() method. The new function object can then be used with any code
that accepts a function object.

	
__call__

	Evaluate the function f(x)

	Parameters:	x (float) – function parameter x

	Return type:	float

	
class raysect.core.math.function.function1d.PythonFunction1D

	Bases: raysect.core.math.function.function1d.Function1D

Wraps a python callable object with a Function1D object.

This class allows a python object to interact with cython code that requires
a Function1D object. The python object must implement __call__() expecting
one argument.

This class is intended to be used to transparently wrap python objects that
are passed via constructors or methods into cython optimised code. It is not
intended that the users should need to directly interact with these wrapping
objects. Constructors and methods expecting a Function1D object should be
designed to accept a generic python object and then test that object to
determine if it is an instance of Function1D. If the object is not a
Function1D object it should be wrapped using this class for internal use.

See also: autowrap_function1d()

	Parameters:	function (object) – the python function to wrap, __call__() function must be

implemented on the object.

	
class raysect.core.math.function.function2d.Function2D

	Cython optimised class for representing an arbitrary 2D function.

Using __call__() in cython is slow. This class provides an overloadable
cython cdef evaluate() method which has much less overhead than a python
function call.

For use in cython code only, this class cannot be extended via python.

To create a new function object, inherit this class and implement the
evaluate() method. The new function object can then be used with any code
that accepts a function object.

	
__call__

	Evaluate the function f(x, y)

	Parameters:	
	x (float) – function parameter x

	y (float) – function parameter y

	Return type:	float

	
class raysect.core.math.function.function2d.PythonFunction2D

	Bases: raysect.core.math.function.function2d.Function2D

Wraps a python callable object with a Function2D object.

This class allows a python object to interact with cython code that requires
a Function2D object. The python object must implement __call__() expecting
two arguments.

This class is intended to be used to transparently wrap python objects that
are passed via constructors or methods into cython optimised code. It is not
intended that the users should need to directly interact with these wrapping
objects. Constructors and methods expecting a Function2D object should be
designed to accept a generic python object and then test that object to
determine if it is an instance of Function2D. If the object is not a
Function2D object it should be wrapped using this class for internal use.

See also: autowrap_function2d()

	Parameters:	function (object) – the python function to wrap, __call__() function must

be implemented on the object.

	
class raysect.core.math.function.function3d.Function3D

	Cython optimised class for representing an arbitrary 3D function.

Using __call__() in cython is slow. This class provides an overloadable
cython cdef evaluate() method which has much less overhead than a python
function call.

For use in cython code only, this class cannot be extended via python.

To create a new function object, inherit this class and implement the
evaluate() method. The new function object can then be used with any code
that accepts a function object.

	
__call__

	Evaluate the function f(x, y, z)

	Parameters:	
	x (float) – function parameter x

	y (float) – function parameter y

	y – function parameter z

	Return type:	float

	
class raysect.core.math.function.function3d.PythonFunction3D

	Bases: raysect.core.math.function.function3d.Function3D

Wraps a python callable object with a Function3D object.

This class allows a python object to interact with cython code that requires
a Function3D object. The python object must implement __call__() expecting
three arguments.

This class is intended to be used to transparently wrap python objects that
are passed via constructors or methods into cython optimised code. It is not
intended that the users should need to directly interact with these wrapping
objects. Constructors and methods expecting a Function3D object should be
designed to accept a generic python object and then test that object to
determine if it is an instance of Function3D. If the object is not a
Function3D object it should be wrapped using this class for internal use.

See also: autowrap_function3d()

	
class raysect.core.math.interpolators.discrete2dmesh.Discrete2DMesh

	Bases: raysect.core.math.function.function2d.Function2D

Discrete interpolator for data on a 2d ungridded tri-poly mesh.

The mesh is specified as a set of 2D vertices supplied as an Nx2 numpy
array or a suitably sized sequence that can be converted to a numpy array.

The mesh triangles are defined with a Mx3 array where the three values are
indices into the vertex array that specify the triangle vertices. The
mesh must not contain overlapping triangles. Supplying a mesh with
overlapping triangles will result in undefined behaviour.

A data array of length M, containing a value for each triangle, holds the
data to be interpolated across the mesh.

By default, requesting a point outside the bounds of the mesh will cause
a ValueError exception to be raised. If this is not desired the limit
attribute (default True) can be set to False. When set to False, a default
value will be returned for any point lying outside the mesh. The value
return can be specified by setting the default_value attribute (default is
0.0).

To optimise the lookup of triangles, the interpolator builds an
acceleration structure (a KD-Tree) from the specified mesh data. Depending
on the size of the mesh, this can be quite slow to construct. If the user
wishes to interpolate a number of different data sets across the same mesh
- for example: temperature and density data that are both defined on the
same mesh - then the user can use the instance() method on an existing
interpolator to create a new interpolator. The new interpolator will shares
a copy of the internal acceleration data. The triangle_data, limit and
default_value can be customised for the new instance. See instance(). This
will avoid the cost in memory and time of rebuilding an identical
acceleration structure.

	Parameters:	
	vertex_coords (ndarray) – An array of vertex coordinates (x, y) with shape Nx2.

	triangles (ndarray) – An array of vertex indices defining the mesh triangles, with shape Mx3.

	triangle_data (ndarray) – An array containing data for each triangle of shape Mx1.

	limit (bool) – Raise an exception outside mesh limits - True (default) or False.

	default_value (float) – The value to return outside the mesh limits if limit is set to False.

	
instance()

	Creates a new interpolator instance from an existing interpolator instance.

The new interpolator instance will share the same internal acceleration
data as the original interpolator. The triangle_data, limit and default_value
settings of the new instance can be redefined by setting the appropriate
attributes. If any of the attributes are set to None (default) then the
value from the original interpolator will be copied.

This method should be used if the user has multiple sets of triangle_data
that lie on the same mesh geometry. Using this methods avoids the
repeated rebuilding of the mesh acceleration structures by sharing the
geometry data between multiple interpolator objects.

	Parameters:	
	instance (Discrete2DMesh) – Discrete2DMesh object.

	triangle_data (ndarray) – An array containing data for each triangle of shape Mx1 (default None).

	limit (bool) – Raise an exception outside mesh limits - True (default) or False (default None).

	default_value (float) – The value to return outside the mesh limits if limit is set to False (default None).

	Returns:	An Discrete2DMesh object.

	Return type:	Discrete2DMesh

	
class raysect.core.math.interpolators.interpolator2dmesh.Interpolator2DMesh

	Bases: raysect.core.math.function.function2d.Function2D

Linear interpolator for data on a 2d ungridded tri-poly mesh.

The mesh is specified as a set of 2D vertices supplied as an Nx2 numpy
array or a suitably sized sequence that can be converted to a numpy array.

The mesh triangles are defined with a Mx3 array where the three values are
indices into the vertex array that specify the triangle vertices. The
mesh must not contain overlapping triangles. Supplying a mesh with
overlapping triangles will result in undefined behaviour.

A data array of length N, containing a value for each vertex, holds the
data to be interpolated across the mesh.

By default, requesting a point outside the bounds of the mesh will cause
a ValueError exception to be raised. If this is not desired the limit
attribute (default True) can be set to False. When set to False, a default
value will be returned for any point lying outside the mesh. The value
return can be specified by setting the default_value attribute (default is
0.0).

To optimise the lookup of triangles, the interpolator builds an
acceleration structure (a KD-Tree) from the specified mesh data. Depending
on the size of the mesh, this can be quite slow to construct. If the user
wishes to interpolate a number of different data sets across the same mesh
- for example: temperature and density data that are both defined on the
same mesh - then the user can use the instance() method on an existing
interpolator to create a new interpolator. The new interpolator will shares
a copy of the internal acceleration data. The vertex_data, limit and
default_value can be customised for the new instance. See instance(). This
will avoid the cost in memory and time of rebuilding an identical
acceleration structure.

	Parameters:	
	vertex_coords (ndarray) – An array of vertex coordinates (x, y) with shape Nx2.

	vertex_data (ndarray) – An array containing data for each vertex of shape Nx1.

	triangles (ndarray) – An array of vertex indices defining the mesh triangles, with shape Mx3.

	limit (bool) – Raise an exception outside mesh limits - True (default) or False.

	default_value (float) – The value to return outside the mesh limits if limit is set to False.

	
instance()

	Creates a new interpolator instance from an existing interpolator instance.

The new interpolator instance will share the same internal acceleration
data as the original interpolator. The vertex_data, limit and default_value
settings of the new instance can be redefined by setting the appropriate
attributes. If any of the attributes are set to None (default) then the
value from the original interpolator will be copied.

This method should be used if the user has multiple sets of vertex_data
that lie on the same mesh geometry. Using this methods avoids the
repeated rebuilding of the mesh acceleration structures by sharing the
geometry data between multiple interpolator objects.

	Parameters:	
	instance (Interpolator2DMesh) – Interpolator2DMesh object.

	vertex_data (ndarray) – An array containing data for each vertex of shape Nx1 (default None).

	limit (bool) – Raise an exception outside mesh limits - True (default) or False (default None).

	default_value (float) – The value to return outside the mesh limits if limit is set to False (default None).

	Returns:	An Interpolator2DMesh object.

	Return type:	Interpolator2DMesh

1.2.4. Random

1.2.4.1. Random samplers

	
raysect.core.math.random.seed()

	Seeds the random number generator with the specified integer.

If a seed is not specified the generator is automatically re-seed using the
system cryptographic random number generator (urandom).

	Parameters:	d – Integer seed.

	
raysect.core.math.random.uniform()

	Generate random doubles in range [0, 1).

Values are uniformly distributed.

	Returns:	Random double.

	
raysect.core.math.random.normal()

	Generates a normally distributed random number.

The mean and standard deviation of the distribution must be specified.

	Parameters:	
	mean (float) – The distribution mean.

	stddev (float) – The distribution standard deviation.

	Returns:	Random double.

	
raysect.core.math.random.probability()

	Samples from the Bernoulli distribution where P(True) = prob.

For example, if probability is 0.8, this function will return True 80% of
the time and False 20% of the time.

Values of prob outside the [0, 1] range of probabilities will be clamped to
the nearest end of the range [0, 1].

	Parameters:	prob (double) – A probability from [0, 1].

	Returns:	True or False.

	Return type:	bool

	
raysect.core.math.random.point_disk()

	Returns a random point on a disk of unit radius.

	Return type:	Point2D

	
raysect.core.math.random.point_square()

	Returns a random point on a square of unit radius.

	Return type:	Point2D

	
raysect.core.math.random.vector_sphere()

	Generates a random vector on a unit sphere.

	Return type:	Vector3D

	
raysect.core.math.random.vector_hemisphere_uniform()

	Generates a random vector on a unit hemisphere.

The hemisphere is aligned along the z-axis - the plane that forms the
hemisphere base lies in the x-y plane.

	Return type:	Vector3D

	
raysect.core.math.random.vector_hemisphere_cosine()

	Generates a cosine-weighted random vector on a unit hemisphere.

The hemisphere is aligned along the z-axis - the plane that forms the
hemisphere base lies in the x-y plane.

	Return type:	Vector3D

	
raysect.core.math.random.vector_cone()

	Generates a random vector in a cone along the z-axis.

The angle of the cone is specified with the theta parameter. For speed, no
checks are performs on the theta parameter, it is up to user to ensure the
angle is sensible.

	Parameters:	theta (float) – An angle between 0 and 90 degrees.

	Returns:	A random Vector3D in the cone defined by theta.

	Return type:	Vector3D

1.2.4.2. Bulk sampling

	
class raysect.core.math.sampler.PointSampler

	Base class for an object that generates a list of Point3D objects.

	
__call__

	

	Parameters:	samples (int) – Number of points to generate.

	Return type:	list

	
sample()

	

	Parameters:	samples (int) – Number of points to generate.

	Return type:	list

	
class raysect.core.math.sampler.DiskSampler

	Bases: raysect.core.math.sampler.PointSampler

Generates a random Point3D on a disk.

	Parameters:	radius (double) – The radius of the disk.

	
class raysect.core.math.sampler.RectangleSampler

	Bases: raysect.core.math.sampler.PointSampler

Generates a random Point3D on a rectangle.

	Parameters:	
	width (double) – The width of the rectangular sampling area of this observer.

	height (double) – The height of the rectangular sampling area of this observer.

	
class raysect.core.math.sampler.VectorSampler

	Base class for an object that generates a list of Vector3D objects.

	
__call__

	

	Parameters:	samples (int) – Number of vectors to generate.

	Return type:	list

	
sample()

	

	Parameters:	samples (int) – Number of vectors to generate.

	Return type:	list

	
class raysect.core.math.sampler.ConeSampler

	Bases: raysect.core.math.sampler.VectorSampler

Generates a list of random unit Vector3D objects inside a cone.

The cone is aligned along the z-axis.

	Parameters:	angle – Angle of the cone in degrees.

	
class raysect.core.math.sampler.SphereSampler

	Bases: raysect.core.math.sampler.VectorSampler

Generates a random vector on a unit sphere.

	
class raysect.core.math.sampler.HemisphereUniformSampler

	Bases: raysect.core.math.sampler.VectorSampler

Generates a random vector on a unit hemisphere.

The hemisphere is aligned along the z-axis - the plane that forms the
hemisphere base lies in the x-y plane.

	
class raysect.core.math.sampler.HemisphereCosineSampler

	Bases: raysect.core.math.sampler.VectorSampler

Generates a cosine-weighted random vector on a unit hemisphere.

The hemisphere is aligned along the z-axis - the plane that forms the
hemisphere base lies in the x-y plane.

1.2.5. Unit Conversions

	
raysect.core.math.units.cm()

	Converts centimeters to meters.

