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Ray is a flexible, high-performance distributed execution framework.
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CHAPTER 1

Installation on Ubuntu

Ray should work with Python 2 and Python 3. We have tested Ray on Ubuntu 14.04 and Ubuntu 16.04.

Dependencies

To install Ray, first install the following dependencies. We recommend using Anaconda.

sudo apt-get update
sudo apt-get install -y cmake build-essential autoconf curl libtool libboost-all-dev
→˓unzip

# If you are not using Anaconda, you need the following.
sudo apt-get install python-dev # For Python 2.
sudo apt-get install python3-dev # For Python 3.

pip install numpy cloudpickle funcsigs colorama psutil redis flatbuffers

If you are using Anaconda, you may also need to run the following.

conda install libgcc

Install Ray

Ray can be built from the repository as follows.

git clone https://github.com/ray-project/ray.git
cd ray/python
python setup.py install --user
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Test if the installation succeeded

To test if the installation was successful, try running some tests. This assumes that you’ve cloned the git repository.

python test/runtest.py
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CHAPTER 2

Installation on Mac OS X

Ray should work with Python 2 and Python 3. We have tested Ray on OS X 10.11 and 10.12.

Dependencies

To install Ray, first install the following dependencies. We recommend using Anaconda.

brew update
brew install cmake automake autoconf libtool boost wget

pip install numpy cloudpickle funcsigs colorama psutil redis flatbuffers --ignore-
→˓installed six

If you are using Anaconda, you may also need to run the following.

conda install libgcc

Install Ray

Ray can be built from the repository as follows.

git clone https://github.com/ray-project/ray.git
cd ray/python
python setup.py install --user

Test if the installation succeeded

To test if the installation was successful, try running some tests. This assumes that you’ve cloned the git repository.
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python test/runtest.py
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CHAPTER 3

Installation on Docker

You can install Ray on any platform that runs Docker. We do not presently publish Docker images for Ray, but you
can build them yourself using the Ray distribution.

Using Docker can streamline the build process and provide a reliable way to get up and running quickly.

Install Docker

Mac, Linux, Windows platforms

The Docker Platform release is available for Mac, Windows, and Linux platforms. Please download the appropriate
version from the Docker website and follow the corresponding installation instructions. Linux user may find these
alternate instructions helpful.

Docker installation on EC2 with Ubuntu

The instructions below show in detail how to prepare an Amazon EC2 instance running Ubuntu 16.04 for use with
Docker.

Apply initialize the package repository and apply system updates:

sudo apt-get update
sudo apt-get -y dist-upgrade

Install Docker and start the service:

sudo apt-get install -y docker.io
sudo service docker start

Add the ubuntu user to the docker group to allow running Docker commands without sudo:
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sudo usermod -a -G docker ubuntu

Initiate a new login to gain group permissions (alternatively, log out and log back in again):

exec sudo su -l ubuntu

Confirm that docker is running:

docker images

Should produce an empty table similar to the following:

REPOSITORY TAG IMAGE ID CREATED SIZE

Clone the Ray repository

git clone https://github.com/ray-project/ray.git

Build Docker images

Run the script to create Docker images.

cd ray
./build-docker.sh

This script creates several Docker images:

• The ray-project/deploy image is a self-contained copy of code and binaries suitable for end users.

• The ray-project/examples adds additional libraries for running examples.

• The ray-project/base-deps image builds from Ubuntu Xenial and includes Anaconda and other basic
dependencies and can serve as a starting point for developers.

Review images by listing them:

docker images

Output should look something like the following:

REPOSITORY TAG IMAGE ID CREATED
→˓ SIZE
ray-project/examples latest 7584bde65894 4 days
→˓ago 3.257 GB
ray-project/deploy latest 970966166c71 4 days
→˓ago 2.899 GB
ray-project/base-deps latest f45d66963151 4 days
→˓ago 2.649 GB
ubuntu xenial f49eec89601e 3 weeks
→˓ago 129.5 MB
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Launch Ray in Docker

Start out by launching the deployment container.

docker run --shm-size=<shm-size> -t -i ray-project/deploy

Replace <shm-size> with a limit appropriate for your system, for example 512M or 2G. The -t and -i options
here are required to support interactive use of the container.

Note: Ray requires a large amount of shared memory because each object store keeps all of its objects in shared
memory, so the amount of shared memory will limit the size of the object store.

You should now see a prompt that looks something like:

root@ebc78f68d100:/ray#

Test if the installation succeeded

To test if the installation was successful, try running some tests. Within the container shell enter the following com-
mands:

python test/runtest.py # This tests basic functionality.

You are now ready to continue with the tutorial.

Running examples in Docker

Ray includes a Docker image that includes dependencies necessary for running some of the examples. This can be an
easy way to see Ray in action on a variety of workloads.

Launch the examples container.

docker run --shm-size=1024m -t -i ray-project/examples

Hyperparameter optimization

cd /ray/examples/hyperopt/
python /ray/examples/hyperopt/hyperopt_simple.py

Batch L-BFGS

python /ray/examples/lbfgs/driver.py

Learning to play Pong

python /ray/examples/rl_pong/driver.py

3.4. Launch Ray in Docker 9
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CHAPTER 4

Installation Troubleshooting

Trouble installing Numbuf

If the installation of Numbuf fails, chances are there was a problem building Arrow. Some candidate possibilities.

You have a different version of Flatbuffers installed

Arrow pulls and builds its own copy of Flatbuffers, but if you already have Flatbuffers installed, Arrow may find the
wrong version. If a directory like /usr/local/include/flatbuffers shows up in the output when installing
Numbuf, this may be the problem. To solve it, get rid of the old version of flatbuffers.

There is some problem with Boost

If a message like Unable to find the requested Boost libraries appears when installing Numbuf,
there may be a problem with Boost. This can happen if you installed Boost using MacPorts. This is sometimes solved
by using Brew instead.

Trouble installing or running Ray

One of the Ray libraries is compiled against the wrong version of Python

If there is a segfault or a sigabort immediately upon importing Ray, one of the components may have been compiled
against the wrong Python libraries. CMake should normally find the right version of Python, but this process is not
completely reliable. In this case, check the CMake output from installation and make sure that the version of the
Python libraries that were found match the version of Python that you’re using.

Note that it’s common to have multiple versions of Python on your machine (for example both Python 2 and Python
3). Ray will be compiled against whichever version of Python is found when you run the python command from the
command line, so make sure this is the version you wish to use.

11
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CHAPTER 5

Tutorial

To use Ray, you need to understand the following:

• How Ray executes tasks asynchronously to achieve parallelism.

• How Ray uses object IDs to represent immutable remote objects.

Overview

Ray is a Python-based distributed execution engine. The same code can be run on a single machine to achieve efficient
multiprocessing, and it can be used on a cluster for large computations.

When using Ray, several processes are involved.

• Multiple worker processes execute tasks and store results in object stores. Each worker is a separate process.

• One object store per node stores immutable objects in shared memory and allows workers to efficiently share
objects on the same node with minimal copying and deserialization.

• One local scheduler per node assigns tasks to workers on the same node.

• A global scheduler receives tasks from local schedulers and assigns them to other local schedulers.

• A driver is the Python process that the user controls. For example, if the user is running a script or using a
Python shell, then the driver is the Python process that runs the script or the shell. A driver is similar to a worker
in that it can submit tasks to its local scheduler and get objects from the object store, but it is different in that the
local scheduler will not assign tasks to the driver to be executed.

• A Redis server maintains much of the system’s state. For example, it keeps track of which objects live on which
machines and of the task specifications (but not data). It can also be queried directly for debugging purposes.

Starting Ray

To start Ray, start Python and run the following commands.

13
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import ray
ray.init()

This starts Ray.

Immutable remote objects

In Ray, we can create and compute on objects. We refer to these objects as remote objects, and we use object IDs to
refer to them. Remote objects are stored in object stores, and there is one object store per node in the cluster. In the
cluster setting, we may not actually know which machine each object lives on.

An object ID is essentially a unique ID that can be used to refer to a remote object. If you’re familiar with Futures,
our object IDs are conceptually similar.

We assume that remote objects are immutable. That is, their values cannot be changed after creation. This allows
remote objects to be replicated in multiple object stores without needing to synchronize the copies.

Put and Get

The commands ray.get and ray.put can be used to convert between Python objects and object IDs, as shown in
the example below.

x = [1, 2, 3]
ray.put(x) # ObjectID(b49a32d72057bdcfc4dda35584b3d838aad89f5d)

The command ray.put(x) would be run by a worker process or by the driver process (the driver process is the one
running your script). It takes a Python object and copies it to the local object store (here local means on the same
node). Once the object has been stored in the object store, its value cannot be changed.

In addition, ray.put(x) returns an object ID, which is essentially an ID that can be used to refer to the newly
created remote object. If we save the object ID in a variable with x_id = ray.put(x), then we can pass x_id
into remote functions, and those remote functions will operate on the corresponding remote object.

The command ray.get(x_id) takes an object ID and creates a Python object from the corresponding remote
object. For some objects like arrays, we can use shared memory and avoid copying the object. For other objects, this
copies the object from the object store to the worker process’s heap. If the remote object corresponding to the object
ID x_id does not live on the same node as the worker that calls ray.get(x_id), then the remote object will first
be transferred from an object store that has it to the object store that needs it.

x_id = ray.put([1, 2, 3])
ray.get(x_id) # [1, 2, 3]

If the remote object corresponding to the object ID x_id has not been created yet, the command ray.get(x_id)
will wait until the remote object has been created.

A very common use case of ray.get is to get a list of object IDs. In this case, you can call ray.
get(object_ids) where object_ids is a list of object IDs.

result_ids = [ray.put(i) for i in range(10)]
ray.get(result_ids) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

14 Chapter 5. Tutorial
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Asynchronous Computation in Ray

Ray enables arbitrary Python functions to be executed asynchronously. This is done by designating a Python function
as a remote function.

For example, a normal Python function looks like this.

def add1(a, b):
return a + b

A remote function looks like this.

@ray.remote
def add2(a, b):
return a + b

Remote functions

Whereas calling add1(1, 2) returns 3 and causes the Python interpreter to block until the computation has finished,
calling add2.remote(1, 2) immediately returns an object ID and creates a task. The task will be scheduled by
the system and executed asynchronously (potentially on a different machine). When the task finishes executing, its
return value will be stored in the object store.

x_id = add2.remote(1, 2)
ray.get(x_id) # 3

The following simple example demonstrates how asynchronous tasks can be used to parallelize computation.

import time

def f1():
time.sleep(1)

@ray.remote
def f2():
time.sleep(1)

# The following takes ten seconds.
[f1() for _ in range(10)]

# The following takes one second (assuming the system has at least ten CPUs).
ray.get([f2.remote() for _ in range(10)])

There is a sharp distinction between submitting a task and executing the task. When a remote function is called,
the task of executing that function is submitted to a local scheduler, and object IDs for the outputs of the task are
immediately returned. However, the task will not be executed until the system actually schedules the task on a worker.
Task execution is not done lazily. The system moves the input data to the task, and the task will execute as soon as its
input dependencies are available and there are enough resources for the computation.

