

Welcome to Ralph Scrooge’s documentation!

Contents:

	Overview

	Installation
	Install Scrooge

	Upgrade existing installation

	Migrate the database

	Update the settings

	Testing if it works

	Configuration

	Reports
	Ventures report

	Devices report

	Ventures daily usages

	Device ventures changes

	Services & Usages
	Services

	Usages

	Plugins
	Collect plugins

	Report plugins

	Costs & Extra costs
	Costs

	Extra costs

	REST API
	Notes for Scrooge developers/administrators

	Statements

	Change Log
	DEV

	3.0.1

	3.0.0

	2.7.0

	2.6.0

	2.5.4

	2.5.3

	2.5.2

	2.5.1

	2.5.0

	2.4.0

	2.3.0

	2.2.3

	2.2.2

	2.2.1

	2.2.0

	2.1.1

	2.1.0

	2.0.1

	2.0.0

	1.2.8

	1.2.7

	1.2.6

	1.0.0

	License

Overview

Scrooge module brings billing functionality to Ralph. Using Ralph Scrooge, you can retrieve information on the use of resources from many other systems and charge other services. Scrooge generates flexible and accurate cost reports and let you refer to historical usages and costs.

Ralph Scrooge is a combination of IT management and accounting software. By using Scrooge your company can optimize the costs of internal services and departments, by reviewing their structure and dependencies.

Features:

	costs module, where you can provide invoice costs, staff costs and other costs (licences, supports etc.)

	many plugins to retrieve information on the use of resources from other systems

	charging other services proportionally to the use of resources by their devices

	many full-featured reports (costs per service, costs and usages per single device, dependency structure)

	OpenStack support (tenants, simple usages, ceilometer)

	pluginable architecture - write your own plugins to collect data and calculate costs of your services!

	API to upload information from other systems

Installation

Scrooge contains ralph in its requirements, because it is a plugin for ralph. For more information on how to configure or install ralph, please refer to its documentation.

Install Scrooge

There are two ways to install Scrooge. One of them is a simple pip installation which is nice and easy. Installation from sources require Scrooge to be downloaded from github and then, installed manually

Install Scrooge from pip

A fast and easy way is to install Scrooge from pip:

(scrooge_env)$ pip install scrooge

That’s it.

Install Scrooge from sources

It is also possible to install Scrooge from sources. To do this, first, you need to download Scrooge from github:

(scrooge_env)$ git clone git://github.com/allegro/ralph_pricing.git ralph_scrooge

Enter to the project folder:

(scrooge_env)$ cd ralph_scrooge

and install it:

(scrooge_env)$ pip install -e .

The Scrooge requirements will be installed automatically

Upgrade existing installation

To upgrade Scrooge, you need to stop any Scrooge processes that are running. It is good practice not to upgrade the old version, but create a separate virtual environment and install everything from the begin, but if you need to upgrade the old version, be sure that everything is stopped.

Upgrade Scrooge from pip

If you installed Scrooge from pip, then you can simply:

(scrooge_env)$ pip install --upgrade scrooge

After it is finished, upgrade the static files:

(scrooge_env)$ scrooge collectstatic

Upgrade Scrooge from sources

First, you need to download Scrooge from github:

(scrooge_env)$ git clone git://github.com/allegro/ralph_pricing.git

Enter to the project folder:

(scrooge_env)$ cd ralph_scrooge

and upgrade it:

(scrooge_env)$ pip install --upgrade -e .

Finally, you need to upgrade the static files:

(scrooge_env)$ scrooge collectstatic

Migrate the database

Some of updates require database migrations. To migrate a database, you need to run:

(scrooge_env)$ scrooge migrate ralph_scrooge

Be sure that you have a backup of your database. Sometimes you can migrate data or create some complicated and unwanted changes.

Update the settings

Some new features added to Ralph may require additional settings to work properly. In order to enable them in your settings, follow the instructions in the change log for the version you have installed.

Testing if it works

To be sure that everything work fine, is recommended to run unit tests. To do this, run:

(scrooge_env)$ test_scrooge test

Configuration

Configuration is available in file settings.py and there you should implement your settings.

PLUGGABLE_APPS <list of strings> - List with available applications for ralph

PLUGGABLE_APPS += ['scrooge']

VIRTUAL_VENTURE_NAMES <list of strings> - venture names for virtual devices

VIRTUAL_VENTURE_NAMES = ['venture1', 'venture2']

SCROOGE_SENTRY_DSN <string> - Full address with API key to sentry

SCROOGE_SENTRY_DSN = 'http://xxxxxx:yyyyyy@sentry/zz'

CURRENCY <string> - This currency will be added to each value on report. It is prefix to cost value.