	Parameters:	v (float) – Length in centimeters.

	Returns:	Length in meters.

	
raysect.core.math.units.foot()

	Converts feet to meters.

	Parameters:	v (float) – Length in feet.

	Returns:	Length in meters.

	
raysect.core.math.units.inch()

	Converts inches to meters.

	Parameters:	v (float) – Length in inches.

	Returns:	Length in meters.

	
raysect.core.math.units.km()

	Converts kilometers to meters.

	Parameters:	v (float) – Length in kilometers.

	Returns:	Length in meters.

	
raysect.core.math.units.mil()

	Converts mils (thousandths of an inch) to meters.

	Parameters:	v (float) – Length in mils.

	Returns:	Length in meters.

	
raysect.core.math.units.mile()

	Converts miles to meters.

	Parameters:	v (float) – Length in miles.

	Returns:	Length in meters.

	
raysect.core.math.units.mm()

	Converts millimeters to meters.

	Parameters:	v (float) – Length in millimeters.

	Returns:	Length in meters.

	
raysect.core.math.units.nm()

	Converts nanometers to meters.

	Parameters:	v (float) – Length in nanometers.

	Returns:	Length in meters.

	
raysect.core.math.units.radian()

	Converts radians to degrees.

	Parameters:	v (float) – Angle in radians.

	Returns:	Angle in degrees.

	
raysect.core.math.units.um()

	Converts micrometers to meters.

	Parameters:	v (float) – Length in micrometers.

	Returns:	Length in meters.

	
raysect.core.math.units.yard()

	Converts yards to meters.

	Parameters:	v (float) – Length in yards.

	Returns:	Length in meters.

1.3. Scenegraph Module

	
class raysect.core.scenegraph.node.Node

	The scene-graph node class.

The basic constituent of a scene-graph tree. Nodes can be linked together
by parenting one Node to another to form a tree structure. Each node in a
scene-graph represents a distinct co-ordinate system. An affine transform
associated with each node describes the relationship between a node and its
parent’s coordinate system. By combining the transforms (and inverse
transforms) along the path between two nodes in the tree, the direct
transform between any two arbitrary nodes, and thus their co-ordinate
systems, can be calculated. Using this transform it is then possible to
transform vectors and points between the two co-ordinate systems.

	Parameters:	
	parent (_NodeBase) – Assigns the Node’s parent to the specified scene-graph object.

	transform (AffineMatrix3D) – Sets the affine transform associated with the Node.

	name (str) – A string defining the node name.

	
name

	The name of this node.

	Getter:	Returns this node’s name.

	Setter:	Sets this node’s name.

	Return type:	str

	
parent

	The parent of this node in the scenegraph.

	Getter:	Returns this node’s parent node.

	Setter:	Sets this node’s parent.

	Return type:	Node

	
to()

	Returns an affine transform that, when applied to a vector or point,
transforms the vector or point from the co-ordinate space of the calling
node to the co-ordinate space of the target node.

For example, if space B is translated +100 in x compared to space A and
A.to(B) is called then the matrix returned would represent a translation
of -100 in x. Applied to point (0,0,0) in A, this would produce the
point (-100,0,0) in B as B is translated +100 in x compared to A.

	Parameters:	node (_NodeBase) – The target node.

	Returns:	An AffineMatrix3D describing the coordinate transform.

	Rtyoe:	AffineMatrix3D

	
to_local()

	Returns an affine transform from world space into this nodes local
coordinate space.

	Return type:	AffineMatrix3D

	
to_root()

	Returns an affine transform from local space into the parent node’s
coordinate space.

	Return type:	AffineMatrix3D

	
transform

	The transform for this node’s coordinate system in relation to the parent node.

	Getter:	Returns this node’s affine transform matrix.

	Setter:	Sets this node’s affine transform matrix.

	Return type:	AffineMatrix3D

	
class raysect.core.scenegraph.observer.Observer

	A scene-graph class for observing the world.

An observer class is intended to launch rays and sample the world. This is a base class and the observe function
must be implemented by a deriving class. This object is the fundamental abstraction for items such as cameras,
fibre optics and other sampling objects.

	
observe()

	Virtual method - to be implemented by derived classes.

Triggers the exploration of the scene by emitting rays according to
the model defined by the derived class implementing the method.

	
class raysect.core.scenegraph.primitive.Primitive

	A scene-graph object representing a ray-intersectable surface/volume.

A primitive class defines an open surface or closed surface (volume) that can be intersected by a ray. For example,
this could be a geometric primitive such as a sphere, or more complicated surface such as a polyhedral mesh. The
primitive class is the only class in the scene-graph with which a ray can interact.

This is a base class, its functionality must be implemented fully by the deriving class.

	Parameters:	
	parent (_NodeBase) – Assigns the Node’s parent to the specified scene-graph object.

	transform (AffineMatrix3D) – Sets the affine transform associated with the Node.

	material (Material) – An object representing the material properties of the primitive.

	name (str) – A string defining the node name.

	
bounding_box()

	Virtual method - to be implemented by derived classes.

When the primitive is connected to a scene-graph containing a World
object at its root, this method should return a bounding box that
fully encloses the primitive’s surface (plus a small margin to
avoid numerical accuracy problems). The bounding box must be defined in
the world’s coordinate space.

If this method is called when the primitive is not connected to a
scene-graph with a World object at its root, it must throw a TypeError
exception.

	Returns:	A world space BoundingBox3D object.

	Return type:	BoundingBox3D

	
contains()

	Virtual method - to be implemented by derived classes.

Must returns True if the Point3D lies within the boundary of the surface
defined by the Primitive. False is returned otherwise.

	Parameters:	p (Point3D) – The Point3D to test.

	Returns:	True if the Point3D is enclosed by the primitive surface, False otherwise.

	Return type:	bool

	
hit()

	Virtual method - to be implemented by derived classes.

Calculates the closest intersection of the Ray with the Primitive
surface, if such an intersection exists.

If a hit occurs an Intersection object must be returned, otherwise None
is returned. The intersection object holds the details of the
intersection including the point of intersection, surface normal and
the objects involved in the intersection.

	Parameters:	ray (Ray) – The ray to test for intersection.

	Returns:	An Intersection object or None if no intersection occurs.

	Return type:	Intersection

	
material

	The material class for this primitive.

	Getter:	Returns this primitive’s material.

	Setter:	Sets this primitive’s material.

	Return type:	Material

	
next_intersection()

	Virtual method - to be implemented by derived classes.

Returns the next intersection of the ray with the primitive along the
ray path.

This method may only be called following a call to hit(). If the ray
has further intersections with the primitive, these may be obtained by
repeatedly calling the next_intersection() method. Each call to
next_intersection() will return the next ray-primitive intersection
along the ray’s path. If no further intersections are found or
intersections lie outside the ray parameters then next_intersection()
will return None.

If any geometric elements of the primitive, ray and/or scene-graph are
altered between a call to hit() and calls to next_intersection() the
data returned by next_intersection() may be invalid. Primitives may
cache data to accelerate next_intersection() calls which will be
invalidated by geometric alterations to the scene. If the scene is
altered the data returned by next_intersection() is undefined.

	Return type:	Intersection

	
notify_geometry_change()

	Notifies the scene-graph root of a change to the primitive’s geometry.

This method must be called by primitives when their geometry changes.
The notification informs the root node that any caching structures used
to accelerate ray-tracing calculations are now potentially invalid and
must be recalculated, taking the new geometry into account.

	
notify_material_change()

	Notifies the scene-graph root of a change to the primitive’s material.

This method must be called by primitives when their material changes.
The notification informs the root node that any caching structures used
to accelerate ray-tracing calculations are now potentially invalid and
must be recalculated, taking the new material into account.

	
class raysect.core.scenegraph.world.World

	The root node of the scene-graph.

The world node tracks all primitives and observers in the world. It maintains acceleration structures to speed up
the ray-tracing calculations. The particular acceleration algorithm used is selectable. The default acceleration
structure is a kd-tree.

	Parameters:	name – A string defining the node name.

	
accelerator

	The acceleration structure used for this world’s scene-graph.

	Getter:	Returns this world node’s acceleration structure.

	Setter:	Sets this world node’s acceleration structure.

	
build_accelerator()

	This method manually triggers a rebuild of the Acceleration object.

If the Acceleration object is already in a consistent state this method
will do nothing unless the force keyword option is set to True.

The Acceleration object is used to accelerate hit() and contains()
calculations, typically using a spatial sub-division method. If changes are
made to the scene-graph structure, transforms or to a primitive’s
geometry the acceleration structures may no longer represent the
geometry of the scene and hence must be rebuilt. This process is
usually performed automatically as part of the first call to hit() or
contains() following a change in the scene-graph. As calculating these
structures can take some time, this method provides the option of
triggering a rebuild outside of hit() and contains() in case the user wants
to be able to perform a benchmark without including the overhead of the
Acceleration object rebuild.

	Parameters:	force (bool) – If set to True, forces rebuilding of acceleration structure.

	
contains()

	Returns a list of Primitives that contain the specified point within
their surface.

An empty list is returned if no Primitives contain the Point3D.

This method automatically rebuilds the Acceleration object that is used
to optimise the contains calculation - if a Primitive’s geometry or a
transform affecting a primitive has changed since the last call to hit()
or contains(), the Acceleration structure used to optimise the contains
calculation is rebuilt to represent the new scene-graph state.

	Parameters:	point (Point3D) – The point to test.

	Returns:	A list containing all Primitives that enclose the Point3D.

	Return type:	list

	
hit()

	Calculates the closest intersection of the Ray with the Primitives in
the scene-graph, if such an intersection exists.

If a hit occurs an Intersection object is returned which contains the
mathematical details of the intersection. None is returned if the ray
does not intersect any primitive.

This method automatically rebuilds the Acceleration object that is used
to optimise hit calculations - if a Primitive’s geometry or a transform
affecting a primitive has changed since the last call to hit() or
contains(), the Acceleration structure used to optimise hit calculations
is rebuilt to represent the new scene-graph state.

	Parameters:	ray (Ray) – The ray to test.

	Returns:	An Intersection object or None if no intersection occurs.

	Return type:	Intersection

	
name

	The name for this world node.

	Getter:	Returns this world node’s name.

	Setter:	Sets this world node’s name.

	Return type:	str

	
observers

	The list of observers in this scene-graph.

	Getter:	Returns this world node’s observers.

	Return type:	list

	
primitives

	The list of primitives maintained in this scene-graph.

	Getter:	Returns this world node’s primitive list.

	Return type:	list

	
to()

	Returns an affine transform that, when applied to a vector or point,
transforms the vector or point from the co-ordinate space of the calling
node to the co-ordinate space of the target node.

For example, if space B is translated +100 in x compared to space A and
A.to(B) is called then the matrix returned would represent a translation
of -100 in x. Applied to point (0,0,0) in A, this would produce the
point (-100,0,0) in B as B is translated +100 in x compared to A.

	Parameters:	node (_NodeBase) – The target node.

	Returns:	An AffineMatrix3D describing the coordinate transform.

	Return type:	AffineMatrix3D

	
raysect.core.scenegraph.utility.print_scenegraph()

	Pretty-prints a scene-graph.

This function will print the scene-graph that contains the specified node.
The specified node will be highlighted in the tree by post-fixing the node
with the string: “[referring node]”.

	Parameters:	node (_NodeBase) – The target node.

1.4. Utilities

1.4.1. Containers

Raysect has a number of container classes available for fast operations
in cython. These are mainly intended for use by developers.

	
class raysect.core.containers.LinkedList

	Basic implementation of a Linked List for fast container operations in cython.

	Parameters:	initial_items (object) – Optional iterable for initialising container.

	Variables:	
	length (int) – number of items in the container

	first – starting element of container

	last – final element of container

	
add()

	Add an item to the end of the container.

	Parameters:	value (object) – The item to add to the end of the container.

	
add_items()

	Extend this container with another iterable container.

	Parameters:	iterable (object) – Iterable object such as a list or ndarray with
which to extend this container.

	
get_index()

	Get the item from the container at specified index.

	Parameters:	index (int) – requested item index

	
insert()

	Insert an item at the specified index.

	Parameters:	
	value (object) – item to insert

	index (int) – index at which to insert this item

	
is_empty()

	Returns True if the container is empty.

	
remove()

	Remove and return the specified item from the container.

	Parameters:	index (int) – Index at which an item will be removed.

	Returns:	The object at the specified index position.

	
class raysect.core.containers.Stack

	Bases: raysect.core.containers.LinkedList

Basic implementation of a Stack container for fast container operations in cython.
Inherits attributes and methods from LinkedList.

	
pop()

	Removes and returns the most recently added item from the stack

	Return type:	object

	
push()

	Adds an item to the top of the stack

	Parameters:	value (object) – Object that will be pushed to top of the stack

	
class raysect.core.containers.Queue

	Bases: raysect.core.containers.LinkedList

Basic implementation of a Queue container for fast container operations in cython.
Inherits attributes and methods from LinkedList.

	
next_in_queue()

	Returns the next object in the queue

	Return type:	object

2. Primitives Module

	2.1. Geometric Primitives

	2.2. Meshes

	2.3. CSG Operations

2.1. Geometric Primitives

	
class raysect.primitive.Box

	Bases: raysect.core.scenegraph.primitive.Primitive

A box primitive.

The box is defined by lower and upper points in the local co-ordinate
system.