When a task is submitted, each argument may be passed in by value or by object ID. For example, these lines
have the same behavior.

add2.remote(1, 2)
add2.remote(1, ray.put(2))
add2.remote(ray.put(1), ray.put(2))

5.4. Asynchronous Computation in Ray 15
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Remote functions never return actual values, they always return object IDs.

When the remote function is actually executed, it operates on Python objects. That is, if the remote function was called
with any object IDs, the system will retrieve the corresponding objects from the object store.

Note that a remote function can return multiple object IDs.

@ray.remote(num_return_vals=3)
def return_multiple():
return 1, 2, 3

a_id, b_id, c_id = return_multiple.remote()

Expressing dependencies between tasks

Programmers can express dependencies between tasks by passing the object ID output of one task as an argument to
another task. For example, we can launch three tasks as follows, each of which depends on the previous task.

@ray.remote
def f(x):
return x + 1

x = f.remote(0)
y = f.remote(x)
z = f.remote(y)
ray.get(z) # 3

The second task above will not execute until the first has finished, and the third will not execute until the second has
finished. In this example, there are no opportunities for parallelism.

The ability to compose tasks makes it easy to express interesting dependencies. Consider the following implementation
of a tree reduce.

import numpy as np

@ray.remote
def generate_data():
return np.random.normal(size=1000)

@ray.remote
def aggregate_data(x, y):
return x + y

# Generate some random data. This launches 100 tasks that will be scheduled on
# various nodes. The resulting data will be distributed around the cluster.
data = [generate_data.remote() for _ in range(100)]

# Perform a tree reduce.
while len(data) > 1:

data.append(aggregate_data.remote(data.pop(0), data.pop(0)))

# Fetch the result.
ray.get(data)

16 Chapter 5. Tutorial
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Remote Functions Within Remote Functions

So far, we have been calling remote functions only from the driver. But worker processes can also call remote func-
tions. To illustrate this, consider the following example.

@ray.remote
def sub_experiment(i, j):
# Run the jth sub-experiment for the ith experiment.
return i + j

@ray.remote
def run_experiment(i):
sub_results = []
# Launch tasks to perform 10 sub-experiments in parallel.
for j in range(10):
sub_results.append(sub_experiment.remote(i, j))

# Return the sum of the results of the sub-experiments.
return sum(ray.get(sub_results))

results = [run_experiment.remote(i) for i in range(5)]
ray.get(results) # [45, 55, 65, 75, 85]

When the remote function run_experiment is executed on a worker, it calls the remote function
sub_experiment a number of times. This is an example of how multiple experiments, each of which takes advan-
tage of parallelism internally, can all be run in parallel.

5.4. Asynchronous Computation in Ray 17
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CHAPTER 6

The Ray API

Starting Ray

There are two main ways in which Ray can be used. First, you can start all of the relevant Ray processes and shut
them all down within the scope of a single script. Second, you can connect to and use an existing Ray cluster.

Starting and stopping a cluster within a script

One use case is to start all of the relevant Ray processes when you call ray.init and shut them down when the
script exits. These processes include local and global schedulers, an object store and an object manager, a redis server,
and more.

Note: this approach is limited to a single machine.

This can be done as follows.

ray.init()

If there are GPUs available on the machine, you should specify this with the num_gpus argument. Similarly, you can
also specify the number of CPUs with num_cpus.

ray.init(num_cpus=20, num_gpus=2)

By default, Ray will use psutil.cpu_count() to determine the number of CPUs, and by default the number of
GPUs will be zero.

Instead of thinking about the number of “worker” processes on each node, we prefer to think in terms of the quantities
of CPU and GPU resources on each node and to provide the illusion of an infinite pool of workers. Tasks will be
assigned to workers based on the availability of resources so as to avoid contention and not based on the number of
available worker processes.

19
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Connecting to an existing cluster

Once a Ray cluster has been started, the only thing you need in order to connect to it is the address of the Redis server
in the cluster. In this case, your script will not start up or shut down any processes. The cluster and all of its processes
may be shared between multiple scripts and multiple users. To do this, you simply need to know the address of the
cluster’s Redis server. This can be done with a command like the following.

ray.init(redis_address="12.345.67.89:6379")

In this case, you cannot specify num_cpus or num_gpus in ray.init because that information is passed into the
cluster when the cluster is started, not when your script is started.

View the instructions for how to start a Ray cluster on multiple nodes.

ray.init(redis_address=None, node_ip_address=None, object_id_seed=None, num_workers=None,
driver_mode=0, redirect_output=False, num_cpus=None, num_gpus=None,
num_redis_shards=None)

Either connect to an existing Ray cluster or start one and connect to it.

This method handles two cases. Either a Ray cluster already exists and we just attach this driver to it, or we start
all of the processes associated with a Ray cluster and attach to the newly started cluster.

Parameters

• node_ip_address (str) – The IP address of the node that we are on.

• redis_address (str) – The address of the Redis server to connect to. If this address
is not provided, then this command will start Redis, a global scheduler, a local scheduler, a
plasma store, a plasma manager, and some workers. It will also kill these processes when
Python exits.

• object_id_seed (int) – Used to seed the deterministic generation of object IDs. The
same value can be used across multiple runs of the same job in order to generate the object
IDs in a consistent manner. However, the same ID should not be used for different jobs.

• num_workers (int) – The number of workers to start. This is only provided if re-
dis_address is not provided.

• driver_mode (bool) – The mode in which to start the driver. This should be one of
ray.SCRIPT_MODE, ray.PYTHON_MODE, and ray.SILENT_MODE.

• redirect_output (bool) – True if stdout and stderr for all the processes should be
redirected to files and false otherwise.

• num_cpus (int) – Number of cpus the user wishes all local schedulers to be configured
with.

• num_gpus (int) – Number of gpus the user wishes all local schedulers to be configured
with.

• num_redis_shards – The number of Redis shards to start in addition to the primary
Redis shard.

Returns Address information about the started processes.

Raises Exception – An exception is raised if an inappropriate combination of arguments is passed
in.

20 Chapter 6. The Ray API
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Defining remote functions

Remote functions are used to create tasks. To define a remote function, the @ray.remote decorator is placed over
the function definition.

The function can then be invoked with f.remote. Invoking the function creates a task which will be scheduled
on and executed by some worker process in the Ray cluster. The call will return an object ID (essentially a future)
representing the eventual return value of the task. Anyone with the object ID can retrieve its value, regardless of where
the task was executed (see Getting values from object IDs).

When a task executes, its outputs will be serialized into a string of bytes and stored in the object store.

Note that arguments to remote functions can be values or object IDs.

@ray.remote
def f(x):
return x + 1

x_id = f.remote(0)
ray.get(x_id) # 1

y_id = f.remote(x_id)
ray.get(y_id) # 2

If you want a remote function to return multiple object IDs, you can do that by passing the num_return_vals
argument into the remote decorator.

@ray.remote(num_return_vals=2)
def f():
return 1, 2

x_id, y_id = f.remote()
ray.get(x_id) # 1
ray.get(y_id) # 2

ray.remote(*args, **kwargs)
This decorator is used to create remote functions.

Parameters

• num_return_vals (int) – The number of object IDs that a call to this function should
return.

• num_cpus (int) – The number of CPUs needed to execute this function. This should only
be passed in when defining the remote function on the driver.

• num_gpus (int) – The number of GPUs needed to execute this function. This should
only be passed in when defining the remote function on the driver.

Getting values from object IDs

Object IDs can be converted into objects by calling ray.get on the object ID. Note that ray.get accepts either a
single object ID or a list of object IDs.

@ray.remote
def f():
return {'key1': ['value']}

6.2. Defining remote functions 21
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# Get one object ID.
ray.get(f.remote()) # {'key1': ['value']}
# Get a list of object IDs.
ray.get([f.remote() for _ in range(2)]) # [{'key1': ['value']}, {'key1': ['value']}]

Numpy arrays

Numpy arrays are handled more efficiently than other data types, so use numpy arrays whenever possible.

Any numpy arrays that are part of the serialized object will not be copied out of the object store. They will remain
in the object store and the resulting deserialized object will simply have a pointer to the relevant place in the object
store’s memory.

Since objects in the object store are immutable, this means that if you want to mutate a numpy array that was returned
by a remote function, you will have to first copy it.

ray.get(object_ids, worker=<ray.worker.Worker object>)
Get a remote object or a list of remote objects from the object store.

This method blocks until the object corresponding to the object ID is available in the local object store. If this
object is not in the local object store, it will be shipped from an object store that has it (once the object has been
created). If object_ids is a list, then the objects corresponding to each object in the list will be returned.

Parameters object_ids – Object ID of the object to get or a list of object IDs to get.

Returns A Python object or a list of Python objects.

Putting objects in the object store

The primary way that objects are placed in the object store is by being returned by a task. However, it is also possible
to directly place objects in the object store using ray.put.

x_id = ray.put(1)
ray.get(x_id) # 1

The main reason to use ray.put is that you want to pass the same large object into a number of tasks. By first doing
ray.put and then passing the resulting object ID into each of the tasks, the large object is copied into the object
store only once, whereas when we directly pass the object in, it is copied multiple times.

import numpy as np

@ray.remote
def f(x):
pass

x = np.zeros(10 ** 6)

# Alternative 1: Here, x is copied into the object store 10 times.
[f.remote(x) for _ in range(10)]

# Alternative 2: Here, x is copied into the object store once.
x_id = ray.put(x)
[f.remote(x_id) for _ in range(10)]

Note that ray.put is called under the hood in a couple situations.

22 Chapter 6. The Ray API
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• It is called on the values returned by a task.

• It is called on the arguments to a task, unless the arguments are Python primitives like integers or short strings,
lists, tuples, or dictionaries.

ray.put(value, worker=<ray.worker.Worker object>)
Store an object in the object store.

Parameters value – The Python object to be stored.

Returns The object ID assigned to this value.

Waiting for a subset of tasks to finish

It is often desirable to adapt the computation being done based on when different tasks finish. For example, if a bunch
of tasks each take a variable length of time, and their results can be processed in any order, then it makes sense to
simply process the results in the order that they finish. In other settings, it makes sense to discard straggler tasks
whose results may not be needed.

To do this, we introduce the ray.wait primitive, which takes a list of object IDs and returns when a subset of them
are available. By default it blocks until a single object is available, but the num_returns value can be specified to
wait for a different number. If a timeout argument is passed in, it will block for at most that many milliseconds and
may return a list with fewer than num_returns elements.

The ray.wait function returns two lists. The first list is a list of object IDs of available objects (of length at most
num_returns), and the second list is a list of the remaining object IDs, so the combination of these two lists is equal
to the list passed in to ray.wait (up to ordering).

import time
import numpy as np

@ray.remote
def f(n):
time.sleep(n)
return n

# Start 3 tasks with different durations.
results = [f.remote(i) for i in range(3)]
# Block until 2 of them have finished.
ready_ids, remaining_ids = ray.wait(results, num_returns=2)

# Start 5 tasks with different durations.
results = [f.remote(i) for i in range(3)]
# Block until 4 of them have finished or 2.5 seconds pass.
ready_ids, remaining_ids = ray.wait(results, num_returns=4, timeout=2500)

It is easy to use this construct to create an infinite loop in which multiple tasks are executing, and whenever one task
finishes, a new one is launched.

@ray.remote
def f():
return 1

# Start 5 tasks.
remaining_ids = [f.remote() for i in range(5)]
# Whenever one task finishes, start a new one.
for _ in range(100):
ready_ids, remaining_ids = ray.wait(remaining_ids)

6.5. Waiting for a subset of tasks to finish 23
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# Get the available object and do something with it.
print(ray.get(ready_ids))
# Start a new task.
remaining_ids.append(f.remote())

ray.wait(object_ids, num_returns=1, timeout=None, worker=<ray.worker.Worker object>)
Return a list of IDs that are ready and a list of IDs that are not ready.

If timeout is set, the function returns either when the requested number of IDs are ready or when the timeout is
reached, whichever occurs first. If it is not set, the function simply waits until that number of objects is ready
and returns that exact number of objectids.

This method returns two lists. The first list consists of object IDs that correspond to objects that are stored in
the object store. The second list corresponds to the rest of the object IDs (which may or may not be ready).

Parameters

• object_ids (List[ObjectID]) – List of object IDs for objects that may or may not
be ready. Note that these IDs must be unique.

• num_returns (int) – The number of object IDs that should be returned.

• timeout (int) – The maximum amount of time in milliseconds to wait before returning.

Returns A list of object IDs that are ready and a list of the remaining object IDs.

Viewing errors

Keeping track of errors that occur in different processes throughout a cluster can be challenging. There are a couple
mechanisms to help with this.

1. If a task throws an exception, that exception will be printed in the background of the driver process.

2. If ray.get is called on an object ID whose parent task threw an exception before creating the object, the
exception will be re-raised by ray.get.

The errors will also be accumulated in Redis and can be accessed with ray.error_info. Normally, you shouldn’t
need to do this, but it is possible.

@ray.remote
def f():
raise Exception("This task failed!!")

f.remote() # An error message will be printed in the background.

# Wait for the error to propagate to Redis.
import time
time.sleep(1)

ray.error_info() # This returns a list containing the error message.

ray.error_info(worker=<ray.worker.Worker object>)
Return information about failed tasks.
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CHAPTER 7

Actors

Remote functions in Ray should be thought of as functional and side-effect free. Restricting ourselves only to remote
functions gives us distributed functional programming, which is great for many use cases, but in practice is a bit
limited.

Ray extends the dataflow model with actors. An actor is essentially a stateful worker (or a service). When a new actor
is instantiated, a new worker is created, and methods of the actor are scheduled on that specific worker and can access
and mutate the state of that worker.

Suppose we’ve already started Ray.

import ray
ray.init()

Defining and creating an actor

An actor can be defined as follows.

import gym

@ray.remote
class GymEnvironment(object):

def __init__(self, name):
self.env = gym.make(name)

def step(self, action):
return self.env.step(action)

def reset(self):
self.env.reset()

Two copies of the actor can be created as follows.

a1 = GymEnvironment("Pong-v0")
a2 = GymEnvironment("Pong-v0")
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When the first line is run, the following happens.

• Some node in the cluster will be chosen, and a worker will be created on that node (by the local scheduler on
that node) for the purpose of running methods called on the actor.

• A GymEnvironment object will be created on that worker and the GymEnvironment constructor will run.

When the second line is run, another node (possibly the same one) is chosen, another worker is created on that node
for the purpose of running methods called on the second actor, and another GymEnvironment object is constructed
on the newly-created worker.

Using an actor

We can use the actor by calling one of its methods.

a1.step.remote(0)
a2.step.remote(0)

When a1.step.remote(0) is called, a task is created and scheduled on the first actor. This scheduling procedure
bypasses the global scheduler, and is assigned directly to the local scheduler responsible for the actor by the driver’s
local scheduler. Since the method call is a task, a1.step(0) returns an object ID. We can call ray.get on the object
ID to retrieve the actual value.

The call to a2.step.remote(0) generates a task which is scheduled on the second actor. Since these two tasks run
on different actors, they can be executed in parallel (note that only actor methods will be scheduled on actor workers,
not regular remote functions).

On the other hand, methods called on the same actor are executed serially and share in the order that they are called
and share state with one another. We illustrate this with a simple example.

@ray.remote
class Counter(object):

def __init__(self):
self.value = 0

def increment(self):
self.value += 1
return self.value

# Create ten actors.
counters = [Counter() for _ in range(10)]

# Increment each counter once and get the results. These tasks all happen in
# parallel.
results = ray.get([c.increment.remote() for c in counters])
print(results) # prints [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

# Increment the first counter five times. These tasks are executed serially
# and share state.
results = ray.get([counters[0].increment.remote() for _ in range(5)])
print(results) # prints [2, 3, 4, 5, 6]

Using GPUs on actors

A common use case is for an actor to contain a neural network. For example, suppose we have a method for construct-
ing a neural net.
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import tensorflow as tf

def construct_network():
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])

W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_
→˓indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

return x, y_, train_step, accuracy

We can then define an actor for this network as follows.

import os

# Define an actor that runs on GPUs. If there are no GPUs, then simply use
# ray.remote without any arguments and no parentheses.
@ray.remote(num_gpus=1)
class NeuralNetOnGPU(object):

def __init__(self):
# Set an environment variable to tell TensorFlow which GPUs to use. Note
# that this must be done before the call to tf.Session.
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join([str(i) for i in ray.get_gpu_ids()])
with tf.Graph().as_default():

with tf.device("/gpu:0"):
self.x, self.y_, self.train_step, self.accuracy = construct_network()
# Allow this to run on CPUs if there aren't any GPUs.
config = tf.ConfigProto(allow_soft_placement=True)
self.sess = tf.Session(config=config)
# Initialize the network.
init = tf.global_variables_initializer()
self.sess.run(init)

To indicate that an actor requires one GPU, we pass in num_gpus=1 to ray.remote. Note that in order for this to
work, Ray must have been started with some GPUs, e.g., via ray.init(num_gpus=2). Otherwise, when you try
to instantiate the GPU version with NeuralNetOnGPU.remote(), an exception will be thrown saying that there
aren’t enough GPUs in the system.

When the actor is created, it will have access to a list of the IDs of the GPUs that it is allowed to use via ray.
get_gpu_ids(). This is a list of integers, like [], or [1], or [2, 5, 6]. Since we passed in ray.
remote(num_gpus=1), this list will have length one.

We can put this all together as follows.

import os
import ray
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

ray.init(num_gpus=8)
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def construct_network():
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])

W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_
→˓indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

return x, y_, train_step, accuracy

@ray.remote(num_gpus=1)
class NeuralNetOnGPU(object):

def __init__(self, mnist_data):
self.mnist = mnist_data
# Set an environment variable to tell TensorFlow which GPUs to use. Note
# that this must be done before the call to tf.Session.
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join([str(i) for i in ray.get_gpu_ids()])
with tf.Graph().as_default():

with tf.device("/gpu:0"):
self.x, self.y_, self.train_step, self.accuracy = construct_network()
# Allow this to run on CPUs if there aren't any GPUs.
config = tf.ConfigProto(allow_soft_placement=True)
self.sess = tf.Session(config=config)
# Initialize the network.
init = tf.global_variables_initializer()
self.sess.run(init)

def train(self, num_steps):
for _ in range(num_steps):

batch_xs, batch_ys = self.mnist.train.next_batch(100)
self.sess.run(self.train_step, feed_dict={self.x: batch_xs, self.y_: batch_ys})

def get_accuracy(self):
return self.sess.run(self.accuracy, feed_dict={self.x: self.mnist.test.images,

self.y_: self.mnist.test.labels})

# Load the MNIST dataset and tell Ray how to serialize the custom classes.
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)

# Create the actor.
nn = NeuralNetOnGPU.remote(mnist)

# Run a few steps of training and print the accuracy.
nn.train.remote(100)
accuracy = ray.get(nn.get_accuracy.remote())
print("Accuracy is {}.".format(accuracy))
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Hyperparameter Optimization

This document provides a walkthrough of the hyperparameter optimization example. To run the application, first
install some dependencies.

pip install tensorflow

You can view the code for this example.

The simple script that processes results as they become available and launches new experiments can be run as follows.

python ray/examples/hyperopt/hyperopt_simple.py --trials=5 --steps=10

The variant that divides training into multiple segments and aggressively terminates poorly performing models can be
run as follows.

python ray/examples/hyperopt/hyperopt_adaptive.py --num-starting-segments=5 \
--num-segments=10 \
--steps-per-segment=20

Machine learning algorithms often have a number of hyperparameters whose values must be chosen by the practitioner.
For example, an optimization algorithm may have a step size, a decay rate, and a regularization coefficient. In a deep
network, the network parameterization itself (e.g., the number of layers and the number of units per layer) can be
considered a hyperparameter.

Choosing these parameters can be challenging, and so a common practice is to search over the space of hyperparame-
ters. One approach that works surprisingly well is to randomly sample different options.

Problem Setup

Suppose that we want to train a convolutional network, but we aren’t sure how to choose the following hyperparame-
ters:

• the learning rate

• the batch size
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• the dropout probability

• the standard deviation of the distribution from which to initialize the network weights

Suppose that we’ve defined a remote function train_cnn_and_compute_accuracy, which takes values for
these hyperparameters as its input (along with the dataset), trains a convolutional network using those hyperparameters,
and returns the accuracy of the trained model on a validation set.

import numpy as np
import ray

@ray.remote
def train_cnn_and_compute_accuracy(hyperparameters,

train_images,
train_labels,
validation_images,
validation_labels):

# Construct a deep network, train it, and return the accuracy on the
# validation data.
return np.random.uniform(0, 1)

Basic random search

Something that works surprisingly well is to try random values for the hyperparameters. For example, we can write a
function that randomly generates hyperparameter configurations.

def generate_hyperparameters():
# Randomly choose values for the hyperparameters.
return {"learning_rate": 10 ** np.random.uniform(-5, 5),

"batch_size": np.random.randint(1, 100),
"dropout": np.random.uniform(0, 1),
"stddev": 10 ** np.random.uniform(-5, 5)}

In addition, let’s assume that we’ve started Ray and loaded some data.

import ray

ray.init()

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
train_images = ray.put(mnist.train.images)
train_labels = ray.put(mnist.train.labels)
validation_images = ray.put(mnist.validation.images)
validation_labels = ray.put(mnist.validation.labels)

Then basic random hyperparameter search looks something like this. We launch a bunch of experiments, and we get
the results.

# Generate a bunch of hyperparameter configurations.
hyperparameter_configurations = [generate_hyperparameters() for _ in range(20)]

# Launch some experiments.
results = []
for hyperparameters in hyperparameter_configurations:

results.append(train_cnn_and_compute_accuracy.remote(hyperparameters,
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train_images,
train_labels,
validation_images,
validation_labels))

# Get the results.
accuracies = ray.get(results)

Then we can inspect the contents of accuracies and see which set of hyperparameters worked the best. Note that in
the above example, the for loop will run instantaneously and the program will block in the call to ray.get, which
will wait until all of the experiments have finished.

Processing results as they become available

One problem with the above approach is that you have to wait for all of the experiments to finish before you can process
the results. Instead, you may want to process the results as they become available, perhaps in order to adaptively choose
new experiments to run, or perhaps simply so you know how well the experiments are doing. To process the results as
they become available, we can use the ray.wait primitive.