	Parameters:	
	lower (Point3D) – Lower point of the box (default = Point3D(-0.5, -0.5, -0.5)).

	upper (Point3D) – Upper point of the box (default = Point3D(0.5, 0.5, 0.5)).

	parent (Node) – Scene-graph parent node or None (default = None).

	transform (AffineMatrix3D) – An AffineMatrix3D defining the local co-ordinate system relative to the scene-graph parent (default = identity matrix).

	material (Material) – A Material object defining the box’s material (default = None).

	name (str) – A string specifying a user-friendly name for the box (default = “”).

	
lower

	Lower 3D coordinate of the box in primitive’s local coordinates.

	Return type:	Point3D

	
upper

	Upper 3D coordinate of the box in primitive’s local coordinates.

	Return type:	Point3D

	
class raysect.primitive.Sphere

	Bases: raysect.core.scenegraph.primitive.Primitive

A sphere primitive.

The sphere is centered at the origin of the local co-ordinate system.

	Parameters:	
	radius (float) – Radius of the sphere in meters (default = 0.5).

	parent (Node) – Scene-graph parent node or None (default = None).

	transform (AffineMatrix3D) – An AffineMatrix3D defining the local co-ordinate system relative to the scene-graph parent (default = identity matrix).

	material (Material) – A Material object defining the sphere’s material (default = None).

	name (str) – A string specifying a user-friendly name for the sphere (default = “”).

	
radius

	The radius of this sphere.

	Return type:	float

	
class raysect.primitive.Cylinder

	Bases: raysect.core.scenegraph.primitive.Primitive

A cylinder primitive.

The cylinder is defined by a radius and height. It lies along the z-axis
and extends over the z range [0, height]. The ends of the cylinder are
capped with disks forming a closed surface.

	Parameters:	
	radius (float) – Radius of the cylinder in meters (default = 0.5).

	height (float) – Height of the cylinder in meters (default = 1.0).

	parent (Node) – Scene-graph parent node or None (default = None).

	transform (AffineMatrix3D) – An AffineMatrix3D defining the local co-ordinate
system relative to the scene-graph parent (default = identity matrix).

	material (Material) – A Material object defining the cylinder’s material (default = None).

	name (str) – A string specifying a user-friendly name for the cylinder (default = “”).

	
height

	Extent of the cylinder along the z-axis.

	
radius

	Radius of the cylinder in x-y plane.

	Return type:	float

	
class raysect.primitive.Cone

	Bases: raysect.core.scenegraph.primitive.Primitive

A cone primitive.

The cone is defined by a radius and height. It lies along the z-axis
and extends over the z range [0, height]. The tip of the cone lies at
z = height. The base of the cone sits on the x-y plane and is capped
with a disk, forming a closed surface.

	Parameters:	
	radius (float) – Radius of the cone in meters in x-y plane (default = 0.5).

	height (float) – Height of the cone in meters (default = 1.0).

	parent (Node) – Scene-graph parent node or None (default = None).

	transform (AffineMatrix3D) – An AffineMatrix3D defining the local co-ordinate
system relative to the scene-graph parent (default = identity matrix).

	material (Material) – A Material object defining the cone’s material (default = None).

	name (str) – A string specifying a user-friendly name for the cone (default = “”).

	
height

	The extend of the cone along the z-axis

	Return type:	float

	
radius

	The radius of the cone base in the x-y plane

	Return type:	float

	
class raysect.primitive.Parabola

	Bases: raysect.core.scenegraph.primitive.Primitive

A parabola primitive.

The parabola is defined by a radius and height. It lies along the z-axis
and extends over the z range [0, height]. The base of the parabola is
capped with a disk forming a closed surface. The base of the parabola lies
on the x-y plane, the parabola vertex (tip) lies at z=height.

	Parameters:	
	radius (float) – Radius of the parabola in meters (default = 0.5).

	height (float) – Height of the parabola in meters (default = 1.0).

	parent (Node) – Scene-graph parent node or None (default = None).

	transform (AffineMatrix3D) – An AffineMatrix3D defining the local co-ordinate system relative to the scene-graph parent (default = identity matrix).

	material (Material) – A Material object defining the parabola’s material (default = None).

	name (str) – A string specifying a user-friendly name for the parabola (default = “”).

	
height

	The parabola’s extent along the z-axis [0, height].

	Return type:	float

	
radius

	Radius of the parabola base in x-y plane.

	Return type:	float

2.2. Meshes

	
class raysect.primitive.mesh.mesh.Mesh

	Bases: raysect.core.scenegraph.primitive.Primitive

This primitive defines a polyhedral surface with triangular faces.

To define a new mesh, a list of vertices and triangles must be supplied.
A set of vertex normals, used for smoothing calculations may also be
provided.

The mesh vertices are supplied as an Nx3 list/array of floating point
values. For each Vertex, x, y and z coordinates must be supplied. e.g.

vertices = [[0.0, 0.0, 1.0], [1.0, 0.0, 0.0], ...]

Vertex normals are similarly defined. Note that vertex normals must be
correctly normalised.

The triangle array is either Mx3 or Mx6 - Mx3 if only vertices are defined
or Mx6 if both vertices and vertex normals are defined. Triangles are
defined by indexing into the vertex and vertex normal arrays. i.e:

triangles = [[v1, v2, v3, n1, n2, n3], ...]

where v1, v2, v3 are the vertex array indices specifying the triangle’s
vertices and n1, n2, n3 are the normal array indices specifying the
triangle’s surface normals at each vertex location. Where normals are
not defined, n1, n2 and n3 are omitted.

The mesh may be an open surface (which does not enclose a volume) or a
closed surface (which defines a volume). The nature of the mesh must be
specified using the closed argument. If closed is True (default) then the
mesh must be watertight and the face normals must be facing so they point
out of the volume. If the mesh is open then closed must be set to False.
Incorrectly setting the closed argument may result in undefined behaviour,
depending on the application of the ray-tracer.

If vertex normals are defined for some or all of the triangles of the mesh
then normal interpolation may be enabled for the mesh. For optical models
this will result in a (suitably defined) mesh appearing smooth rather than
faceted. If the triangles do not have vertex normals defined, the smoothing
argument is ignored.

An alternate option for creating a new mesh is to create an instance of an
existing mesh. An instance is a “clone” of the original mesh. Instances
hold references to the internal data of the target mesh, they are therefore
very memory efficient (particularly for detailed meshes) compared to
creating a new mesh from scratch. If instance is set, it takes precedence
over any other mesh creation settings.

If a mesh contains degenerate triangles (common for meshes generated from
CAD models), enable tolerant mode to automatically remove them during mesh
initialisation. A degenerate triangle is one where two or more vertices are
coincident or all the vertices lie on the same line. Degenerate triangles
will produce rendering error if encountered even though they are
“infinitesimally” thin. A ray can still intersect them if they perfectly
align as the triangle edges are treated as part of the triangle surface).

The kdtree_* arguments are tuning parameters for the kd-tree construction.
For more information see the documentation of KDTree3D. The default values
should result in efficient construction of the mesh’s internal kd-tree.
Generally there is no need to modify these parameters unless the memory
used by the kd-tree must be controlled. This may occur if very large meshes
are used.

	Parameters:	
	vertices (object) – An N x 3 list of vertices.

	triangles (object) – An M x 3 or N x 6 list of vertex/normal indices
defining the mesh triangles.

	normals (object) – An K x 3 list of vertex normals or None (default=None).

	smoothing (bool) – True to enable normal interpolation (default=True).

	closed (bool) – True is the mesh defines a closed volume (default=True).

	tolerant (bool) – Mesh will automatically correct meshes with degenerate
triangles if set to True (default=True).

	instance (Mesh) – The Mesh to become an instance of (default=None).

	kdtree_max_depth (int) – The maximum tree depth (automatic if set to 0, default=0).

	kdtree_min_items (int) – The item count threshold for forcing creation of
a new leaf node (default=1).

	kdtree_hit_cost (double) – The relative computational cost of item hit
evaluations vs kd-tree traversal (default=20.0).

	kdtree_empty_bonus (double) – The bonus applied to node splits that
generate empty leaves (default=0.2).

	parent (Node) – Attaches the mesh to the specified scene-graph
node (default=None).

	transform (AffineMatrix3D) – The co-ordinate transform between
the mesh and its parent (default=unity matrix).

	material (Material) – The surface/volume material
(default=Material() instance).

	name (str) – A human friendly name to identity the mesh in the
scene-graph (default=””).

	
bounding_box()

	Returns a world space bounding box that encloses the mesh.

The box is padded by a small margin to reduce the risk of numerical
accuracy problems between the mesh and box representations following
coordinate transforms.

	Returns:	A BoundingBox3D object.

	
contains()

	Identifies if the point lies in the volume defined by the mesh.

If a mesh is open, this method will always return False.

This method will fail if the face normals of the mesh triangles are not
oriented to be pointing out of the volume surface.

	Parameters:	p – The point to test.

	Returns:	True if the point lies in the volume, False otherwise.

	
from_file()

	Instances a new Mesh using data from a file object or filename.

The mesh must be stored in a RaySect Mesh (RSM) format file. RSM files
are created with the Mesh save() method.

	Parameters:	
	file (object) – File object or string path.

	parent (Node) – Attaches the mesh to the specified scene-graph node.

	transform (AffineMatrix3D) – The co-ordinate transform between the mesh and its parent.

	material (Material) – The surface/volume material.

	name (str) – A human friendly name to identity the mesh in the scene-graph.

	
hit()

	Returns the first intersection with the mesh surface.

If an intersection occurs this method will return an Intersection
object. The Intersection object will contain the details of the
ray-surface intersection, such as the surface normal and intersection
point.

If no intersection occurs None is returned.

	Parameters:	ray – A world-space ray.

	Returns:	An Intersection or None.

	
load()

	Loads the mesh specified by a file object or filename.

The mesh must be stored in a RaySect Mesh (RSM) format file. RSM files
are created with the Mesh save() method.

	Parameters:	file – File object or string path.

	
next_intersection()

	Returns the next intersection of the ray with the mesh along the ray
path.

This method may only be called following a call to hit(). If the ray
has further intersections with the mesh, these may be obtained by
repeatedly calling the next_intersection() method. Each call to
next_intersection() will return the next ray-mesh intersection
along the ray’s path. If no further intersections are found or
intersections lie outside the ray parameters then next_intersection()
will return None.

	Returns:	An Intersection or None.

	
save()

	Saves the mesh to the specified file object or filename.

The mesh in written in RaySect Mesh (RSM) format. The RSM format
contains the mesh geometry and the mesh acceleration structures.

	Parameters:	file – File object or string path.

	
raysect.primitive.mesh.obj.import_obj(cls, filename, scaling=1.0, **kwargs)

	Create a mesh instance from a Wavefront OBJ mesh file (.obj).

Some engineering meshes are exported in different units (mm for example)
whereas Raysect units are in m. Applying a scale factor of 0.001 would
convert the mesh into m for use in Raysect.

	Parameters:	
	filename (str) – Mesh file path.

	scaling (double) – Scale the mesh by this factor (default=1.0).

	**kwargs – Accepts optional keyword arguments from the Mesh class.

	Return type:	Mesh

	
raysect.primitive.mesh.stl.import_stl(cls, filename, scaling=1.0, mode=0, **kwargs)

	Create a mesh instance from a STereoLithography (STL) mesh file (.stl).

Some engineering meshes are exported in different units (mm for example)
whereas Raysect units are in m. Applying a scale factor of 0.001 would
convert the mesh into m for use in Raysect.

	Parameters:	
	filename (str) – Mesh file path.

	scaling (double) – Scale the mesh by this factor (default=1.0).

	**kwargs – Accepts optional keyword arguments from the Mesh class.

	Return type:	Mesh

2.3. CSG Operations

	
class raysect.primitive.csg.CSGPrimitive

	Bases: raysect.core.scenegraph.primitive.Primitive

Constructive Solid Geometry (CSG) Primitive base class.

This is an abstract base class and can not be used directly.

CSG is a modeling technique that uses Boolean operations like union
and intersection to combine 3D solids. For example, the volumes of a
sphere and box could be unified with the ‘union’ operation to create a
primitive with the combined volume of the underlying primitives.

	Parameters:	
	primitive_a (Primitive) – Component primitive A of the compound primitive.

	primitive_b (Primitive) – Component primitive B of the compound primitive.

	parent (Node) – Scene-graph parent node or None (default = None).

	transform (AffineMatrix3D) – An AffineMatrix3D defining the local co-ordinate
system relative to the scene-graph parent (default = identity matrix).

	material (Material) – A Material object defining the CSG primitive’s
material (default = None).

	
primitive_a

	Component primitive A of the compound CSG primitive.

	Return type:	Primitive

	
primitive_b

	Component primitive B of the compound CSG primitive.

	Return type:	Primitive

	
class raysect.primitive.csg.Union

	Bases: raysect.primitive.csg.CSGPrimitive

CSGPrimitive that is the volumetric union of primitives A and B.

All of the original volume from A and B will be in the new primitive.

	Parameters:	
	primitive_a (Primitive) – Component primitive A of the union operation.

	primitive_b (Primitive) – Component primitive B of the union operation.

	parent (Node) – Scene-graph parent node or None (default = None).

	transform (AffineMatrix3D) – An AffineMatrix3D defining the local co-ordinate
system relative to the scene-graph parent (default = identity matrix).

	material (Material) – A Material object defining the new CSG primitive’s
material (default = None).

	
class raysect.primitive.csg.Intersect

	Bases: raysect.primitive.csg.CSGPrimitive

CSGPrimitive that is the volumetric intersection of primitives A and B.

Only volumes that are present in both primtives will be present in the new
CSG primitive.