The most simple usage is the following. This example is implemented in more detail in driver.py.

# Launch some experiments.
remaining_ids = []
for hyperparameters in hyperparameter_configurations:

remaining_ids.append(train_cnn_and_compute_accuracy.remote(hyperparameters,
train_images,
train_labels,
validation_images,
validation_labels))

# Whenever a new experiment finishes, print the value and start a new
# experiment.
for i in range(100):
ready_ids, remaining_ids = ray.wait(remaining_ids, num_returns=1)
accuracy = ray.get(ready_ids[0])
print("Accuracy is {}".format(accuracy))
# Start a new experiment.
new_hyperparameters = generate_hyperparameters()
remaining_ids.append(train_cnn_and_compute_accuracy.remote(new_hyperparameters,

train_images,
train_labels,
validation_images,
validation_labels))

More sophisticated hyperparameter search

Hyperparameter search algorithms can get much more sophisticated. So far, we’ve been treating the function
train_cnn_and_compute_accuracy as a black box, that we can choose its inputs and inspect its outputs,
but once we decide to run it, we have to run it until it finishes.

However, there is often more structure to be exploited. For example, if the training procedure is going poorly, we can
end the session early and invest more resources in the more promising hyperparameter experiments. And if we’ve
saved the state of the training procedure, we can always restart it again later.
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This is one of the ideas of the Hyperband algorithm. Start with a huge number of hyperparameter configurations,
aggressively stop the bad ones, and invest more resources in the promising experiments.

To implement this, we can first adapt our training method to optionally take a model and to return the updated model.

@ray.remote
def train_cnn_and_compute_accuracy(hyperparameters, model=None):
# Construct a deep network, train it, and return the accuracy on the
# validation data as well as the latest version of the model. If the model
# argument is not None, this will continue training an existing model.
validation_accuracy = np.random.uniform(0, 1)
new_model = model
return validation_accuracy, new_model

Here’s a different variant that uses the same principles. Divide each training session into a series of shorter training
sessions. Whenever a short session finishes, if it still looks promising, then continue running it. If it isn’t doing well,
then terminate it and start a new experiment.

import numpy as np

def is_promising(model):
# Return true if the model is doing well and false otherwise. In practice,
# this function will want more information than just the model.
return np.random.choice([True, False])

# Start 10 experiments.
remaining_ids = []
for _ in range(10):
experiment_id = train_cnn_and_compute_accuracy.remote(hyperparameters, model=None)
remaining_ids.append(experiment_id)

accuracies = []
for i in range(100):

# Whenever a segment of an experiment finishes, decide if it looks promising
# or not.
ready_ids, remaining_ids = ray.wait(remaining_ids, num_returns=1)
experiment_id = ready_ids[0]
current_accuracy, current_model = ray.get(experiment_id)
accuracies.append(current_accuracy)

if is_promising(experiment_id):
# Continue running the experiment.
experiment_id = train_cnn_and_compute_accuracy.remote(hyperparameters,

model=current_model)
else:
# Start a new experiment.
experiment_id = train_cnn_and_compute_accuracy.remote(hyperparameters)

remaining_ids.append(experiment_id)
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CHAPTER 9

Learning to Play Pong

In this example, we’ll train a very simple neural network to play Pong using the OpenAI Gym. This application is
adapted, with minimal modifications, from Andrej Karpathy’s code (see the accompanying blog post).

You can view the code for this example.

To run the application, first install some dependencies.

pip install gym[atari]

Then you can run the example as follows.

python ray/examples/rl_pong/driver.py --batch-size=10

To run the example on a cluster, simply pass in the flag --redis-address=<redis-address>.

At the moment, on a large machine with 64 physical cores, computing an update with a batch of size 1 takes about 1
second, a batch of size 10 takes about 2.5 seconds. A batch of size 60 takes about 3 seconds. On a cluster with 11
nodes, each with 18 physical cores, a batch of size 300 takes about 10 seconds. If the numbers you see differ from
these by much, take a look at the Troubleshooting section at the bottom of this page and consider submitting an issue.

Note that these times depend on how long the rollouts take, which in turn depends on how well the policy is doing. For
example, a really bad policy will lose very quickly. As the policy learns, we should expect these numbers to increase.

The distributed version

At the core of Andrej’s code, a neural network is used to define a “policy” for playing Pong (that is, a function that
chooses an action given a state). In the loop, the network repeatedly plays games of Pong and records a gradient from
each game. Every ten games, the gradients are combined together and used to update the network.

This example is easy to parallelize because the network can play ten games in parallel and no information needs to be
shared between the games.

We define an actor for the Pong environment, which includes a method for performing a rollout and computing a
gradient update. Below is pseudocode for the actor.
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@ray.remote
class PongEnv(object):

def __init__(self):
# Tell numpy to only use one core. If we don't do this, each actor may try
# to use all of the cores and the resulting contention may result in no
# speedup over the serial version. Note that if numpy is using OpenBLAS,
# then you need to set OPENBLAS_NUM_THREADS=1, and you probably need to do
# it from the command line (so it happens before numpy is imported).
os.environ["MKL_NUM_THREADS"] = "1"
self.env = gym.make("Pong-v0")

def compute_gradient(self, model):
# Reset the game.
observation = self.env.reset()
while not done:

# Choose an action using policy_forward.
# Take the action and observe the new state of the world.

# Compute a gradient using policy_backward. Return the gradient and reward.
return [gradient, reward_sum]

We then create a number of actors, so that we can perform rollouts in parallel.

actors = [PongEnv() for _ in range(batch_size)]

Calling this remote function inside of a for loop, we launch multiple tasks to perform rollouts and compute gradients
in parallel.

model_id = ray.put(model)
actions = []
# Launch tasks to compute gradients from multiple rollouts in parallel.
for i in range(batch_size):
action_id = actors[i].compute_gradient.remote(model_id)
actions.append(action_id)

Troubleshooting

If you are not seeing any speedup from Ray (and assuming you’re using a multicore machine), the problem may be
that numpy is trying to use multiple threads. When many processes are each trying to use multiple threads, the result
is often no speedup. When running this example, try opening up top and seeing if some python processes are using
more than 100% CPU. If yes, then this is likely the problem.

The example tries to set MKL_NUM_THREADS=1 in the actor. However, that only works if the numpy on your machine
is actually using MKL. If it’s using OpenBLAS, then you’ll need to set OPENBLAS_NUM_THREADS=1. In fact, you
may have to do this before running the script (it may need to happen before numpy is imported).

export OPENBLAS_NUM_THREADS=1
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Policy Gradient Methods

This code shows how to do reinforcement learning with policy gradient methods. View the code for this example.

To run this example, you will need to install TensorFlow with GPU support (at least version 1.0.0) and a few other
dependencies.

pip install gym[atari]
pip install tensorflow

Then install the package as follows.

cd ray/examples/policy_gradient/
python setup.py install

Then you can run the example as follows.

python ray/examples/policy_gradient/examples/example.py --environment=Pong-ram-v3

This will train an agent on the Pong-ram-v3 Atari environment. You can also try passing in the Pong-v0 environ-
ment or the CartPole-v0 environment. If you wish to use a different environment, you will need to change a few
lines in example.py.
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ResNet

This code adapts the TensorFlow ResNet example to do data parallel training across multiple GPUs using Ray. View
the code for this example.

To run the example, you will need to install TensorFlow (at least version 1.0.0). Then you can run the example as
follows.

First download the CIFAR-10 or CIFAR-100 dataset.

# Get the CIFAR-10 dataset.
curl -o cifar-10-binary.tar.gz https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz
tar -xvf cifar-10-binary.tar.gz

# Get the CIFAR-100 dataset.
curl -o cifar-100-binary.tar.gz https://www.cs.toronto.edu/~kriz/cifar-100-binary.tar.
→˓gz
tar -xvf cifar-100-binary.tar.gz

Then run the training script that matches the dataset you downloaded.

# Train Resnet on CIFAR-10.
python ray/examples/resnet/resnet_main.py \

--eval_dir=/tmp/resnet-model/eval \
--train_data_path=cifar-10-batches-bin/data_batch* \
--eval_data_path=cifar-10-batches-bin/test_batch.bin \
--dataset=cifar10 \
--num_gpus=1

# Train Resnet on CIFAR-100.
python ray/examples/resnet/resnet_main.py \

--eval_dir=/tmp/resnet-model/eval \
--train_data_path=cifar-100-binary/train.bin \
--eval_data_path=cifar-100-binary/test.bin \
--dataset=cifar100 \
--num_gpus=1
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The script will print out the IP address that the log files are stored on. In the single-node case, you can ignore this and
run tensorboard on the current machine.

python -m tensorflow.tensorboard --logdir=/tmp/resnet-model

If you are running Ray on multiple nodes, you will need to go to the node at the IP address printed, and run the
command.

The core of the script is the actor definition.

@ray.remote(num_gpus=1)
class ResNetTrainActor(object):

def __init__(self, data, dataset, num_gpus):
# data is the preprocessed images and labels extracted from the dataset.
# Thus, every actor has its own copy of the data.
# Set the CUDA_VISIBLE_DEVICES environment variable in order to restrict
# which GPUs TensorFlow uses. Note that this only works if it is done before
# the call to tf.Session.
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join([str(i) for i in ray.get_gpu_ids()])
with tf.Graph().as_default():

with tf.device('/gpu:0'):
# We omit the code here that actually constructs the residual network
# and initializes it. Uses the definition in the Tensorflow Resnet Example.

def compute_steps(self, weights):
# This method sets the weights in the network, runs some training steps,
# and returns the new weights. self.model.variables is a TensorFlowVariables
# class that we pass the train operation into.
self.model.variables.set_weights(weights)
for i in range(self.steps):

self.model.variables.sess.run(self.model.train_op)
return self.model.variables.get_weights()

The main script first creates one actor for each GPU, or a single actor if num_gpus is zero.

train_actors = [ResNetTrainActor.remote(train_data, dataset, num_gpus) for _ in
→˓range(num_gpus)]

Then the main loop passes the same weights to every model, performs updates on each model, averages the updates,
and puts the new weights in the object store.

while True:
all_weights = ray.get([actor.compute_steps.remote(weight_id) for actor in train_

→˓actors])
mean_weights = {k: sum([weights[k] for weights in all_weights]) / num_gpus for k in

→˓all_weights[0]}
weight_id = ray.put(mean_weights)
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CHAPTER 12

Asynchronous Advantage Actor Critic (A3C)

This document walks through A3C, a state-of-the-art reinforcement learning algorithm. In this example, we adapt the
OpenAI Universe Starter Agent implementation of A3C to use Ray.

View the code for this example.

To run the application, first install ray and then some dependencies:

pip install tensorflow
pip install six
pip install gym[atari]
pip install opencv-python
pip install scipy

You can run the code with

python ray/examples/a3c/driver.py [num_workers]

Reinforcement Learning

Reinforcement Learning is an area of machine learning concerned with learning how an agent should act in an
environment so as to maximize some form of cumulative reward. Typically, an agent will observe the current state of
the environment and take an action based on its observation. The action will change the state of the environment and
will provide some numerical reward (or penalty) to the agent. The agent will then take in another observation and the
process will repeat. The mapping from state to action is a policy, and in reinforcement learning, this policy is often
represented with a deep neural network.

The environment is often a simulator (for example, a physics engine), and reinforcement learning algorithms often
involve trying out many different sequences of actions within these simulators. These rollouts can often be done in
parallel.

Policies are often initialized randomly and incrementally improved via simulation within the environment. To im-
prove a policy, gradient-based updates may be computed based on the sequences of states and actions that have been
observed. The gradient calculation is often delayed until a termination condition is reached (that is, the simulation
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has finished) so that delayed rewards have been properly accounted for. However, in the Actor Critic model, we can
begin the gradient calculation at any point in the simulation rollout by predicting future rewards with a Value Function
approximator.

In our A3C implementation, each worker, implemented as a Ray actor, continuously simulates the environment. The
driver will create a task that runs some steps of the simulator using the latest model, computes a gradient update, and
returns the update to the driver. Whenever a task finishes, the driver will use the gradient update to update the model
and will launch a new task with the latest model.

There are two main parts to the implementation - the driver and the worker.

Worker Code Walkthrough

We use a Ray Actor to simulate the environment.

import numpy as np
import ray

@ray.remote
class Runner(object):
"""Actor object to start running simulation on workers.

Gradient computation is also executed on this object."""
def __init__(self, env_name, actor_id):
# starts simulation environment, policy, and thread.
# Thread will continuously interact with the simulation environment
self.env = env = create_env(env_name)
self.id = actor_id
self.policy = LSTMPolicy()
self.runner = RunnerThread(env, self.policy, 20)
self.start()

def start(self):
# starts the simulation thread
self.runner.start_runner()

def pull_batch_from_queue(self):
# Implementation details removed - gets partial rollout from queue
return rollout

def compute_gradient(self, params):
self.policy.set_weights(params)
rollout = self.pull_batch_from_queue()
batch = process_rollout(rollout, gamma=0.99, lambda_=1.0)
gradient = self.policy.get_gradients(batch)
info = {"id": self.id,

"size": len(batch.a)}
return gradient, info

Driver Code Walkthrough

The driver manages the coordination among workers and handles updating the global model parameters. The main
training script looks like the following.
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import numpy as np
import ray

def train(num_workers, env_name="PongDeterministic-v3"):
# Setup a copy of the environment
# Instantiate a copy of the policy - mainly used as a placeholder
env = create_env(env_name, None, None)
policy = LSTMPolicy(env.observation_space.shape, env.action_space.n, 0)
obs = 0

# Start simulations on actors
agents = [Runner(env_name, i) for i in range(num_workers)]

# Start gradient calculation tasks on each actor
parameters = policy.get_weights()
gradient_list = [agent.compute_gradient.remote(parameters) for agent in agents]

while True: # Replace with your termination condition
# wait for some gradient to be computed - unblock as soon as the earliest arrives
done_id, gradient_list = ray.wait(gradient_list)

# get the results of the task from the object store
gradient, info = ray.get(done_id)[0]
obs += info["size"]

# apply update, get the weights from the model, start a new task on the same
→˓actor object

policy.model_update(gradient)
parameters = policy.get_weights()
gradient_list.extend([agents[info["id"]].compute_gradient(parameters)])

return policy

Benchmarks and Visualization

For the PongDeterministic-v3 and an Amazon EC2 m4.16xlarge instance, we are able to train the agent with
16 workers in around 15 minutes. With 8 workers, we can train the agent in around 25 minutes.

You can visualize performance by running tensorboard --logdir [directory] in a separate screen, where
[directory] is defaulted to ./results/. If you are running multiple experiments, be sure to vary the directory
to which Tensorflow saves its progress (found in driver.py).
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CHAPTER 13

Batch L-BFGS

This document provides a walkthrough of the L-BFGS example. To run the application, first install these dependencies.

pip install tensorflow
pip install scipy

Then you can run the example as follows.

python ray/examples/lbfgs/driver.py

Optimization is at the heart of many machine learning algorithms. Much of machine learning involves specifying a loss
function and finding the parameters that minimize the loss. If we can compute the gradient of the loss function, then
we can apply a variety of gradient-based optimization algorithms. L-BFGS is one such algorithm. It is a quasi-Newton
method that uses gradient information to approximate the inverse Hessian of the loss function in a computationally
efficient manner.

The serial version

First we load the data in batches. Here, each element in batches is a tuple whose first component is a batch of 100
images and whose second component is a batch of the 100 corresponding labels. For simplicity, we use TensorFlow’s
built in methods for loading the data.

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
batch_size = 100
num_batches = mnist.train.num_examples // batch_size
batches = [mnist.train.next_batch(batch_size) for _ in range(num_batches)]

Now, suppose we have defined a function which takes a set of model parameters theta and a batch of data (both
images and labels) and computes the loss for that choice of model parameters on that batch of data. Similarly, suppose
we’ve also defined a function that takes the same arguments and computes the gradient of the loss for that choice of
model parameters.

43



Ray Documentation, Release 0.01

def loss(theta, xs, ys):
# compute the loss on a batch of data
return loss

def grad(theta, xs, ys):
# compute the gradient on a batch of data
return grad

def full_loss(theta):
# compute the loss on the full data set
return sum([loss(theta, xs, ys) for (xs, ys) in batches])

def full_grad(theta):
# compute the gradient on the full data set
return sum([grad(theta, xs, ys) for (xs, ys) in batches])

Since we are working with a small dataset, we don’t actually need to separate these methods into the part that operates
on a batch and the part that operates on the full dataset, but doing so will make the distributed version clearer.

Now, if we wish to optimize the loss function using L-BFGS, we simply plug these functions, along with an initial
choice of model parameters, into scipy.optimize.fmin_l_bfgs_b.

theta_init = 1e-2 * np.random.normal(size=dim)
result = scipy.optimize.fmin_l_bfgs_b(full_loss, theta_init, fprime=full_grad)

The distributed version

In this example, the computation of the gradient itself can be done in parallel on a number of workers or machines.

First, let’s turn the data into a collection of remote objects.

batch_ids = [(ray.put(xs), ray.put(ys)) for (xs, ys) in batches]

We can load the data on the driver and distribute it this way because MNIST easily fits on a single machine. However,
for larger data sets, we will need to use remote functions to distribute the loading of the data.

Now, lets turn loss and grad into methods of an actor that will contain our network.

class Network(object):
def __init__():
# Initialize network.

def loss(theta, xs, ys):
# compute the loss
return loss

def grad(theta, xs, ys):
# compute the gradient
return grad

Now, it is easy to speed up the computation of the full loss and the full gradient.

def full_loss(theta):
theta_id = ray.put(theta)
loss_ids = [actor.loss(theta_id) for actor in actors]
return sum(ray.get(loss_ids))
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def full_grad(theta):
theta_id = ray.put(theta)
grad_ids = [actor.grad(theta_id) for actor in actors]
return sum(ray.get(grad_ids)).astype("float64") # This conversion is necessary for

→˓use with fmin_l_bfgs_b.

Note that we turn theta into a remote object with the line theta_id = ray.put(theta) before passing it
into the remote functions. If we had written

[actor.loss(theta_id) for actor in actors]

instead of

theta_id = ray.put(theta)
[actor.loss(theta_id) for actor in actors]

then each task that got sent to the scheduler (one for every element of batch_ids) would have had a copy of theta
serialized inside of it. Since theta here consists of the parameters of a potentially large model, this is inefficient.
Large objects should be passed by object ID to remote functions and not by value.

We use remote actors and remote objects internally in the implementation of full_loss and full_grad, but the
user-facing behavior of these methods is identical to the behavior in the serial version.

We can now optimize the objective with the same function call as before.

theta_init = 1e-2 * np.random.normal(size=dim)
result = scipy.optimize.fmin_l_bfgs_b(full_loss, theta_init, fprime=full_grad)
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CHAPTER 14

Evolution Strategies

This document provides a walkthrough of the evolution strategies example. To run the application, first install some
dependencies.

pip install tensorflow
pip install gym

You can view the code for this example.

The script can be run as follows. Note that the configuration is tuned to work on the Humanoid-v1 gym environment.

python examples/evolution_strategies/evolution_strategies.py

At the heart of this example, we define a Worker class. These workers have a method do_rollouts, which will
be used to perform simulate randomly perturbed policies in a given environment.

@ray.remote
class Worker(object):
def __init__(self, config, policy_params, env_name, noise):
self.env = # Initialize environment.
self.policy = # Construct policy.
# Details omitted.

def do_rollouts(self, params):
# Set the network weights.
self.policy.set_trainable_flat(params)
perturbation = # Generate a random perturbation to the policy.

self.policy.set_trainable_flat(params + perturbation)
# Do rollout with the perturbed policy.

self.policy.set_trainable_flat(params - perturbation)
# Do rollout with the perturbed policy.

# Return the rewards.
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In the main loop, we create a number of actors with this class.

workers = [Worker.remote(config, policy_params, env_name, noise_id)
for _ in range(num_workers)]

We then enter an infinite loop in which we use the actors to perform rollouts and use the rewards from the rollouts to
update the policy.

while True:
# Get the current policy weights.
theta = policy.get_trainable_flat()
# Put the current policy weights in the object store.
theta_id = ray.put(theta)
# Use the actors to do rollouts, note that we pass in the ID of the policy
# weights.
rollout_ids = [worker.do_rollouts.remote(theta_id), for worker in workers]
# Get the results of the rollouts.
results = ray.get(rollout_ids)
# Update the policy.
optimizer.update(...)

In addition, note that we create a large object representing a shared block of random noise. We then put the block in
the object store so that each Worker actor can use it without creating its own copy.

@ray.remote
def create_shared_noise():
noise = np.random.randn(250000000)
return noise

noise_id = create_shared_noise.remote()

Recall that the noise_id argument is passed into the actor constructor.
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CHAPTER 15

Using Ray with TensorFlow

This document describes best practices for using Ray with TensorFlow.

To see more involved examples using TensorFlow, take a look at hyperparameter optimization, A3C, ResNet, Policy
Gradients, and LBFGS.

If you are training a deep network in the distributed setting, you may need to ship your deep network between processes
(or machines). For example, you may update your model on one machine and then use that model to compute a gradient
on another machine. However, shipping the model is not always straightforward.

For example, a straightforward attempt to pickle a TensorFlow graph gives mixed results. Some examples fail, and
some succeed (but produce very large strings). The results are similar with other pickling libraries as well.

Furthermore, creating a TensorFlow graph can take tens of seconds, and so serializing a graph and recreating it in
another process will be inefficient. The better solution is to create the same TensorFlow graph on each worker once at
the beginning and then to ship only the weights between the workers.