	Parameters:	
	primitive_a (Primitive) – Component primitive A of the intersection operation.

	primitive_b (Primitive) – Component primitive B of the intersection operation.

	parent (Node) – Scene-graph parent node or None (default = None).

	transform (AffineMatrix3D) – An AffineMatrix3D defining the local co-ordinate
system relative to the scene-graph parent (default = identity matrix).

	material (Material) – A Material object defining the new CSG primitive’s
material (default = None).

	
class raysect.primitive.csg.Subtract

	Bases: raysect.primitive.csg.CSGPrimitive

CSGPrimitive that is the remaining volume of primitive A minus volume B.

Only volumes that are unique to primitive A and don’t overlap with primitive
B will be in the new CSG primitive.

	Parameters:	
	primitive_a (Primitive) – Component primitive A of the intersection operation.

	primitive_b (Primitive) – Component primitive B of the intersection operation.

	parent (Node) – Scene-graph parent node or None (default = None).

	transform (AffineMatrix3D) – An AffineMatrix3D defining the local co-ordinate
system relative to the scene-graph parent (default = identity matrix).

	material (Material) – A Material object defining the new CSG primitive’s
material (default = None).

3. Optical Module

	3.1. Main Optical Classes

	3.2. Observers

	3.3. Optical Materials

3.1. Main Optical Classes

	
class raysect.optical.ray.Ray

	Bases: raysect.core.ray.Ray

Optical Ray class for optical applications, inherits from core Ray class.

	Parameters:	
	origin (Point3D) – Point defining ray’s origin (default=Point3D(0, 0, 0))

	direction (Vector3D) – Vector defining ray’s direction (default=Vector3D(0, 0, 1))

	min_wavelength (float) – Lower wavelength bound for observed spectrum

	max_wavelength (float) – Upper wavelength bound for observed spectrum

	bins (int) – Number of samples to use over the spectral range

	max_distance (float) – The terminating distance of the ray

	extinction_prob (float) – Probability of path extinction at every
material surface interaction (default=0.1)

	extinction_min_depth (int) – Minimum number of paths before triggering
extinction probability (default=3)

	max_depth (int) – Maximum number of material interactions before
terminating ray trajectory.

	importance_sampling (bool) – Toggles use of importance sampling for
important primitives. See help documentation on importance sampling,
(default=True).

	important_path_weight (float) – Weight to use for important paths when
using importance sampling.

	
bins

	Number of spectral bins across wavelength range.

	Return type:	int

	
copy()

	Obtain a new Ray object with the same configuration settings.

	Parameters:	
	origin (Point3D) – New Ray’s origin position.

	direction (Vector3D) – New Ray’s direction.

	Return type:	Ray

	
extinction_min_depth

	Minimum number of paths before triggering extinction probability.

	Return type:	int

	
extinction_prob

	Probability of path extinction at every material surface interaction.

	Return type:	float

	
important_path_weight

	Weight to use for important paths when using importance sampling.

	Return type:	float

	
max_depth

	Maximum number of material interactions before terminating ray trajectory.

	Return type:	int

	
max_wavelength

	Upper bound on wavelength range.

	Return type:	float

	
min_wavelength

	Lower bound on wavelength range.

	Return type:	float

	
new_spectrum()

	Returns a new Spectrum compatible with the ray spectral settings.

	Return type:	Spectrum

	
sample()

	Samples the radiance directed along the ray direction.

This methods calls trace repeatedly to obtain a statistical sample of
the radiance directed along the ray direction from the world. The count
parameter specifies the number of samples to obtain. The mean spectrum
accumulated from these samples is returned.

	Parameters:	
	world (World) – World object defining the scene.

	count (int) – Number of samples to take.

	Returns:	The accumulated spectrum collected by the ray.

	Return type:	Spectrum

	
spawn_daughter()

	Spawns a new daughter of the ray.

A daughter ray has the same spectral configuration as the source ray,
however the ray depth is increased by 1.

	Parameters:	
	origin (Point3D) – A Point3D defining the ray origin.

	direction (Vector3D) – A vector defining the ray direction.

	Returns:	A daughter Ray object.

	Return type:	Ray

	
trace()

	Traces a single ray path through the world.

	Parameters:	
	world (World) – World object defining the scene.

	keep_alive (bool) – If true, disables Russian roulette termination of the ray.

	Returns:	The resulting Spectrum object collected by the ray.

	Return type:	Spectrum

	
wavelength_range

	Upper and lower wavelength range.

	Return type:	tuple

	
class raysect.optical.spectralfunction.SpectralFunction

	SpectralFunction abstract base class.

A common interface for representing optical properties that are a function
of wavelength. It provides methods for sampling, integrating and averaging
a spectral function over specified wavelength ranges. The optical package
uses SpectralFunctions to represent a number of different wavelength
dependent optical properties, for example emission spectra, refractive
indices and attenuation curves.

Deriving classes must implement the integrate method.

It is also recommended that subclasses implement __call__(). This should
accept a single argument - wavelength - and return a single sample of the
function at that wavelength. The units of wavelength are nanometers.

A number of utility sub-classes exist to simplify SpectralFunction
development.

see also: NumericallyIntegratedSF, InterpolatedSF, ConstantSF, Spectrum

	
average()

	Average radiance over the requested spectral range (W/m^2/sr/nm).

	Parameters:	
	min_wavelength (float) – lower wavelength for calculation

	max_wavelength (float) – upper wavelength for calculation

	Return type:	float

	
sample()

	Re-sample the spectral function with a new wavelength range and resolution.

	Parameters:	
	min_wavelength (float) – lower wavelength for calculation

	max_wavelength (float) – upper wavelength for calculation

	bins (int) – The number of spectral bins

	Return type:	ndarray

	
class raysect.optical.spectralfunction.NumericallyIntegratedSF

	Bases: raysect.optical.spectralfunction.SpectralFunction

Numerically integrates a supplied function.

This abstract class provides an implementation of the integrate method that
numerically integrates a supplied function (typically a non-integrable
analytical function). The function to numerically integrate is supplied by
sub-classing this class and implementing the function() method.

The function is numerically sampled at regular intervals. A sampling
resolution may be specified in the class constructor (default: 1 sample/nm).

	Parameters:	sample_resolution (double) – The numerical sampling resolution in nanometers.

	
function()

	Function to numerically integrate.

This is a virtual method and must be implemented through sub-classing.

	Parameters:	wavelength (double) – Wavelength in nanometers.

	Returns:	Function value at the specified wavelength.

	
integrate()

	Calculates the integrated radiance over the specified spectral range.

	Parameters:	
	min_wavelength (float) – The minimum wavelength in nanometers

	max_wavelength (float) – The maximum wavelength in nanometers

	Returns:	Integrated radiance in W/m^2/str

	Return type:	float

	
class raysect.optical.spectralfunction.InterpolatedSF

	Bases: raysect.optical.spectralfunction.SpectralFunction

Linearly interpolated spectral function.

Spectral function defined by samples of regular or irregular spacing, ends
are extrapolated. You must set the ends to zero if you want the function to
go to zero at the edges!

wavelengths and samples will be sorted during initialisation.

If normalise is set to True the data is rescaled so the integrated area
of the spectral function over the full range of the input data is
normalised to 1.0.

	Parameters:	
	wavelengths (object) – 1D array of wavelengths in nanometers.

	samples (object) – 1D array of spectral samples.

	normalise (bool) – True/false toggle for whether to normalise the
spectral function so its integral equals 1.

	
integrate()

	Calculates the integrated radiance over the specified spectral range.

	Parameters:	
	min_wavelength (float) – The minimum wavelength in nanometers

	max_wavelength (float) – The maximum wavelength in nanometers

	Returns:	Integrated radiance in W/m^2/str

	Return type:	float

	
class raysect.optical.spectralfunction.ConstantSF

	Bases: raysect.optical.spectralfunction.SpectralFunction

Constant value spectral function

	Parameters:	value (float) – Constant radiance value

	
average()

	Average radiance over the requested spectral range (W/m^2/sr/nm).

	Parameters:	
	min_wavelength (float) – lower wavelength for calculation

	max_wavelength (float) – upper wavelength for calculation

	Return type:	float

	
integrate()

	Calculates the integrated radiance over the specified spectral range.

	Parameters:	
	min_wavelength (float) – The minimum wavelength in nanometers

	max_wavelength (float) – The maximum wavelength in nanometers

	Returns:	Integrated radiance in W/m^2/str

	Return type:	float

	
sample()

	Re-sample the spectral function with a new wavelength range and resolution.

	Parameters:	
	min_wavelength (float) – lower wavelength for calculation

	max_wavelength (float) – upper wavelength for calculation

	bins (int) – The number of spectral bins

	Return type:	ndarray

	
class raysect.optical.spectrum.Spectrum

	Bases: raysect.optical.spectralfunction.SpectralFunction

A class for working with spectra.

Describes the distribution of light at each wavelength in units of radiance (W/m^2/str/nm).
Spectral samples are regularly spaced over the wavelength range and lie in the centre of
the wavelength bins.

	Parameters:	
	min_wavelength (float) – Lower wavelength bound for this spectrum

	max_wavelength (float) – Upper wavelength bound for this spectrum

	bins (int) – Number of samples to use over the spectral range

	
average()

	Finds the average number of spectral samples over the specified wavelength range.

	Parameters:	
	min_wavelength (float) – The minimum wavelength in nanometers

	max_wavelength (float) – The maximum wavelength in nanometers

	Returns:	Average radiance in W/m^2/str/nm

	Return type:	float

	
copy()

	Returns a copy of the spectrum.

	Return type:	Spectrum

	
integrate()

	Calculates the integrated radiance over the specified spectral range.

	Parameters:	
	min_wavelength (float) – The minimum wavelength in nanometers

	max_wavelength (float) – The maximum wavelength in nanometers

	Returns:	Integrated radiance in W/m^2/str

	Return type:	float

	
is_compatible()

	Returns True if the stored samples are consistent with the specified
wavelength range and sample size.

	Parameters:	
	min_wavelength (float) – The minimum wavelength in nanometers

	max_wavelength (float) – The maximum wavelength in nanometers

	bins (int) – The number of bins.

	Returns:	True if the samples are compatible with the range/samples, False otherwise.

	Return type:	boolean

	
is_zero()

	Can be used to determine if all the samples are zero.

True if the spectrum is zero, False otherwise.

	Return type:	bool

	
new_spectrum()

	Returns a new Spectrum compatible with the same spectral settings.

	Return type:	Spectrum

	
sample()

	Re-sample this spectrum over a new spectral range.

	Parameters:	
	min_wavelength (float) – The minimum wavelength in nanometers

	max_wavelength (float) – The maximum wavelength in nanometers

	bins (int) – The number of spectral bins.

	Return type:	ndarray

	
to_photons()

	Converts the spectrum sample array from radiance W/m^2/str/nm to Photons/s/m^2/str/nm
and returns the data in a numpy array.

	Return type:	ndarray

	
total()

	Calculates the total radiance integrated over the whole spectral range.

Returns radiance in W/m^2/str

	Return type:	float

	
wavelengths

	Wavelength array in nm

	Return type:	ndarray

	
raysect.optical.spectrum.photon_energy()

	Returns the energy of a photon with the specified wavelength.

	Parameters:	wavelength (float) – Photon wavelength in nanometers.

	Returns:	Photon energy in Joules.

	Return type:	float

	
raysect.optical.colour.ciexyz_to_srgb()

	sRGB specified as per IEC 61966-2-1:1999.

x, y, z in range [0, 1]
r, g, b in range [0, 1]

	
raysect.optical.colour.srgb_to_ciexyz()

	sRGB specified as per IEC 61966-2-1:1999.

r, g, b in range [0, 1]
x, y, z in range [0, 1]

	
class raysect.optical.scenegraph.world.World

	The root node of the optical scene-graph.

The world node tracks all primitives and observers in the world. It maintains acceleration structures to speed up
the ray-tracing calculations. The particular acceleration algorithm used is selectable. The default acceleration
structure is a kd-tree.

	Parameters:	name – A string defining the node name.

3.2. Observers

	
class raysect.optical.observer.imaging.pinhole.PinholeCamera

	An observer that models an idealised pinhole camera.

A simple camera that launches rays from the observer’s origin point over a
specified field of view.

	Parameters:	
	fov (double) – The field of view of the camera in degrees (default: 45 degrees).

	etendue (double) – The etendue of each pixel (default: 1.0)

	
class raysect.optical.observer.imaging.orthographic.OrthographicCamera

	A camera observing an orthogonal (orthographic) projection of the scene, avoiding perspective effects.

Arguments and attributes are inherited from the base Imaging sensor class.

	Parameters:	width (double) – width of the orthographic area to observe in meters, the height is deduced from the ‘pixels’
attribute.

	
class raysect.optical.observer.imaging.ccd.CCDArray

	An observer that models an idealised CCD-like imaging sensor.

The CCD is a regular array of square pixels. Each pixel samples red, green
and blue channels (behaves like a Foveon imaging sensor). The CCD sensor
width is specified with the width parameter. The CCD height is calculated
from the width and the number of vertical and horizontal pixels. The
default width and sensor ratio approximates a 35mm camera sensor.

Arguments and attributes are inherited from the base Imaging sensor class.

	Parameters:	width (double) – The width in metres of the sensor (default is 0.035m).

	
class raysect.optical.observer.imaging.vector.VectorCamera

	An observer that uses a specified set of pixel vectors.

A simple camera that uses calibrated vectors for each pixel to sample the scene.
Arguments and attributes are inherited from the base Observer2D sensor class.

	Parameters:	fov (double) – The field of view of the camera in degrees (default is 90 degrees).

	
class raysect.optical.observer.nonimaging.fibreoptic.FibreOptic

	An optical fibre observer that samples rays from an acceptance cone and circular area at the fibre tip.
Inherits arguments and attributes from the base NonImaging sensor class. Rays are sampled over a circular area at
the fibre tip and a conical solid angle defined by the acceptance_angle parameter.
:param float acceptance_angle: The angle in degrees between the z axis and the cone surface which defines the fibres

soild angle sampling area.