Suppose we have a simple network definition (this one is modified from the TensorFlow documentation).

import tensorflow as tf
import numpy as np

x_data = tf.placeholder(tf.float32, shape=[100])
y_data = tf.placeholder(tf.float32, shape=[100])

w = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = w * x_data + b

loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
grads = optimizer.compute_gradients(loss)
train = optimizer.apply_gradients(grads)

init = tf.global_variables_initializer()
sess = tf.Session()

49

http://ray.readthedocs.io/en/latest/example-hyperopt.html
http://ray.readthedocs.io/en/latest/example-a3c.html
http://ray.readthedocs.io/en/latest/example-resnet.html
http://ray.readthedocs.io/en/latest/example-policy-gradient.html
http://ray.readthedocs.io/en/latest/example-policy-gradient.html
http://ray.readthedocs.io/en/latest/example-lbfgs.html


Ray Documentation, Release 0.01

To extract the weights and set the weights, you can use the following helper method.

import ray
variables = ray.experimental.TensorFlowVariables(loss, sess)

The TensorFlowVariables object provides methods for getting and setting the weights as well as collecting all
of the variables in the model.

Now we can use these methods to extract the weights, and place them back in the network as follows.

# First initialize the weights.
sess.run(init)
# Get the weights
weights = variables.get_weights() # Returns a dictionary of numpy arrays
# Set the weights
variables.set_weights(weights)

Note: If we were to set the weights using the assign method like below, each call to assign would add a node to
the graph, and the graph would grow unmanageably large over time.

w.assign(np.zeros(1)) # This adds a node to the graph every time you call it.
b.assign(np.zeros(1)) # This adds a node to the graph every time you call it.

Complete Example

Putting this all together, we would first embed the graph in an actor. Within the actor, we would use the
get_weights and set_weights methods of the TensorFlowVariables class. We would then use those
methods to ship the weights (as a dictionary of variable names mapping to numpy arrays) between the processes
without shipping the actual TensorFlow graphs, which are much more complex Python objects.

import tensorflow as tf
import numpy as np
import ray

ray.init()

BATCH_SIZE = 100
NUM_BATCHES = 1
NUM_ITERS = 201

class Network(object):
def __init__(self, x, y):
# Seed TensorFlow to make the script deterministic.
tf.set_random_seed(0)
# Define the inputs.
self.x_data = tf.constant(x, dtype=tf.float32)
self.y_data = tf.constant(y, dtype=tf.float32)
# Define the weights and computation.
w = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = w * self.x_data + b
# Define the loss.
self.loss = tf.reduce_mean(tf.square(y - self.y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
self.grads = optimizer.compute_gradients(self.loss)
self.train = optimizer.apply_gradients(self.grads)
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# Define the weight initializer and session.
init = tf.global_variables_initializer()
self.sess = tf.Session()
# Additional code for setting and getting the weights
self.variables = ray.experimental.TensorFlowVariables(self.loss, self.sess)
# Return all of the data needed to use the network.
self.sess.run(init)

# Define a remote function that trains the network for one step and returns the
# new weights.
def step(self, weights):
# Set the weights in the network.
self.variables.set_weights(weights)
# Do one step of training.
self.sess.run(self.train)
# Return the new weights.
return self.variables.get_weights()

def get_weights(self):
return self.variables.get_weights()

# Define a remote function for generating fake data.
@ray.remote(num_return_vals=2)
def generate_fake_x_y_data(num_data, seed=0):
# Seed numpy to make the script deterministic.
np.random.seed(seed)
x = np.random.rand(num_data)
y = x * 0.1 + 0.3
return x, y

# Generate some training data.
batch_ids = [generate_fake_x_y_data.remote(BATCH_SIZE, seed=i) for i in range(NUM_
→˓BATCHES)]
x_ids = [x_id for x_id, y_id in batch_ids]
y_ids = [y_id for x_id, y_id in batch_ids]
# Generate some test data.
x_test, y_test = ray.get(generate_fake_x_y_data.remote(BATCH_SIZE, seed=NUM_BATCHES))

# Create actors to store the networks.
remote_network = ray.remote(Network)
actor_list = [remote_network.remote(x_ids[i], y_ids[i]) for i in range(NUM_BATCHES)]

# Get initial weights of some actor.
weights = ray.get(actor_list[0].get_weights.remote())

# Do some steps of training.
for iteration in range(NUM_ITERS):

# Put the weights in the object store. This is optional. We could instead pass
# the variable weights directly into step.remote, in which case it would be
# placed in the object store under the hood. However, in that case multiple
# copies of the weights would be put in the object store, so this approach is
# more efficient.
weights_id = ray.put(weights)
# Call the remote function multiple times in parallel.
new_weights_ids = [actor.step.remote(weights_id) for actor in actor_list]
# Get all of the weights.
new_weights_list = ray.get(new_weights_ids)
# Add up all the different weights. Each element of new_weights_list is a dict
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# of weights, and we want to add up these dicts component wise using the keys
# of the first dict.
weights = {variable: sum(weight_dict[variable] for weight_dict in new_weights_list)

→˓/ NUM_BATCHES for variable in new_weights_list[0]}
# Print the current weights. They should converge to roughly to the values 0.1
# and 0.3 used in generate_fake_x_y_data.
if iteration % 20 == 0:
print("Iteration {}: weights are {}".format(iteration, weights))

How to Train in Parallel using Ray

In some cases, you may want to do data-parallel training on your network. We use the network above to illustrate how
to do this in Ray. The only differences are in the remote function step and the driver code.

In the function step, we run the grad operation rather than the train operation to get the gradients. Since Tensorflow
pairs the gradients with the variables in a tuple, we extract the gradients to avoid needless computation.

Extracting numerical gradients

Code like the following can be used in a remote function to compute numerical gradients.

x_values = [1] * 100
y_values = [2] * 100
numerical_grads = sess.run([grad[0] for grad in grads], feed_dict={x_data: x_values,
→˓y_data: y_values})

Using the returned gradients to train the network

By pairing the symbolic gradients with the numerical gradients in a feed_dict, we can update the network.

# We can feed the gradient values in using the associated symbolic gradient
# operation defined in tensorflow.
feed_dict = {grad[0]: numerical_grad for (grad, numerical_grad) in zip(grads,
→˓numerical_grads)}
sess.run(train, feed_dict=feed_dict)

You can then run variables.get_weights() to see the updated weights of the network.

For reference, the full code is below:

import tensorflow as tf
import numpy as np
import ray

ray.init()

BATCH_SIZE = 100
NUM_BATCHES = 1
NUM_ITERS = 201

class Network(object):
def __init__(self, x, y):
# Seed TensorFlow to make the script deterministic.
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tf.set_random_seed(0)
# Define the inputs.
x_data = tf.constant(x, dtype=tf.float32)
y_data = tf.constant(y, dtype=tf.float32)
# Define the weights and computation.
w = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = w * x_data + b
# Define the loss.
self.loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
self.grads = optimizer.compute_gradients(self.loss)
self.train = optimizer.apply_gradients(self.grads)
# Define the weight initializer and session.
init = tf.global_variables_initializer()
self.sess = tf.Session()
# Additional code for setting and getting the weights
self.variables = ray.experimental.TensorFlowVariables(self.loss, self.sess)
# Return all of the data needed to use the network.
self.sess.run(init)

# Define a remote function that trains the network for one step and returns the
# new weights.
def step(self, weights):
# Set the weights in the network.
self.variables.set_weights(weights)
# Do one step of training. We only need the actual gradients so we filter over

→˓the list.
actual_grads = self.sess.run([grad[0] for grad in self.grads])
return actual_grads

def get_weights(self):
return self.variables.get_weights()

# Define a remote function for generating fake data.
@ray.remote(num_return_vals=2)
def generate_fake_x_y_data(num_data, seed=0):
# Seed numpy to make the script deterministic.
np.random.seed(seed)
x = np.random.rand(num_data)
y = x * 0.1 + 0.3
return x, y

# Generate some training data.
batch_ids = [generate_fake_x_y_data.remote(BATCH_SIZE, seed=i) for i in range(NUM_
→˓BATCHES)]
x_ids = [x_id for x_id, y_id in batch_ids]
y_ids = [y_id for x_id, y_id in batch_ids]
# Generate some test data.
x_test, y_test = ray.get(generate_fake_x_y_data.remote(BATCH_SIZE, seed=NUM_BATCHES))

# Create actors to store the networks.
remote_network = ray.remote(Network)
actor_list = [remote_network.remote(x_ids[i], y_ids[i]) for i in range(NUM_BATCHES)]
local_network = Network(x_test, y_test)

# Get initial weights of local network.
weights = local_network.get_weights()
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# Do some steps of training.
for iteration in range(NUM_ITERS):

# Put the weights in the object store. This is optional. We could instead pass
# the variable weights directly into step.remote, in which case it would be
# placed in the object store under the hood. However, in that case multiple
# copies of the weights would be put in the object store, so this approach is
# more efficient.
weights_id = ray.put(weights)
# Call the remote function multiple times in parallel.
gradients_ids = [actor.step.remote(weights_id) for actor in actor_list]
# Get all of the weights.
gradients_list = ray.get(gradients_ids)

# Take the mean of the different gradients. Each element of gradients_list is a list
# of gradients, and we want to take the mean of each one.
mean_grads = [sum([gradients[i] for gradients in gradients_list]) / len(gradients_

→˓list) for i in range(len(gradients_list[0]))]

feed_dict = {grad[0]: mean_grad for (grad, mean_grad) in zip(local_network.grads,
→˓mean_grads)}
local_network.sess.run(local_network.train, feed_dict=feed_dict)
weights = local_network.get_weights()

# Print the current weights. They should converge to roughly to the values 0.1
# and 0.3 used in generate_fake_x_y_data.
if iteration % 20 == 0:
print("Iteration {}: weights are {}".format(iteration, weights))
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CHAPTER 16

An Overview of the Internals

In this document, we trace through in more detail what happens at the system level when certain API calls are made.

Connecting to Ray

There are two ways that a Ray script can be initiated. It can either be run in a standalone fashion or it can be connect
to an existing Ray cluster.

Running Ray standalone

Ray can be used standalone by calling ray.init() within a script. When the call to ray.init() happens, all of
the relevant processes are started. These include a local scheduler, a global scheduler, an object store and manager, a
Redis server, and a number of worker processes.

When the script exits, these processes will be killed.

Note: This approach is limited to a single machine.

Connecting to an existing Ray cluster

To connect to an existing Ray cluster, simply pass the argument address of the Redis server as the redis_address=
keyword argument into ray.init. In this case, no new processes will be started when ray.init is called, and
similarly the processes will continue running when the script exits. In this case, all processes except workers that
correspond to actors are shared between different driver processes.

Defining a remote function

A central component of this system is the centralized control plane. This is implemented using one or more Redis
servers. Redis is an in-memory key-value store.
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We use the centralized control plane in two ways. First, as persistent store of the system’s control state. Second, as a
message bus for communication between processes (using Redis’s publish-subscribe functionality).

Now, consider a remote function definition as below.

@ray.remote
def f(x):
return x + 1

When the remote function is defined as above, the function is immediately pickled, assigned a unique ID, and stored
in a Redis server. You can view the remote functions in the centralized control plane as below.

TODO: Fill this in.

Each worker process has a separate thread running in the background that listens for the addition of remote functions
to the centralized control state. When a new remote function is added, the thread fetches the pickled remote function,
unpickles it, and can then execute that function.

Notes and limitations

• Because we export remote functions as soon as they are defined, that means that remote functions can’t close
over variables that are defined after the remote function is defined. For example, the following code gives an
error.