	Parameters:	radius (float) – The radius of the fibre tip in metres. This radius defines a circular area at the fibre tip
which will be sampled over.

	
class raysect.optical.observer.nonimaging.pixel.Pixel

	A pixel observer that samples rays from a hemisphere and rectangular area.

Inherits arguments and attributes from the base NonImaging sensor class.

	Parameters:	
	x_width (float) – The rectangular collection area’s width along the x-axis in local coordinates.

	y_width (float) – The rectangular collection area’s width along the y-axis in local coordinates.

	
class raysect.optical.observer.nonimaging.sightline.SightLine

	An observer that fires rays along the observers z axis.
Inherits arguments and attributes from the base NonImaging sensor class. Fires a single ray oriented along the
observer’s z axis in world space.

3.3. Optical Materials

	
class raysect.optical.material.material.ContinuousBSDF

	Surface space

to simplify maths:
normal aligned (flipped) to sit on same side of surface as incoming ray
incoming ray vector is aligned to point out of the surface
surface space normal is aligned to lie along +ve Z-axis i.e. Normal3D(0, 0, 1)

The w_reflection_origin and w_transmission_origin points are provided as
ray launch points. These points are guaranteed to prevent same-surface
re-intersections. The reflection origin lies on the same side of the
surface as the incoming ray, the transmission origin lies on the opposite
side of the surface.

back_face is true if the ray is on the back side of the primitive surface,
true if on the front side (ie on the side of the primitive surface normal)

	
class raysect.optical.material.material.DiscreteBSDF

	Surface space

to simplify maths:
normal aligned (flipped) to sit on same side of surface as incoming ray
incoming ray vector is aligned to point out of the surface
surface space normal is aligned to lie along +ve Z-axis i.e. Normal3D(0, 0, 1)

The w_reflection_origin and w_transmission_origin points are provided as
ray launch points. These points are guaranteed to prevent same-surface
re-intersections. The reflection origin lies on the same side of the
surface as the incoming ray, the transmission origin lies on the opposite
side of the surface.

back_face is true if the ray is on the back side of the primitive surface,
true if on the front side (ie on the side of the primitive surface normal)

	
class raysect.optical.material.absorber.AbsorbingSurface

	A perfectly absorbing surface material.

	
class raysect.optical.material.conductor.Conductor

	Conductor material.

The conductor material simulates the interaction of light with a
homogeneous conducting material, such as, gold, silver or aluminium.

This material implements the Fresnel equations for a conducting surface. To
use the material, the complex refractive index of the conductor must be
supplied.

	Parameters:	
	index (SpectralFunction) – Real component of refractive index - $n(lambda)$.

	extinction – Imaginary component of refractive index (extinction) - $k(lambda)$.

	
class raysect.optical.material.conductor.RoughConductor

	This is implementing Cook-Torrence with conducting fresnel microfacets.

Smith shadowing and GGX facet distribution used to model roughness.

This module contains materials to aid with debugging.

	
class raysect.optical.material.debug.Light

	A Lambertian surface material illuminated by a distant light source.

This debug material lights the primitive from the world direction specified
by a vector passed to the light_direction parameter. An optional intensity
and emission spectrum may be supplied. By default the light spectrum is the
D65 white point spectrum.

	Parameters:	
	light_direction – A world space Vector3D defining the light direction.

	intensity – The light intensity (default is 1.0).

	spectrum – A SpectralFunction defining the light spectrum (default is D65 white).

	
class raysect.optical.material.debug.PerfectReflectingSurface

	A material that is perfectly reflecting.

	
class raysect.optical.material.modifiers.Roughen

	Modifies the surface normal to approximate a rough surface.

This is a modifier material, it takes another material (the base material)
as an argument.

The roughen modifier works by randomly deflecting the surface normal about
its true position before passing the intersection parameters on to the base
material.

The deflection is calculated by interpolating between the existing normal
and a vector sampled from a cosine weighted hemisphere. The strength of the
interpolation, and hence the roughness of the surface, is controlled by the
roughness argument. The roughness argument takes a value in the range
[0, 1] where 1 is a fully rough, lambert-like surface and 0 is a smooth,
untainted surface.

	Parameters:	
	material – The base material.

	roughness – A double value in the range [0, 1].

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 raysect	

 	
 	
 raysect.core.acceleration.accelerator	

 	
 	
 raysect.core.acceleration.boundprimitive	

 	
 	
 raysect.core.acceleration.kdtree	

 	
 	
 raysect.core.acceleration.unaccelerated	

 	
 	
 raysect.core.boundingbox	

 	
 	
 raysect.core.intersection	

 	
 	
 raysect.core.material	

 	
 	
 raysect.core.math.affinematrix	

 	
 	
 raysect.core.math.interpolators.discrete2dmesh	

 	
 	
 raysect.core.math.interpolators.interpolator2dmesh	

 	
 	
 raysect.core.math.units	

 	
 	
 raysect.core.ray	

 	
 	
 raysect.core.scenegraph.node	

 	
 	
 raysect.core.scenegraph.observer	

 	
 	
 raysect.core.scenegraph.primitive	

 	
 	
 raysect.core.scenegraph.world	

 	
 	
 raysect.optical.colour	

 	
 	
 raysect.optical.material.absorber	

 	
 	
 raysect.optical.material.conductor	

 	
 	
 raysect.optical.material.debug	

 	
 	
 raysect.optical.material.dielectric	

 	
 	
 raysect.optical.material.emitter	

 	
 	
 raysect.optical.material.lambert	

 	
 	
 raysect.optical.material.material	

 	
 	
 raysect.optical.material.modifiers	

 	
 	
 raysect.optical.scenegraph.world	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

_

 	
 	__add__ (raysect.core.math.point.Point2D attribute)

 	(raysect.core.math.point.Point3D attribute)

 	(raysect.core.math.vector.Vector3D attribute)

 	__call__ (raysect.core.math.function.function1d.Function1D attribute)

 	(raysect.core.math.function.function2d.Function2D attribute)

 	(raysect.core.math.function.function3d.Function3D attribute)

 	(raysect.core.math.sampler.PointSampler attribute)

 	(raysect.core.math.sampler.VectorSampler attribute)

 	__getitem__ (raysect.core.math.point.Point2D attribute)

 	(raysect.core.math.point.Point3D attribute)

 	(raysect.core.math.vector.Vector3D attribute)

 	__getstate__() (raysect.core.math.point.Point2D method)

 	(raysect.core.math.point.Point3D method)

 	(raysect.core.math.vector.Vector3D method)

 	__init__ (raysect.primitive.Box attribute)

 	(raysect.primitive.Cone attribute)

 	(raysect.primitive.Cylinder attribute)

 	(raysect.primitive.Sphere attribute)

 	
 	__iter__ (raysect.core.math.point.Point2D attribute)

 	(raysect.core.math.point.Point3D attribute)

 	(raysect.core.math.vector.Vector3D attribute)

 	__mul__ (raysect.core.math.point.Point3D attribute)

 	(raysect.core.math.vector.Vector3D attribute)

 	__neg__ (raysect.core.math.vector.Vector3D attribute)

 	__setitem__ (raysect.core.math.point.Point2D attribute)

 	(raysect.core.math.point.Point3D attribute)

 	(raysect.core.math.vector.Vector3D attribute)

 	__setstate__() (raysect.core.math.point.Point2D method)

 	(raysect.core.math.point.Point3D method)

 	(raysect.core.math.vector.Vector3D method)

 	__sub__ (raysect.core.math.point.Point2D attribute)

 	(raysect.core.math.point.Point3D attribute)

 	(raysect.core.math.vector.Vector3D attribute)

 	__truediv__ (raysect.core.math.vector.Vector3D attribute)

A

 	
 	AbsorbingSurface (class in raysect.optical.material.absorber)

 	accelerator (raysect.core.scenegraph.world.World attribute)

 	add() (raysect.core.containers.LinkedList method)

 	add_items() (raysect.core.containers.LinkedList method)

 	
 	AffineMatrix3D (class in raysect.core.math.affinematrix)

 	average() (raysect.optical.spectralfunction.ConstantSF method)

 	(raysect.optical.spectralfunction.SpectralFunction method)

 	(raysect.optical.spectrum.Spectrum method)

B

 	
 	bins (raysect.optical.ray.Ray attribute)

 	bounding_box() (raysect.core.scenegraph.primitive.Primitive method)

 	(raysect.primitive.mesh.mesh.Mesh method)

 	
 	BoundingBox2D (class in raysect.core.boundingbox)

 	BoundingBox3D (class in raysect.core.boundingbox)

 	Box (class in raysect.primitive), [1]

 	build_accelerator() (raysect.core.scenegraph.world.World method)

C

 	
 	CCDArray (class in raysect.optical.observer.imaging.ccd)

 	centre (raysect.core.boundingbox.BoundingBox3D attribute)

 	ciexyz_to_srgb() (in module raysect.optical.colour)

 	cm() (in module raysect.core.math.units)

 	Conductor (class in raysect.optical.material.conductor)

 	Cone (class in raysect.primitive), [1]

 	ConeSampler (class in raysect.core.math.sampler)

 	ConstantSF (class in raysect.optical.spectralfunction)

 	contains() (raysect.core.boundingbox.BoundingBox2D method)

 	(raysect.core.boundingbox.BoundingBox3D method)

 	(raysect.core.scenegraph.primitive.Primitive method)

 	(raysect.core.scenegraph.world.World method)

 	(raysect.primitive.mesh.mesh.Mesh method)

 	
 	ContinuousBSDF (class in raysect.optical.material.material)

 	copy() (raysect.core.math.point.Point2D method)

 	(raysect.core.math.point.Point3D method)

 	(raysect.core.math.vector.Vector2D method)

 	(raysect.core.math.vector.Vector3D method)

 	(raysect.core.ray.Ray method)

 	(raysect.optical.ray.Ray method)

 	(raysect.optical.spectrum.Spectrum method)

 	cross() (raysect.core.math.vector.Vector2D method)

 	(raysect.core.math.vector.Vector3D method)

 	CSGPrimitive (class in raysect.primitive.csg)

 	Cylinder (class in raysect.primitive), [1]

D

 	
 	Discrete2DMesh (class in raysect.core.math.interpolators.discrete2dmesh)

 	DiscreteBSDF (class in raysect.optical.material.material)

 	DiskSampler (class in raysect.core.math.sampler)

 	
 	distance_to() (raysect.core.math.point.Point2D method)

 	(raysect.core.math.point.Point3D method)

 	dot() (raysect.core.math.vector.Vector2D method)

 	(raysect.core.math.vector.Vector3D method)

E

 	
 	enclosing_sphere() (raysect.core.boundingbox.BoundingBox3D method)

 	extend() (raysect.core.boundingbox.BoundingBox2D method)

 	(raysect.core.boundingbox.BoundingBox3D method)

 	
 	extent() (raysect.core.boundingbox.BoundingBox2D method)

 	(raysect.core.boundingbox.BoundingBox3D method)

 	extinction_min_depth (raysect.optical.ray.Ray attribute)

 	extinction_prob (raysect.optical.ray.Ray attribute)

F

 	
 	FibreOptic (class in raysect.optical.observer.nonimaging.fibreoptic)

 	foot() (in module raysect.core.math.units)

 	from_file() (raysect.primitive.mesh.mesh.Mesh method)

 	full_intersection() (raysect.core.boundingbox.BoundingBox3D method)

 	
 	function() (raysect.optical.spectralfunction.NumericallyIntegratedSF method)

 	Function1D (class in raysect.core.math.function.function1d)

 	Function2D (class in raysect.core.math.function.function2d)

 	Function3D (class in raysect.core.math.function.function3d)

G

 	
 	get_index() (raysect.core.containers.LinkedList method)

H

 	
 	height (raysect.primitive.Cone attribute)

 	(raysect.primitive.Cylinder attribute)

 	(raysect.primitive.Parabola attribute)

 	HemisphereCosineSampler (class in raysect.core.math.sampler)

 	
 	HemisphereUniformSampler (class in raysect.core.math.sampler)

 	hit() (raysect.core.boundingbox.BoundingBox3D method)

 	(raysect.core.scenegraph.primitive.Primitive method)

 	(raysect.core.scenegraph.world.World method)

 	(raysect.primitive.mesh.mesh.Mesh method)

I

 	
 	import_obj() (in module raysect.primitive.mesh.obj), [1]

 	import_stl() (in module raysect.primitive.mesh.stl), [1]

 	important_path_weight (raysect.optical.ray.Ray attribute)

 	inch() (in module raysect.core.math.units)

 	insert() (raysect.core.containers.LinkedList method)

 	instance() (raysect.core.math.interpolators.discrete2dmesh.Discrete2DMesh method)

 	(raysect.core.math.interpolators.interpolator2dmesh.Interpolator2DMesh method)

 	integrate() (raysect.optical.spectralfunction.ConstantSF method)

 	(raysect.optical.spectralfunction.InterpolatedSF method)

 	(raysect.optical.spectralfunction.NumericallyIntegratedSF method)

 	(raysect.optical.spectrum.Spectrum method)

 	
 	InterpolatedSF (class in raysect.optical.spectralfunction)

 	Interpolator2DMesh (class in raysect.core.math.interpolators.interpolator2dmesh)

 	Intersect (class in raysect.primitive.csg)

 	Intersection (class in raysect.core.intersection)

 	inverse() (raysect.core.math.affinematrix.AffineMatrix3D method)

 	is_compatible() (raysect.optical.spectrum.Spectrum method)

 	is_empty() (raysect.core.containers.LinkedList method)

 	is_zero() (raysect.optical.spectrum.Spectrum method)

K

 	
 	km() (in module raysect.core.math.units)

L

 	
 	largest_axis() (raysect.core.boundingbox.BoundingBox2D method)

 	(raysect.core.boundingbox.BoundingBox3D method)

 	largest_extent() (raysect.core.boundingbox.BoundingBox2D method)

 	(raysect.core.boundingbox.BoundingBox3D method)

 	length (raysect.core.math.vector.Vector2D attribute)

 	(raysect.core.math.vector.Vector3D attribute)

 	
 	Light (class in raysect.optical.material.debug)

 	LinkedList (class in raysect.core.containers)

 	load() (raysect.primitive.mesh.mesh.Mesh method)

 	lower (raysect.core.boundingbox.BoundingBox2D attribute)

 	(raysect.core.boundingbox.BoundingBox3D attribute)

 	(raysect.primitive.Box attribute)

M

 	
 	material (raysect.core.scenegraph.primitive.Primitive attribute)

 	max_depth (raysect.optical.ray.Ray attribute)

 	max_wavelength (raysect.optical.ray.Ray attribute)

 	Mesh (class in raysect.primitive.mesh.mesh)

 	
 	mil() (in module raysect.core.math.units)

 	mile() (in module raysect.core.math.units)

 	min_wavelength (raysect.optical.ray.Ray attribute)

 	mm() (in module raysect.core.math.units)

N

 	
 	name (raysect.core.scenegraph.node.Node attribute)

 	(raysect.core.scenegraph.world.World attribute)

 	new_spectrum() (raysect.optical.ray.Ray method)

 	(raysect.optical.spectrum.Spectrum method)

 	next_in_queue() (raysect.core.containers.Queue method)

 	next_intersection() (raysect.core.scenegraph.primitive.Primitive method)

 	(raysect.primitive.mesh.mesh.Mesh method)

 	
 	nm() (in module raysect.core.math.units)

 	Node (class in raysect.core.scenegraph.node)

 	normal() (in module raysect.core.math.random)

 	normalise() (raysect.core.math.vector.Vector2D method)

 	(raysect.core.math.vector.Vector3D method)

 	notify_geometry_change() (raysect.core.scenegraph.primitive.Primitive method)

 	notify_material_change() (raysect.core.scenegraph.primitive.Primitive method)

 	NumericallyIntegratedSF (class in raysect.optical.spectralfunction)

O

 	
 	observe() (raysect.core.scenegraph.observer.Observer method)

 	Observer (class in raysect.core.scenegraph.observer)

 	observers (raysect.core.scenegraph.world.World attribute)

 	
 	orthogonal() (raysect.core.math.vector.Vector2D method)

 	(raysect.core.math.vector.Vector3D method)

 	OrthographicCamera (class in raysect.optical.observer.imaging.orthographic)

P

 	
 	pad() (raysect.core.boundingbox.BoundingBox2D method)

 	(raysect.core.boundingbox.BoundingBox3D method)

 	Parabola (class in raysect.primitive)

 	parent (raysect.core.scenegraph.node.Node attribute)

 	PerfectReflectingSurface (class in raysect.optical.material.debug)

 	photon_energy() (in module raysect.optical.spectrum)

 	PinholeCamera (class in raysect.optical.observer.imaging.pinhole)

 	Pixel (class in raysect.optical.observer.nonimaging.pixel)

 	Point2D (class in raysect.core.math.point)

 	Point3D (class in raysect.core.math.point)

 	point_disk() (in module raysect.core.math.random)

 	point_on() (raysect.core.ray.Ray method)

 	
 	point_square() (in module raysect.core.math.random)

 	PointSampler (class in raysect.core.math.sampler)

 	pop() (raysect.core.containers.Stack method)

 	Primitive (class in raysect.core.scenegraph.primitive)

 	primitive_a (raysect.primitive.csg.CSGPrimitive attribute)

 	primitive_b (raysect.primitive.csg.CSGPrimitive attribute)

 	primitives (raysect.core.scenegraph.world.World attribute)

 	print_scenegraph() (in module raysect.core.scenegraph.utility)

 	probability() (in module raysect.core.math.random)

 	push() (raysect.core.containers.Stack method)

 	PythonFunction1D (class in raysect.core.math.function.function1d)

 	PythonFunction2D (class in raysect.core.math.function.function2d)

 	PythonFunction3D (class in raysect.core.math.function.function3d)

Q

 	
 	Queue (class in raysect.core.containers)

R

 	
 	radian() (in module raysect.core.math.units)

 	radius (raysect.primitive.Cone attribute)

 	(raysect.primitive.Cylinder attribute)

 	(raysect.primitive.Parabola attribute)

 	(raysect.primitive.Sphere attribute)

 	Ray (class in raysect.core.ray)

 	(class in raysect.optical.ray)

 	raysect.core.acceleration.accelerator (module)

 	raysect.core.acceleration.boundprimitive (module)

 	raysect.core.acceleration.kdtree (module)

 	raysect.core.acceleration.unaccelerated (module)

 	raysect.core.boundingbox (module)

 	raysect.core.intersection (module)

 	raysect.core.material (module)

 	raysect.core.math.affinematrix (module)

 	raysect.core.math.interpolators.discrete2dmesh (module)

 	raysect.core.math.interpolators.interpolator2dmesh (module)

 	raysect.core.math.units (module)

 	raysect.core.ray (module)

 	raysect.core.scenegraph.node (module)

 	raysect.core.scenegraph.observer (module)

 	
 	raysect.core.scenegraph.primitive (module)

 	raysect.core.scenegraph.world (module)

 	raysect.optical.colour (module)

 	raysect.optical.material.absorber (module)

 	raysect.optical.material.conductor (module)

 	raysect.optical.material.debug (module)

 	raysect.optical.material.dielectric (module)

 	raysect.optical.material.emitter (module)

 	raysect.optical.material.lambert (module)

 	raysect.optical.material.material (module)

 	raysect.optical.material.modifiers (module)

 	raysect.optical.scenegraph.world (module)

 	RectangleSampler (class in raysect.core.math.sampler)

 	remove() (raysect.core.containers.LinkedList method)

 	rotate() (in module raysect.core.math.transform)

 	rotate_basis() (in module raysect.core.math.transform)

 	rotate_vector() (in module raysect.core.math.transform)

 	rotate_x() (in module raysect.core.math.transform)

 	rotate_y() (in module raysect.core.math.transform)

 	rotate_z() (in module raysect.core.math.transform)

 	RoughConductor (class in raysect.optical.material.conductor)

 	Roughen (class in raysect.optical.material.modifiers)

S

 	
 	sample() (raysect.core.math.sampler.PointSampler method)

 	(raysect.core.math.sampler.VectorSampler method)

 	(raysect.optical.ray.Ray method)

 	(raysect.optical.spectralfunction.ConstantSF method)

 	(raysect.optical.spectralfunction.SpectralFunction method)

 	(raysect.optical.spectrum.Spectrum method)

 	save() (raysect.primitive.mesh.mesh.Mesh method)

 	seed() (in module raysect.core.math.random)

 	SightLine (class in raysect.optical.observer.nonimaging.sightline)

 	
 	spawn_daughter() (raysect.optical.ray.Ray method)

 	SpectralFunction (class in raysect.optical.spectralfunction)

 	Spectrum (class in raysect.optical.spectrum)

 	Sphere (class in raysect.primitive), [1]

 	SphereSampler (class in raysect.core.math.sampler)

 	srgb_to_ciexyz() (in module raysect.optical.colour)

 	Stack (class in raysect.core.containers)

 	Subtract (class in raysect.primitive.csg)

 	surface_area() (raysect.core.boundingbox.BoundingBox2D method)

 	(raysect.core.boundingbox.BoundingBox3D method)

T

 	
 	to() (raysect.core.scenegraph.node.Node method)

 	(raysect.core.scenegraph.world.World method)

 	to_local() (raysect.core.scenegraph.node.Node method)

 	to_photons() (raysect.optical.spectrum.Spectrum method)

 	to_root() (raysect.core.scenegraph.node.Node method)

 	
 	total() (raysect.optical.spectrum.Spectrum method)

 	trace() (raysect.optical.ray.Ray method)

 	transform (raysect.core.scenegraph.node.Node attribute)

 	transform() (raysect.core.math.point.Point3D method)

 	(raysect.core.math.vector.Vector3D method)

 	translate() (in module raysect.core.math.transform)

U

 	
 	um() (in module raysect.core.math.units)

 	uniform() (in module raysect.core.math.random)

 	Union (class in raysect.primitive.csg)

 	union() (raysect.core.boundingbox.BoundingBox2D method)

 	(raysect.core.boundingbox.BoundingBox3D method)

 	
 	upper (raysect.core.boundingbox.BoundingBox2D attribute)

 	(raysect.core.boundingbox.BoundingBox3D attribute)

 	(raysect.primitive.Box attribute)

V

 	
 	Vector2D (class in raysect.core.math.vector)

 	Vector3D (class in raysect.core.math.vector)

 	vector_cone() (in module raysect.core.math.random)

 	vector_hemisphere_cosine() (in module raysect.core.math.random)

 	vector_hemisphere_uniform() (in module raysect.core.math.random)

 	vector_sphere() (in module raysect.core.math.random)

 	
 	vector_to() (raysect.core.math.point.Point2D method)

 	(raysect.core.math.point.Point3D method)

 	VectorCamera (class in raysect.optical.observer.imaging.vector)

 	VectorSampler (class in raysect.core.math.sampler)

 	vertices() (raysect.core.boundingbox.BoundingBox2D method)

 	(raysect.core.boundingbox.BoundingBox3D method)

 	volume() (raysect.core.boundingbox.BoundingBox3D method)

W

 	
 	wavelength_range (raysect.optical.ray.Ray attribute)

 	wavelengths (raysect.optical.spectrum.Spectrum attribute)

 	
 	World (class in raysect.core.scenegraph.world)

 	(class in raysect.optical.scenegraph.world)

Y

 	
 	yard() (in module raysect.core.math.units)

Camera example

	create a world

	place a primitive (sphere) in a scene with a lambert material.

	Primitive = anything that rays interact with. Only rays. Convention => object => primitive.

	put sphere on something => a ground plane (lambert).

	need to illuminate it => checkerboard

	scene but nothing to oberve. Anything that fires rays and samples the scene.

	Add a camera

	Move to right place, explain affine transforms.

	Render!

	oh its all noisy

	explain statistical sampling and path tracer

	turn up number of samples

	set camera to accumulate.

	re-sample

	change color of sphere? Define reflectivity function

	change material to glass

Spectral Examples based on scene

	reset sphere to white

	manual sampling of scene

	sample d65 white spectra

	convert sphere to coloured lambert, reflected absorption curve.

	convert sphere to coloured glass, define refractive index and absorption curve.

	have a look at flask quickstart

Architecture

core

optical_model

Dispersion through a Prism

This demo demonstrates the dispersion of a white light source through a prism. Note, it may take a very long time to
generate adequate samples for this demonstration.

External module imports
from math import tan, pi
import matplotlib.pyplot as plt

Raysect imports
from raysect.optical import World, Node, Point3D, translate, rotate, d65_white, ConstantSF
from raysect.optical.observer import PinholeCamera, RGBPipeline2D
from raysect.optical.material import Lambert
from raysect.optical.material.emitter import UniformSurfaceEmitter
from raysect.optical.library import schott
from raysect.primitive import Intersect, Subtract, Box, Cylinder, Sphere

Utility method to construct a glass prism from CSG operations
def equilateral_prism(width=1.0, height=1.0, parent=None, transform=None, material=None):

 half_width = width / 2
 mid_point = half_width * tan(60/180*pi) / 2

 centre = Box(Point3D(-half_width * 1.001, 0, 0), Point3D(half_width * 1.001, height, width))

 left = Box(Point3D(0, -height * 0.001, -width * 0.001),
 Point3D(width, height * 1.001, 2 * width),
 transform=translate(half_width, 0, 0) * rotate(30, 0, 0))

 right = Box(Point3D(-width, -height * 0.001, -width * 0.001),
 Point3D(0.0, height * 1.001, 2 * width),
 transform=translate(-half_width, 0, 0) * rotate(-30, 0, 0))

 csg_prism = Subtract(Subtract(centre, left), right,
 parent=parent, transform=transform * translate(0, 0, -mid_point),
 material=material)

 return csg_prism

Utility method to construct a box with a slit emitting white light
def light_box(parent, transform=None):

 # Notice that this function is creating and returning a parent node which holds references
 # to the underlying primitives.
 node = Node(parent=parent, transform=transform)

 outer = Box(Point3D(-0.01, 0, -0.05), Point3D(0.01, 0.15, 0.0))
 slit = Box(Point3D(-0.0015, 0.03, -0.045), Point3D(0.0015, 0.12, 0.0001))

 Subtract(outer, slit, parent=node, material=Lambert(reflectivity=ConstantSF(0.1)))

 Box(Point3D(-0.0015, 0.03, -0.045),
 Point3D(0.0015, 0.12, -0.04),
 parent=node,
 material=UniformSurfaceEmitter(d65_white, 250))

 return node

world = World()

construct diffuse floor surface
floor = Box(Point3D(-1000, -0.1, -1000), Point3D(1000, 0, 1000),
 parent=world, material=Lambert())

construct prism from utility method
prism = equilateral_prism(0.06, 0.15, parent=world,
 material=schott("SF11"), transform=translate(0, 0.0 + 1e-6, 0))

Curved target screen for collecting rainbow light
screen = Intersect(
 Box(Point3D(-10, -10, -10), Point3D(10, 10, 0)),
 Subtract(Cylinder(0.22, 0.15),
 Cylinder(0.20, 0.16, transform=translate(0, 0, -0.005)),
 transform=rotate(0, 90, 0)),
 parent=world,
 material=Lambert()
)

construct main collimated light source
prism_light = light_box(parent=world,
 transform=rotate(-35.5, 0, 0) * translate(0.10, 0, 0) * rotate(90, 0, 0))

background light source
top_light = Sphere(0.5, parent=world, transform=translate(0, 2, -1),
 material=UniformSurfaceEmitter(d65_white, scale=2))

Give the prism a high importance to ensure adequate sampling
prism.material.importance = 9

rgb = RGBPipeline2D()

create and setup the camera
camera = PinholeCamera((512, 256), fov=45, parent=world, pipelines=[rgb])
camera.transform = translate(0, 0.05, -0.05) * rotate(180, -65, 0) * translate(0, 0, -0.75)
camera.ray_importance_sampling = True
camera.ray_important_path_weight = 0.75
camera.ray_max_depth = 500
camera.ray_extinction_prob = 0.01
camera.spectral_bins = 32
camera.spectral_rays = 32
camera.pixel_samples = 100

start ray tracing
plt.ion()
for p in range(0, 1000):
 print("Rendering pass {}".format(p+1))
 camera.observe()
 rgb.save("prisms_{}.png".format(p+1))
 print()

display final result
plt.ioff()
rgb.display()
plt.show()

[image: ../_images/prism_720x360.jpg]

Cornell Box

This demo renders a variant of the classic Cornell Box scene.