@ray.remote
def f(x):
return helper(x)

def helper(x):
return x + 1

If you call f.remote(0), it will give an error of the form.

Traceback (most recent call last):
File "<ipython-input-3-12a5beeb2306>", line 3, in f

NameError: name 'helper' is not defined

On the other hand, if helper is defined before f, then it will work.

Calling a remote function

When a driver or worker invokes a remote function, a number of things happen.

• First, a task object is created. The task object includes the following.

– The ID of the function being called.

– The IDs or values of the arguments to the function. Python primitives like integers or short strings will be
pickled and included as part of the task object. Larger or more complex objects will be put into the object
store with an internal call to ray.put, and the resulting IDs are included in the task object. Object IDs
that are passed directly as arguments are also included in the task object.

– The ID of the task. This is generated uniquely from the above content.

– The IDs for the return values of the task. These are generated uniquely from the above content.

• The task object is then sent to the local scheduler on the same node as the driver or worker.
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• The local scheduler makes a decision to either schedule the task locally or to pass the task on to a global
scheduler.

– If all of the task’s object dependencies are present in the local object store and there are enough CPU and
GPU resources available to execute the task, then the local scheduler will assign the task to one of its
available workers.

– If those conditions are not met, the task will be passed on to a global scheduler. This is done by adding
the task to the task table, which is part of the centralized control state. The task table can be inspected as
follows.

TODO: Fill this in.

A global scheduler will be notified of the update and will assign the task to a local scheduler by updating
the task’s state in the task table. The local scheduler will be notified and pull the task object.

• Once a task has been scheduled to a local scheduler, whether by itself or by a global scheduler, the local scheduler
queues the task for execution. A task is assigned to a worker when enough resources become available and the
object dependencies are available locally, in first-in, first-out order.

• When the task has been assigned to a worker, the worker executes the task and puts the task’s return values into
the object store. The object store will then update the object table, which is part of the centralized control state,
to reflect the fact that it contains the newly created objects. The object table can be viewed as follows.

TODO: Fill this in.

When the task’s return values are placed into the object store, they are first serialized into a contiguous blob of
bytes using the Apache Arrow data layout, which is helpful for efficiently sharing data between processes using
shared memory.

Notes and limitations

• When an object store on a particular node fills up, it will begin evicting objects in a least-recently-used manner.
If an object that is needed later is evicted, then the call to ray.get for that object will initiate the reconstruction
of the object. The local scheduler will attempt to reconstruct the object by replaying its task lineage.

TODO: Limitations on reconstruction.

Getting an object ID

Several things happen when a driver or worker calls ray.get on an object ID.

ray.get(x_id)

• The driver or worker goes to the object store on the same node and requests the relevant object. Each object
store consists of two components, a shared-memory key-value store of immutable objects, and a manager to
coordinate the transfer of objects between nodes.

– If the object is not present in the object store, the manager checks the object table to see which other object
stores, if any, have the object. It then requests the object directly from one of those object stores, via its
manager. If the object doesn’t exist anywhere, then the centralized control state will notify the requesting
manager when the object is created. If the object doesn’t exist anywhere because it has been evicted
from all object stores, the worker will also request reconstruction of the object from the local scheduler.
These checks repeat periodically until the object is available in the local object store, whether through
reconstruction or through object transfer.
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• Once the object is available in the local object store, the driver or worker will map the relevant region of memory
into its own address space (to avoid copying the object), and will deserialize the bytes into a Python object. Note
that any numpy arrays that are part of the object will not be copied.
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Serialization in the Object Store

This document describes what Python objects Ray can and cannot serialize into the object store. Once an object is
placed in the object store, it is immutable.

There are a number of situations in which Ray will place objects in the object store.

1. The return values of a remote function.

2. The value x in a call to ray.put(x).

3. Arguments to remote functions (except for simple arguments like ints or floats).

A Python object may have an arbitrary number of pointers with arbitrarily deep nesting. To place an object in the object
store or send it between processes, it must first be converted to a contiguous string of bytes. This process is known
as serialization. The process of converting the string of bytes back into a Python object is known as deserialization.
Serialization and deserialization are often bottlenecks in distributed computing.

Pickle is one example of a library for serialization and deserialization in Python.

Pickle (and the variant we use, cloudpickle) is general-purpose. It can serialize a large variety of Python objects.
However, for numerical workloads, pickling and unpickling can be inefficient. For example, if multiple processes
want to access a Python list of numpy arrays, each process must unpickle the list and create its own new copies of
the arrays. This can lead to high memory overheads, even when all processes are read-only and could easily share
memory.

In Ray, we optimize for numpy arrays by using the Apache Arrow data format. When we deserialize a list of numpy
arrays from the object store, we still create a Python list of numpy array objects. However, rather than copy each
numpy array, each numpy array object holds a pointer to the relevant array held in shared memory. There are some
advantages to this form of serialization.

• Deserialization can be very fast.

• Memory is shared between processes so worker processes can all read the same data without having to copy it.
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What Objects Does Ray Handle

Ray does not currently support serialization of arbitrary Python objects. The set of Python objects that Ray can
serialize using Arrow includes the following.

1. Primitive types: ints, floats, longs, bools, strings, unicode, and numpy arrays.

2. Any list, dictionary, or tuple whose elements can be serialized by Ray.

For a more general object, Ray will first attempt to serialize the object by unpacking the object as a dictionary of its
fields. This behavior is not correct in all cases. If Ray cannot serialize the object as a dictionary of its fields, Ray will
fall back to using pickle. However, using pickle will likely be inefficient.

Notes and limitations

• We currently handle certain patterns incorrectly, according to Python semantics. For example, a list that contains
two copies of the same list will be serialized as if the two lists were distinct.

l1 = [0]
l2 = [l1, l1]
l3 = ray.get(ray.put(l2))

l2[0] is l2[1] # True.
l3[0] is l3[1] # False.

• For reasons similar to the above example, we also do not currently handle objects that recursively contain
themselves (this may be common in graph-like data structures).

l = []
l.append(l)

# Try to put this list that recursively contains itself in the object store.
ray.put(l)

This will throw an exception with a message like the following.

This object exceeds the maximum recursion depth. It may contain itself
→˓recursively.

• Whenever possible, use numpy arrays for maximum performance.

Last Resort Workaround

If you find cases where Ray serialization doesn’t work or does something unexpected, please let us know so we can
fix it. In the meantime, you may have to resort to writing custom serialization and deserialization code (e.g., calling
pickle by hand).

import pickle

@ray.remote
def f(complicated_object):
# Deserialize the object manually.
obj = pickle.loads(complicated_object)
return "Successfully passed {} into f.".format(obj)
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# Define a complicated object.
l = []
l.append(l)

# Manually serialize the object and pass it in as a string.
ray.get(f.remote(pickle.dumps(l))) # prints 'Successfully passed [[...]] into f.'

Note: If you have trouble with pickle, you may have better luck with cloudpickle.
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CHAPTER 18

Using Ray on a Cluster

The instructions in this document work well for small clusters. For larger clusters, follow the instructions for managing
a cluster with parallel ssh.

Deploying Ray on a Cluster

This section assumes that you have a cluster running and that the nodes in the cluster can communicate with each
other. It also assumes that Ray is installed on each machine. To install Ray, follow the instructions for installation on
Ubuntu.

Starting Ray on each machine

On the head node (just choose some node to be the head node), run the following. If the --redis-port argument
is omitted, Ray will choose a port at random.

./ray/scripts/start_ray.sh --head --redis-port=6379

The command will print out the address of the Redis server that was started (and some other address information).

Then on all of the other nodes, run the following. Make sure to replace <redis-address> with the value printed
by the command on the head node (it should look something like 123.45.67.89:6379).

./ray/scripts/start_ray.sh --redis-address=<redis-address>

If you wish to specify that a machine has 10 CPUs and 1 GPU, you can do this with the flags --num-cpus=10 and
--num-gpus=1. If these flags are not used, then Ray will detect the number of CPUs automatically and will assume
there are 0 GPUs.

Now we’ve started all of the Ray processes on each node Ray. This includes

• Some worker processes on each machine.

• An object store on each machine.
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• A local scheduler on each machine.

• Multiple Redis servers (on the head node).

• One global scheduler (on the head node).

To run some commands, start up Python on one of the nodes in the cluster, and do the following.

import ray
ray.init(redis_address="<redis-address>")

Now you can define remote functions and execute tasks. For example, to verify that the correct number of nodes have
joined the cluster, you can run the following.

import time

@ray.remote
def f():
time.sleep(0.01)
return ray.services.get_node_ip_address()

# Get a list of the IP addresses of the nodes that have joined the cluster.
set(ray.get([f.remote() for _ in range(1000)]))

Stopping Ray

When you want to stop the Ray processes, run ./ray/scripts/stop_ray.sh on each node.
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CHAPTER 19

Using Ray on a Large Cluster

Deploying Ray on a cluster requires a bit of manual work. The instructions here illustrate how to use parallel ssh
commands to simplify the process of running commands and scripts on many machines simultaneously.

Booting up a cluster on EC2

• Create an EC2 instance running Ray following instructions for installation on Ubuntu.

– Add any packages that you may need for running your application.

– Install the pssh package: sudo apt-get install pssh.

• Create an AMI with Ray installed and with whatever code and libraries you want on the cluster.

• Use the EC2 console to launch additional instances using the AMI you created.

• Configure the instance security groups so that they machines can all communicate with one another.

Deploying Ray on a Cluster

This section assumes that you have a cluster of machines running and that these nodes have network connectivity to
one another. It also assumes that Ray is installed on each machine.

Additional assumptions:

• All of the following commands are run from a machine designated as the head node.

• The head node will run Redis and the global scheduler.

• The head node has ssh access to all other nodes.

• All nodes are accessible via ssh keys

• Ray is checked out on each node at the location $HOME/ray.

Note: The commands below will probably need to be customized for your specific setup.
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Connect to the head node

In order to initiate ssh commands from the cluster head node we suggest enabling ssh agent forwarding. This will
allow the session that you initiate with the head node to connect to other nodes in the cluster to run scripts on them.
You can enable ssh forwarding by running the following command before connecting to the head node (replacing
<ssh-key> with the path to the private key that you would use when logging in to the nodes in the cluster).

ssh-add <ssh-key>

Now log in to the head node with the following command, where <head-node-public-ip> is the public IP
address of the head node (just choose one of the nodes to be the head node).

ssh -A ubuntu@<head-node-public-ip>

Build a list of node IP addresses

On the head node, populate a file workers.txt with one IP address on each line. Do not include the head node IP
address in this file. These IP addresses should typically be private network IP addresses, but any IP addresses which
the head node can use to ssh to worker nodes will work here. This should look something like the following.

172.31.27.16
172.31.29.173
172.31.24.132
172.31.29.224

Confirm that you can ssh to all nodes

for host in $(cat workers.txt); do
ssh $host uptime

done

You may need to verify the host keys during this process. If so, run this step again to verify that it worked. If you see a
permission denied error, you most likely forgot to run ssh-add <ssh-key> before connecting to the head node.

Starting Ray

Start Ray on the head node

On the head node, run the following:

./ray/scripts/start_ray.sh --head --redis-port=6379

Start Ray on the worker nodes

Create a file start_worker.sh that contains something like the following:

# Make sure the SSH session has the correct version of Python on its path.
# You will probably have to change the line below.
export PATH=/home/ubuntu/anaconda3/bin/:$PATH
ray/scripts/start_ray.sh --redis-address=<head-node-ip>:6379

66 Chapter 19. Using Ray on a Large Cluster



Ray Documentation, Release 0.01

This script, when run on the worker nodes, will start up Ray. You will need to replace <head-node-ip> with the
IP address that worker nodes will use to connect to the head node (most likely a private IP address). In this example
we also export the path to the Python installation since our remote commands will not be executing in a login shell.

Warning: You will probably need to manually export the correct path to Python (you will need to change the first
line of start_worker.sh to find the version of Python that Ray was built against). This is necessary because the
PATH environment variable used by parallel-ssh can differ from the PATH environment variable that gets set
when you ssh to the machine.

Warning: If the parallel-ssh command below appears to hang or otherwise fails, head-node-ip may need
to be a private IP address instead of a public IP address (e.g., if you are using EC2). It’s also possible that you forgot
to run ssh-add <ssh-key> or that you forgot the -A flag when connecting to the head node.

Now use parallel-ssh to start up Ray on each worker node.

parallel-ssh -h workers.txt -P -I < start_worker.sh

Note that on some distributions the parallel-ssh command may be called pssh.

Verification

Now you have started all of the Ray processes on each node. These include:

• Some worker processes on each machine.

• An object store on each machine.

• A local scheduler on each machine.

• Multiple Redis servers (on the head node).

• One global scheduler (on the head node).

To confirm that the Ray cluster setup is working, start up Python on one of the nodes in the cluster and enter the
following commands to connect to the Ray cluster.

import ray
ray.init(redis_address="<redis-address>")

Here <redis-address> should have the form <head-node-ip>:6379.

Now you can define remote functions and execute tasks. For example, to verify that the correct number of nodes have
joined the cluster, you can run the following.

import time

@ray.remote
def f():
time.sleep(0.01)
return ray.services.get_node_ip_address()

# Get a list of the IP addresses of the nodes that have joined the cluster.
set(ray.get([f.remote() for _ in range(1000)]))

Stopping Ray

Stop Ray on worker nodes

parallel-ssh -h workers.txt -P ray/scripts/stop_ray.sh
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This command will execute the stop_ray.sh script on each of the worker nodes.

Stop Ray on the head node

ray/scripts/stop_ray.sh

Upgrading Ray

Ray remains under active development so you may at times want to upgrade the cluster to take advantage of improve-
ments and fixes.

Create an upgrade script

On the head node, create a file called upgrade.sh that contains the commands necessary to upgrade Ray. It should
look something like the following:

# Make sure the SSH session has the correct version of Python on its path.
# You will probably have to change the line below.
export PATH=/home/ubuntu/anaconda3/bin/:$PATH
# Do pushd/popd to make sure we end up in the same directory.
pushd .
# Upgrade Ray.
cd ray
git remote set-url origin https://github.com/ray-project/ray
git checkout master
git pull
cd python
python setup.py install --user
popd

This script executes a series of git commands to update the Ray source code, then builds and installs Ray.

Stop Ray on the cluster

Follow the instructions for Stopping Ray.

Run the upgrade script on the cluster

First run the upgrade script on the head node. This will upgrade the head node and help confirm that the upgrade script
is working properly.

bash upgrade.sh

Next run the upgrade script on the worker nodes.

parallel-ssh -h workers.txt -P -t 0 -I < upgrade.sh

Note here that we use the -t 0 option to set the timeout to infinite. You may also want to use the -p flag, which
controls the degree of parallelism used by parallel ssh.

It is probably a good idea to ssh to one of the other nodes and verify that the upgrade script ran as expected.

Sync Application Files to other nodes

If you are running an application that reads input files or uses python libraries then you may find it useful to copy a
directory on the head node to the worker nodes.

You can do this using the parallel-rsync command:
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parallel-rsync -h workers.txt -r <workload-dir> /home/ubuntu/<workload-dir>

where <workload-dir> is the directory you want to synchronize. Note that the destination argument for this
command must represent an absolute path on the worker node.

Troubleshooting

Problems with parallel-ssh

If any of the above commands fail, verify that the head node has SSH access to the other nodes by running

for host in $(cat workers.txt); do
ssh $host uptime

done

If you get a permission denied error, then make sure you have SSH’ed to the head node with agent forwarding enabled.
This is done as follows.

ssh-add <ssh-key>
ssh -A ubuntu@<head-node-public-ip>

Configuring EC2 instances to increase the number of allowed Redis clients

This section can be ignored unless you run into problems with the maximum number of Redis clients.

• Ensure that the hard limit for the number of open file descriptors is set to a large number (e.g., 65536). This
only needs to be done on instances where Redis shards will run — by default, just the head node.

– Check the hard ulimit for open file descriptors with ulimit -Hn.

– If that number is smaller than 65536, set the hard ulimit for open file descriptors system-wide:

sudo bash -c "echo $USER hard nofile 65536 >> /etc/security/limits.conf"

– Logout and log back in.
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CHAPTER 20

Using Ray and Docker on a Cluster (EXPERIMENTAL)

Packaging and deploying an application using Docker can provide certain advantages. It can make managing depen-
dencies easier, help ensure that each cluster node receives a uniform configuration, and facilitate swapping hardware
resources between applications.

Create your Docker image

First build a Ray Docker image by following the instructions for Installation on Docker. This will allow you to create
the ray-project/deploy image that serves as a basis for using Ray on a cluster with Docker.

Docker images encapsulate the system state that will be used to run nodes in the cluster. We recommend building on
top of the Ray-provided Docker images to add your application code and dependencies.

You can do this in one of two ways: by building from a customized Dockerfile or by saving an image after entering
commands manually into a running container. We describe both approaches below.

Creating a customized Dockerfile

We recommend that you read the official Docker documentation for Building your own image ahead of starting this
section. Your customized Dockerfile is a script of commands needed to set up your application, possibly packaged in
a folder with related resources.

A simple template Dockerfile for a Ray application looks like this:

# Application Dockerfile template
FROM ray-project/deploy
RUN git clone <my-project-url>
RUN <my-project-installation-script>

This file instructs Docker to load the image tagged ray-project/deploy, check out the git repository at
<my-project-url>, and then run the script <my-project-installation-script>.

Build the image by running something like:
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docker build -t <my-app> .

Replace <app-tag> with a tag of your choice.

Creating a Docker image manually

Launch the ray-project/deploy image interactively

docker run -t -i ray-project/deploy

Next, run whatever commands are needed to install your application. When you are finished type exit to stop the
container.

Run

docker ps -a

to identify the id of the container you just exited.

Next, commit the container

docker commit -t <app-tag> <container-id>

Replace <app-tag> with a name for your container and replace <container-id> id with the hash id of the
container used in configuration.

Publishing your Docker image to a repository

When using Amazon EC2 it can be practical to publish images using the Repositories feature of Elastic Container
Service. Follow the steps below and see documentation for creating a repository for additional context.

First ensure that the AWS command-line interface is installed.

sudo apt-get install -y awscli

Next create a repository in Amazon’s Elastic Container Registry. This results in a shared resource for storing Docker
images that will be accessible from all nodes.

aws ecr create-repository --repository-name <repository-name> --region=<region>

Replace <repository-name> with a string describing the application. Replace <region> with the AWS region
string, e.g., us-west-2. This should produce output like the following:

{
"repository": {

"repositoryUri": "123456789012.dkr.ecr.us-west-2.amazonaws.com/my-app",
"createdAt": 1487227244.0,
"repositoryArn": "arn:aws:ecr:us-west-2:123456789012:repository/my-app",
"registryId": "123456789012",
"repositoryName": "my-app"

}
}
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Take note of the repositoryUri string, in this example 123456789012.dkr.ecr.us-west-2.
amazonaws.com/my-app.

Tag the Docker image with the repository URI.

docker tag <app-tag> <repository-uri>

Replace the <app-tag> with the container name used previously and replace <repository-uri> with URI
returned by the command used to create the repository.

Log into the repository:

eval $(aws ecr get-login --region <region>)

Replace <region> with your selected AWS region.

Push the image to the repository:

docker push <repository-uri>

Replace <repository-uri> with the URI of your repository. Now other hosts will be able to access your appli-
cation Docker image.

Starting a cluster

We assume a cluster configuration like that described in instructions for using Ray on a large cluster. In particular, we
assume that there is a head node that has ssh access to all of the worker nodes, and that there is a file workers.txt
listing the IP addresses of all worker nodes.

Install the Docker image on all nodes

Create a script called setup-docker.sh on the head node.

# setup-docker.sh
sudo apt-get install -y docker.io
sudo service docker start
sudo usermod -a -G docker ubuntu
exec sudo su -l ubuntu
eval $(aws ecr get-login --region <region>)
docker pull <repository-uri>

Replace <repository-uri> with the URI of the repository created in the previous section. Replace <region>
with the AWS region in which you created that repository. This script will install Docker, authenticate the session with
the container registry, and download the container image from that registry.

Run setup-docker.sh on the head node (if you used the head node to build the Docker image then you can skip
this step):

bash setup-docker.sh

Run setup-docker.sh on the worker nodes:

parallel-ssh -h workers.txt -P -t 0 -I < setup-docker.sh
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Launch Ray cluster using Docker

To start Ray on the head node run the following command:

eval $(aws ecr get-login --region <region>)
docker run \

-d --shm-size=<shm-size> --net=host \
<repository-uri> \
/ray/scripts/start_ray.sh --head \

--object-manager-port=8076 \
--redis-port=6379 \
--num-workers=<num-workers>

Replace <repository-uri> with the URI of the repository. Replace <region> with the region of the repository.
Replace <num-workers> with the number of workers, e.g., typically a number similar to the number of cores in the
system. Replace <shm-size> with the the amount of shared memory to make available within the Docker container,
e.g., 8G.

To start Ray on the worker nodes create a script start-worker-docker.sh with content like the following:

eval $(aws ecr get-login --region <region>)
docker run -d --shm-size=<shm-size> --net=host \

<repository-uri> \
/ray/scripts/start_ray.sh \

--object-manager-port=8076 \
--redis-address=<redis-address> \
--num-workers=<num-workers>

Replace <redis-address> with the string <head-node-private-ip>:6379 where
<head-node-private-ip> is the private network IP address of the head node.

Execute the script on the worker nodes:

parallel-ssh -h workers.txt -P -t 0 -I < setup-worker-docker.sh

Running jobs on a cluster

On the head node, identify the id of the container that you launched as the Ray head.

docker ps

the container id appears in the first column of the output.

Now launch an interactive shell within the container:

docker exec -t -i <container-id> bash

Replace <container-id> with the container id found in the previous step.

Next, launch your application program. The Python program should contain an initialization command that takes the
Redis address as a parameter:

ray.init(redis_address="<redis-address>")
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Shutting down a cluster

Kill all running Docker images on the worker nodes:

parallel-ssh -h workers.txt -P 'docker kill $(docker ps -q)'

Kill all running Docker images on the head node:

docker kill $(docker ps -q)
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