To the original Cornell Box see:

http://www.graphics.cornell.edu/online/box/data.html

The wall colours and light spectrum used in this demo are the values measured
for the physical Cornell Box.

from raysect.optical import World, Node, translate, rotate, Point3D, d65_white, ConstantSF, InterpolatedSF
from raysect.optical.material import Lambert, UniformSurfaceEmitter
from raysect.optical.library import *
from raysect.primitive import Sphere, Box
from matplotlib.pyplot import *
from numpy import array

"""
Cornell Box Demo
================

This demo renders a variant of the classic Cornell Box scene.

To the original Cornell Box see:

 http://www.graphics.cornell.edu/online/box/data.html

The wall colours and light spectrum used in this demo are the values measured
for the physical Cornell Box.
"""

define reflectivity for box surfaces
wavelengths = array(
 [400, 404, 408, 412, 416, 420, 424, 428, 432, 436, 440, 444, 448, 452, 456, 460, 464, 468, 472, 476, 480, 484, 488,
 492, 496, 500, 504, 508, 512, 516, 520, 524, 528, 532, 536, 540, 544, 548, 552, 556, 560, 564, 568, 572, 576, 580,
 584, 588, 592, 596, 600, 604, 608, 612, 616, 620, 624, 628, 632, 636, 640, 644, 648, 652, 656, 660, 664, 668, 672,
 676, 680, 684, 688, 692, 696, 700])

white = array(
 [0.343, 0.445, 0.551, 0.624, 0.665, 0.687, 0.708, 0.723, 0.715, 0.71, 0.745, 0.758, 0.739, 0.767, 0.777, 0.765,
 0.751, 0.745, 0.748, 0.729, 0.745, 0.757, 0.753, 0.75, 0.746, 0.747, 0.735, 0.732, 0.739, 0.734, 0.725, 0.721,
 0.733, 0.725, 0.732, 0.743, 0.744, 0.748, 0.728, 0.716, 0.733, 0.726, 0.713, 0.74, 0.754, 0.764, 0.752, 0.736,
 0.734, 0.741, 0.74, 0.732, 0.745, 0.755, 0.751, 0.744, 0.731, 0.733, 0.744, 0.731, 0.712, 0.708, 0.729, 0.73,
 0.727, 0.707, 0.703, 0.729, 0.75, 0.76, 0.751, 0.739, 0.724, 0.73, 0.74, 0.737])

green = array(
 [0.092, 0.096, 0.098, 0.097, 0.098, 0.095, 0.095, 0.097, 0.095, 0.094, 0.097, 0.098, 0.096, 0.101, 0.103, 0.104,
 0.107, 0.109, 0.112, 0.115, 0.125, 0.14, 0.16, 0.187, 0.229, 0.285, 0.343, 0.39, 0.435, 0.464, 0.472, 0.476, 0.481,
 0.462, 0.447, 0.441, 0.426, 0.406, 0.373, 0.347, 0.337, 0.314, 0.285, 0.277, 0.266, 0.25, 0.23, 0.207, 0.186,
 0.171, 0.16, 0.148, 0.141, 0.136, 0.13, 0.126, 0.123, 0.121, 0.122, 0.119, 0.114, 0.115, 0.117, 0.117, 0.118, 0.12,
 0.122, 0.128, 0.132, 0.139, 0.144, 0.146, 0.15, 0.152, 0.157, 0.159])

red = array(
 [0.04, 0.046, 0.048, 0.053, 0.049, 0.05, 0.053, 0.055, 0.057, 0.056, 0.059, 0.057, 0.061, 0.061, 0.06, 0.062, 0.062,
 0.062, 0.061, 0.062, 0.06, 0.059, 0.057, 0.058, 0.058, 0.058, 0.056, 0.055, 0.056, 0.059, 0.057, 0.055, 0.059,
 0.059, 0.058, 0.059, 0.061, 0.061, 0.063, 0.063, 0.067, 0.068, 0.072, 0.08, 0.09, 0.099, 0.124, 0.154, 0.192,
 0.255, 0.287, 0.349, 0.402, 0.443, 0.487, 0.513, 0.558, 0.584, 0.62, 0.606, 0.609, 0.651, 0.612, 0.61, 0.65, 0.638,
 0.627, 0.62, 0.63, 0.628, 0.642, 0.639, 0.657, 0.639, 0.635, 0.642])

white_reflectivity = InterpolatedSF(wavelengths, white)
red_reflectivity = InterpolatedSF(wavelengths, red)
green_reflectivity = InterpolatedSF(wavelengths, green)

define light spectrum
light_spectrum = InterpolatedSF(array([400, 500, 600, 700]), array([0.0, 8.0, 15.6, 18.4]))

set-up scenegraph
world = World()

enclosing box
enclosure = Node(world)

e_back = Box(Point3D(-1, -1, 0), Point3D(1, 1, 0),
 parent=enclosure,
 transform=translate(0, 0, 1) * rotate(0, 0, 0),
 material=Lambert(white_reflectivity))

e_bottom = Box(Point3D(-1, -1, 0), Point3D(1, 1, 0),
 parent=enclosure,
 transform=translate(0, -1, 0) * rotate(0, -90, 0),
 # material=m)
 material=Lambert(white_reflectivity))

e_top = Box(Point3D(-1, -1, 0), Point3D(1, 1, 0),
 parent=enclosure,
 transform=translate(0, 1, 0) * rotate(0, 90, 0),
 material=Lambert(white_reflectivity))

e_left = Box(Point3D(-1, -1, 0), Point3D(1, 1, 0),
 parent=enclosure,
 transform=translate(1, 0, 0) * rotate(-90, 0, 0),
 material=Lambert(red_reflectivity))

e_right = Box(Point3D(-1, -1, 0), Point3D(1, 1, 0),
 parent=enclosure,
 transform=translate(-1, 0, 0) * rotate(90, 0, 0),
 material=Lambert(green_reflectivity))

ceiling light
light = Box(Point3D(-0.4, -0.4, -0.01), Point3D(0.4, 0.4, 0.0),
 parent=enclosure,
 transform=translate(0, 1, 0) * rotate(0, 90, 0),
 material=UniformSurfaceEmitter(light_spectrum, 2))

light = Box(Point3D(-0.4, -0.4, -0.01), Point3D(0.4, 0.4, 0.0),
parent=enclosure,
transform=translate(0, 1, 0) * rotate(0, 90, 0),
material=UniformSurfaceEmitter(d65_white, 2))

back_light = Sphere(0.1,
parent=enclosure,
transform=translate(0.80, -0.85, 0.80)*rotate(0, 0, 0),
material=UniformSurfaceEmitter(light_spectrum, 10.0))

objects in enclosure
box = Box(Point3D(-0.4, 0, -0.4), Point3D(0.3, 1.4, 0.3),
 parent=world,
 transform=translate(0.4, -1 + 1e-6, 0.4)*rotate(30, 0, 0),
 # material=RoughTungsten(0.5))
 # material=Lambert())
 material=schott("N-BK7"))

sphere = Sphere(0.4,
 parent=world,
 transform=translate(-0.4, -0.6 + 1e-6, -0.4)*rotate(0, 0, 0),
 # material=RoughGold(0.1))
 # material=Lambert())
 # material=Titanium())
 material=schott("N-BK7"))

from raysect.optical.observer import PinholeCamera, CCDArray
from raysect.optical.observer import RGBPipeline2D, BayerPipeline2D, SpectralPipeline2D, PowerPipeline2D
from raysect.optical.observer import PowerAdaptiveSampler2D, RGBAdaptiveSampler2D
from raysect.core.workflow import SerialEngine

filter_red = InterpolatedSF([100, 650, 660, 670, 680, 800], [0, 0, 1, 1, 0, 0])
filter_green = InterpolatedSF([100, 530, 540, 550, 560, 800], [0, 0, 1, 1, 0, 0])
filter_blue = InterpolatedSF([100, 480, 490, 500, 510, 800], [0, 0, 1, 1, 0, 0])

create and setup the camera
power_unfiltered = PowerPipeline2D(display_unsaturated_fraction=0.96, name="Unfiltered")
power_unfiltered.display_update_time = 15

power_green = PowerPipeline2D(filter=filter_green, display_unsaturated_fraction=0.96, name="Green Filter")
power_green.display_update_time = 15

power_red = PowerPipeline2D(filter=filter_red, display_unsaturated_fraction=0.96, name="Red Filter")
power_red.display_update_time = 15

rgb = RGBPipeline2D(display_unsaturated_fraction=0.96, name="sRGB")

bayer = BayerPipeline2D(filter_red, filter_green, filter_blue, display_unsaturated_fraction=0.96, name="Bayer Filter")
bayer.display_update_time = 15

spectral = SpectralPipeline2D()

pipelines = [power, rgb, bayer, spectral]
pipelines = [power_unfiltered] #, power_green, power_red, bayer]#, spectral]
pipelines = [rgb, power_unfiltered]
sampler = PowerAdaptiveSampler2D(power_unfiltered, ratio=10, fraction=0.2, min_samples=500, cutoff=0.05)
sampler = RGBAdaptiveSampler2D(rgb, ratio=10, fraction=0.2, min_samples=500, cutoff=0.05)

camera = PinholeCamera((128, 128), parent=world, transform=translate(0, 0, -3.3) * rotate(0, 0, 0), pipelines=pipelines)
camera = PinholeCamera((64, 64), parent=world, transform=translate(0, 0, -3.3) * rotate(0, 0, 0), pipelines=pipelines)
camera = CCDArray((64, 64), parent=world, transform=translate(0, 0, -3.3) * rotate(0, 0, 0), pipelines=pipelines)
camera.frame_sampler = sampler
camera.pixel_samples = 100
camera.spectral_bins = 15
camera.spectral_rays = 1
camera.ray_importance_sampling = True
camera.ray_important_path_weight = 0.25
camera.ray_max_depth = 500
camera.ray_extinction_min_depth = 3
camera.ray_extinction_prob = 0.01
camera.render_engine = SerialEngine()

start ray tracing
ion()
p = 1
while not camera.render_complete:

 print("Rendering pass {}...".format(p))

 camera.observe()

 rgb.save('cornell_box_rgb_pass_{:04d}.png'.format(p))
 power_unfiltered.save('cornell_box_unfiltered_pass_{:04d}.png'.format(p))
 # power_red.save('cornell_box_red_filter_pass_{:04d}.png'.format(p))
 # power_green.save('cornell_box_green_filter_pass_{:04d}.png'.format(p))
 # bayer.save('cornell_box_bayer_pass_{:04d}.png'.format(p))

 # spectral.display_pixel(28, 70)

 #print("total power:", power_unfiltered.frame.mean.sum(), "+/-", np.sqrt(np.sum(power_unfiltered.frame.variance**2)))
 print()
 p += 1

ioff()
rgb.display()

[image: ../_images/cornell_box_mis_1550_samples.png]

Making Animations

This example demonstrates how to render a series of raysect images and turn them into an animation for web.

import matplotlib.pyplot as plt

from raysect.optical import World, translate, rotate, Point3D, d65_white
from raysect.optical.observer import PinholeCamera
from raysect.optical.material.emitter import Checkerboard
from raysect.optical.library import schott
from raysect.primitive import Sphere, Box, Cylinder, Union, Intersect, Subtract

plt.ion()

world = World()

Background checkerboard lightsource
Box(Point3D(-10, -10, 4.0), Point3D(10, 10, 4.1), world,
 material=Checkerboard(1, d65_white, d65_white, 0.2, 0.8))

Build a CSG primitive from a number of basic underlying primitives
cyl_x = Cylinder(1, 4.2, transform=rotate(90, 0, 0)*translate(0, 0, -2.1))
cyl_y = Cylinder(1, 4.2, transform=rotate(0, 90, 0)*translate(0, 0, -2.1))
cyl_z = Cylinder(1, 4.2, transform=rotate(0, 0, 0)*translate(0, 0, -2.1))
cube = Box(Point3D(-1.5, -1.5, -1.5), Point3D(1.5, 1.5, 1.5))
sphere = Sphere(2.0)
target = Intersect(sphere, cube, parent=world, transform=translate(0, 0, 0)*rotate(0, 0, 0),
 material=schott("N-BK7"))

create and setup the camera
camera = PinholeCamera((256, 256), fov=45, parent=world, transform=translate(0, 0, -6) * rotate(0, 0, 0))
camera.spectral_rays = 9
camera.spectral_bins = 30
rgb = camera.pipelines[0]

for each frame rotate the CSG primitive and re-render
num_frames = 25*20
full_rotation = 360
for frame in range(num_frames):

 print("Rendering frame {}:".format(frame))

 rotation = full_rotation / num_frames * frame
 target.transform = rotate(rotation, 25, 5)

 camera.observe()
 rgb.save("frame{:04}.png".format(frame))

[image: ../_images/animation.gif]
You can use ImageMagic’s [https://www.imagemagick.org/] convert command to make a gif.

$> convert -delay 20 -loop 0 *.png myimage.gif

Surface Roughness Scan

Demonstration of the roughen material modifier. The back row is aluminium and
the front row is glass. The surface roughness is increased from left to right
from 0 to 50%.

from raysect.optical import World, translate, rotate, Point3D, d65_white
from raysect.primitive import Sphere, Box, Cylinder
from raysect.optical.observer import PinholeCamera, RGBPipeline2D
from raysect.optical.material import Lambert, UniformSurfaceEmitter, Roughen
from raysect.optical.library import *
from matplotlib.pyplot import *

"""
Material Roughness Scan
=======================

Demonstration of the roughen material modifier. The back row is aluminium and
the front row is glass. The surface roughness is increased from left to right
from 0 to 50%.
"""

world = World()

angle_increments = [-4, -3, -2, -1, 0, 1, 2, 3, 4]
roughness_scan = [0, 0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5]

glass spheres
angle = 6
distance = 3
radius = 0.15

for i in range(9):
 roughness = roughness_scan[i]
 increment = angle_increments[i]

 # use raw material if roughness = 0
 if roughness == 0:
 material = schott("N-BK7")
 else:
 material = Roughen(schott("N-BK7"), roughness)

 Sphere(radius, world,
 transform=rotate(increment * angle, 0, 0) * translate(0, radius + 0.00001, distance),
 material=material)

metal spheres
angle = 6
distance = 3.6
radius = 0.15

for i in range(9):
 roughness = roughness_scan[i]
 increment = angle_increments[i]

 # use raw material if roughness = 0
 if roughness == 0:
 material = Aluminium()
 else:
 material = RoughAluminium(roughness)

 Sphere(radius, world,
 transform=rotate(increment * angle, 0, 0) * translate(0, radius + 0.00001, distance),
 material=material)

diffuse ground plane
Box(Point3D(-100, -0.1, -100), Point3D(100, 0, 100), world, material=Lambert())

four strip lights
Cylinder(0.5, 1.0, world, transform=translate(0.5, 5, 8) * rotate(90, 0, 0),
 material=UniformSurfaceEmitter(d65_white, 1.0))
Cylinder(0.5, 1.0, world, transform=translate(0.5, 5, 6) * rotate(90, 0, 0),
 material=UniformSurfaceEmitter(d65_white, 1.0))
Cylinder(0.5, 1.0, world, transform=translate(0.5, 5, 4) * rotate(90, 0, 0),
 material=UniformSurfaceEmitter(d65_white, 1.0))
Cylinder(0.5, 1.0, world, transform=translate(0.5, 5, 2) * rotate(90, 0, 0),
 material=UniformSurfaceEmitter(d65_white, 1.0))

rgb = RGBPipeline2D(display_unsaturated_fraction=0.96)

observer
camera = PinholeCamera((1024, 512), pipelines=[rgb], transform=translate(0, 3.3, 0) * rotate(0, -47, 0), fov=42, parent=world)
camera.ray_max_depth = 5
camera.ray_extinction_prob = 0.01
camera.spectral_rays = 1
camera.spectral_bins = 15

camera.pixel_samples = 250

start ray tracing
ion()
for p in range(1, 1000):
 print("Rendering pass {}".format(p))
 camera.observe()
 camera.pipelines[0].save("demo_roughen_{}.png".format(p))
 print()

[image: ../_images/surface_roughness.jpg]

Point Inside A Material

This demo shows how the world.contains() method can be used to query the world for
all primitives that intersect the test point. This simple scene contains a Sphere
at the origin of radius 0.5m. A grid of test points is generated in the x-y plane.
Each point is tested to see if it lies inside the sphere. The test points are
plotted in the figure, coloured by their true (inside)/false (outside) categorisation.

External imports
import numpy as np
import matplotlib.pyplot as plt

Internal imports
from raysect.optical import World, translate, Point3D
from raysect.optical.library import schott
from raysect.primitive import Sphere

"""
World contains point

This demo shows how the world.contains() method can be used to query the world for
all primitives that intersect the test point. This simple scene contains a Sphere
at the origin of radius 0.5m. A grid of test points is generated in the x-y plane.
Each point is tested to see if it lies inside the sphere.
"""

world = World()

Place test sphere at origin
sphere = Sphere(radius=0.5, transform=translate(0, 0, 0), material=schott("N-BK7"))
sphere.parent = world

Construct test points in x-y plane

xpts = np.linspace(-1.0, 1.0)
ypts = np.linspace(-1.0, 1.0)

x_inside = []
y_inside = []
x_outside = []
y_outside = []

for x in xpts:
 for y in ypts:

 test_point = Point3D(x, y, 0)

 # For each test point, call world.contains() which returns a list of primitives that contain the test point.
 primitives = world.contains(test_point)

 # Next we see if the sphere is in the list of primitives returned. If yes, the test point lies inside the
 # sphere, otherwise it must be outside.
 if sphere in primitives:
 x_inside.append(x)
 y_inside.append(y)
 else:
 x_outside.append(x)
 y_outside.append(y)

plt.figure()
plt.plot(x_inside, y_inside, '.r', label='inside')
plt.plot(x_outside, y_outside, '.b', label='outside')
plt.legend()
plt.show()

[image: ../_images/test_point_inside_material.png]

Ray Intersection Points

Rays are launched in the same way as the pinhole camera. The simple scene consists
of the Stanford bunny model sitting on a platform. For every ray that is launched,
the cartesian hit point of the ray with the materials in the scene (rabit and floor)
is recorded. In Figure 1 the 3D hit point for each ray in the camera is plotted in
3D space. In Figure 2 the z coordinate of each hit point is scaled and plotted to
indicate distance from the camera. Both methods allow simple visualisation of a
scene and extraction of intersection geometry data.

	Bunny model source:

	Stanford University Computer Graphics Laboratory
http://graphics.stanford.edu/data/3Dscanrep/
Converted to obj format using MeshLab

from os import path

External imports
from numpy import tan, pi as PI
import numpy as np
import matplotlib.pyplot as plt

do not remove the following import or the 3D plotting will break
from mpl_toolkits.mplot3d import Axes3D

Internal imports
from raysect.core.ray import Ray as CoreRay
from raysect.optical import World, translate, rotate, Point3D, d65_white, ConstantSF, Node, Vector3D
from raysect.optical.material.emitter import UniformVolumeEmitter
from raysect.optical.material import Lambert
from raysect.primitive import Box, Subtract
from raysect.primitive.mesh import Mesh
from raysect.optical.library import schott

"""
A demo of Ray intersection hit points

Rays are launched in the same way as the pinhole camera. The simple scene consists
of the Stanford bunny model sitting on a platform. For every ray that is launched,
the cartesian hit point of the ray with the materials in the scene (rabit and floor)
is recorded. In Figure 1 the 3D hit point for each ray in the camera is plotted in
3D space. In Figure 2 the z coordinate of each hit point is scaled and plotted to
indicate distance from the camera. Both methods allow simple visualisation of a
scene and extraction of intersection geometry data.

Bunny model source:
 Stanford University Computer Graphics Laboratory
 http://graphics.stanford.edu/data/3Dscanrep/
 Converted to obj format using MeshLab
"""

world = World()

mesh_path = path.join(path.dirname(__file__), "../resources/stanford_bunny.rsm")
mesh = Mesh.from_file(mesh_path, parent=world, transform=rotate(180, 0, 0))

LIGHT BOX
padding = 1e-5
enclosure_thickness = 0.001 + padding
glass_thickness = 0.003

light_box = Node(parent=world)

enclosure_outer = Box(Point3D(-0.10 - enclosure_thickness, -0.02 - enclosure_thickness, -0.10 - enclosure_thickness),
 Point3D(0.10 + enclosure_thickness, 0.0, 0.10 + enclosure_thickness))
enclosure_inner = Box(Point3D(-0.10 - padding, -0.02 - padding, -0.10 - padding),
 Point3D(0.10 + padding, 0.001, 0.10 + padding))
enclosure = Subtract(enclosure_outer, enclosure_inner, material=Lambert(ConstantSF(0.2)), parent=light_box)

glass_outer = Box(Point3D(-0.10, -0.02, -0.10),
 Point3D(0.10, 0.0, 0.10))
glass_inner = Box(Point3D(-0.10 + glass_thickness, -0.02 + glass_thickness, -0.10 + glass_thickness),
 Point3D(0.10 - glass_thickness, 0.0 - glass_thickness, 0.10 - glass_thickness))
glass = Subtract(glass_outer, glass_inner, material=schott("N-BK7"), parent=light_box)

emitter = Box(Point3D(-0.10 + glass_thickness + padding, -0.02 + glass_thickness + padding, -0.10 + glass_thickness + padding),
 Point3D(0.10 - glass_thickness - padding, 0.0 - glass_thickness - padding, 0.10 - glass_thickness - padding),
 material=UniformVolumeEmitter(d65_white, 50), parent=light_box)

fov = 45
num_pixels = 256

Launch rays using the same geometry calculations as a pinhole camera
image_width = 2 * tan(PI / 180 * 0.5 * fov)
image_delta = image_width / num_pixels

image_start_x = 0.5 * num_pixels * image_delta
image_start_y = 0.5 * num_pixels * image_delta

x_points = []
y_points = []
z_points = []
z_show = np.zeros((num_pixels, num_pixels))
for ix in range(num_pixels):
 for iy in range(num_pixels):

 # generate pixel transform
 pixel_x = image_start_x - image_delta * ix
 pixel_y = image_start_y - image_delta * iy

 # calculate point in virtual image plane to be used for ray direction
 origin = Point3D().transform(translate(0, 0.16, -0.7) * rotate(0, -12, 0))
 direction = Vector3D(pixel_x, pixel_y, 1).normalise().transform(translate(0, 0.16, -0.7) * rotate(0, -12, 0))

 intersection = world.hit(CoreRay(origin, direction))

 if intersection is not None:
 hit_point = intersection.hit_point.transform(intersection.primitive_to_world)
 x_points.append(hit_point.z)
 y_points.append(hit_point.x)
 z_points.append(hit_point.y)
 z_show[iy, ix] = hit_point.z
 else:
 # add small offset so background is black
 z_show[iy, ix] = 0.1

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(x_points, y_points, z_points, c='k', marker='.')
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')

plt.figure()
plt.imshow(z_show, cmap=plt.cm.Greys)

plt.show()

[image: ../_images/ray_intersection_points_fig1.png]
The 3D intersection point of each camera ray with the materials in the scene is
recorded and plotted as 3D points.

[image: ../_images/ray_intersection_points_fig2.png]
The Z coordinate of each intersection point is scaled and plotted to
indicate distance from the camera. This allows a crude form of scene
visualisation.

 Welcome to Raysect, an OOP ray-tracing framework in python. Raysect has been
built with scientific ray-tracing in mind. Some of its features include:

	Fully spectral, high precision. Supports scientific ray-tracing of spectra from physical light sources such as plasmas.

	All core loops are written in cython for speed.

kd-tree Module

Some example text.

 _images/test_point_inside_material.png

_images/demo_lambert.png

_images/cornell_box_mis_1550_samples.png

_images/surface_roughness.jpg

_images/prism_720x360.jpg

_images/ray_intersection_points_fig1.png

_images/gold_bunny.png

_images/ray_intersection_points_fig2.png

_images/raysect_primitives.png

_static/RaysectLogo_web.png
ERaysect

_static/comment-bright.png

_static/file.png

nav.xhtml

 Table of Contents

 		Welcome

 		Introduction

 		Downloading and Installation

 		Prerequisites

 		Installation

 		Testing

 		How it works

 		What is a ray tracer?

 		Key Concepts

 		Rays

 		Observers

 		Primitives

 		Scene-graph

 		Process of raytracing

 		Quickstart Guide

 		Create Primitives

 		Add Observer

 		Build Scenegraph

 		Observe()

 		Simulated Spectrum

 		Primitives

 		Geometric Primitives

 		Sphere

 		Box

 		Cylinder

 		Cone

 		CSG Operations

 		Meshes

 		Materials

 		Conventions

 		License

 		Need Help?

 		Core Functionality

 		Examples Gallery

 		Raysect Core

 		Core Classes

 		Math Module

 		Points and Vectors

 		Affine Matricies

 		Functions and Interpolators

 		Random

 		Unit Conversions

 		Scenegraph Module

 		Utilities

 		Containers

 		Primitives Module

 		Geometric Primitives

 		Meshes

 		CSG Operations

 		Optical Module

 		Main Optical Classes

 		Observers

 		Optical Materials

_static/minus.png

_static/up-pressed.png

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

_images/RaysectLogo_small.png
Raysect

VB
Sa/

_images/metal_balls.png

_images/example_spectra.png
500 550 600 650 700 750 800
Wavelength (nm)

250

400

350

e % 8 § = © =%
S F 3 3 38 8 3
(WU/AS/Z L W/M) 3dueipey

02
0g,

_images/animation.gif

_images/animation_preview.jpg

_images/csg_glass.png

_images/roughen_modifier_example.png