CURRENCY = 'PLN'

HAMSTER_API_URL <string> - Url to hamster API

HAMSTER_API_URL = 'http://xxxxxxx/'

RQ_QUEUE_LIST <tuple of strings> - List of queue names

RQ_QUEUE_LIST += ('reports', 'reports_pricing')

SSH_NFSEN_CREDENTIALS <dict> - Credentials for servers

SSH_NFSEN_CREDENTIALS = {
 'xxx.xxx.xxx.xxx': {
 'login': 'xxx',
 'password': 'xxx',
 },
 'yyy.yyy.yyy.yyy': {
 'login': 'yyy',
 'password': 'yyy',
 },
}

NFSEN_CHANNELS <list of strings> - Channels like IN or OUT

NFSEN_CHANNELS = ['xxx-OUT', 'xxx-IN', 'yyy-OUT', 'yyy-IN']

NFSEN_FILES_PATH <string> - Path to nfsen data files on remote server

NFSEN_FILES_PATH = 'xxx/yyy/zzz'

NFSEN_CLASS_ADDRESS <list of strings> - Available class addresses

NFSEN_CLASS_ADDRESS = [
 'xxx.xxx.xxx.x/yy'
 'zzz.zzz.zzz.z/yy'
]

OPENSTACK_USER <string> - User login name to openstack

OPENSTACK_USER = 'xxx'

OPENSTACK_PASSWORD <string> - User password for given user name

OPENSTACK_PASSWORD = 'yyy'

OPENSTACK_URL <string> - Url to openstack

OPENSTACK_URL = 'yyy'

OPENSTACK_REGIONS <list of strings> - Datacenter names

OPENSTACK_REGIONS = ['xxx', 'yyy']

OPENSTACK_EXTRA_QUERIES <list of tuple> - Extra queries for openstack

OPENSTACK_EXTRA_QUERIES = [('http://xxx', 'yyy'), ('http://zzz', 'aaa')]

SCALEME_API_URL <string> - Url to scaleme

SCALEME_API_URL = 'http://xxxxxxx/'

SPLUNK_HOST <string> - Splunk host name

SPLUNK_HOST = 'http://xxxxxxx/'

SPLUNK_USER <string> - Splunk user name

SPLUNK_USER = 'xxx'

SPLUNK_PASSWORD <string> - Password for splunk user

SPLUNK_PASSWORD = 'yyy'

Reports

There are a few report types. The main one is called “Ventures report” being a billing report. Scrooge also contains other reports supporting the main report. For example, one of them shows venture usages for each day. The other one shows devices containing a selected venture. As you probably know, cost columns are not always enough as people want to know how, why and where the figures come from. One of the solutions is to create one huuuuge report with many columns and nested tables, but do you think it is will be clear enough for us? In my opinion, an experienced accountant may have a problem to analyse large statements and each mistake can be dangerous for strategic or tactical business plans. The other solution is to create categorized reports – in such case, we can use a few Scrooge reports.

To understand this section better, use a simple info card:

Target:
 Description
Actions:
 - First action
 - Second Action
 - ...

Ventures report

Target:
 Show total cost of each venture
Actions:
 - Generate financial billing
 - Create Statement
 - Download as CSV

You can have the main report, statement of costs or just a financial billing if you wish. Here, you will see all the costs for each venture. Columns contain the total cost of base usage, service usages and extra costs. Additionally, each service cost contains more details about each usage. Details are shown as count and cost column.

This view also gives you a possibility to generate a csv file and create a statement of report options. If you click Create statement or Download csv before the update, a report will be generated, so you don’t need to generate a report before creating a statement to download it to csv.

Devices report

Target:
 Show all devices and their cost for single venture
Actions:
 - Generate statement of devices for single venture
 - Create Statement
 - Download as CSV

This report shows you details for a single venture. This solution is used when someone comes to you and asks why his costs are so high. Then, you can generate a device report to show which devices are assigned to him and how much they cost. It is very important for big huge companies with e.g. one thousand ventures.

Ventures daily usages

Target:
 Show usage count differences between days
Actions:
 - Generate usages count differences report
 - Create Statement
 - Download as CSV

This report is logically linked with device ventures changes, but we have separated it, because the two reports would look like a board with undefined numbers.

As a result, the ventures daily usages report shows you only numbers of changed usages in a selected time interval for all ventures. There are no details on which device was transfereed between two or more ventures. This is only comp of changes in our system and if you see any warnings or errors in changes and you need to verify what was changed, then you need to use the device ventures changes report.

Device ventures changes

Target:
 Show information about transferring devices between ventures
Actions:
 - Generate device transfer report
 - Create Statement
 - Download as CSV

This report shows how devices were transferred between ventures. The device ventures changes report is a supplement to the ventures daily usages. It is really useful when ventures contain many devices (for example two thousand) and many devices often change their owners. This report shows you change details for a selected date.

Services & Usages

The billing model implemented in Scrooge is based on services and usages. We can distinguish a service with service usages and base usages. Base usages are used to define a cost of venture/service for hardware. A service is a “bag” used to group many ventures (similarly, ventures are a bag used to group many devices). Service usage is used to calculate how much each client (ventures that used this service) should pay for using the service.

[image: _images/services_and_usages.png]

Services

A venture is the base for calculating costs. Each venture contains a few devices and can use many services. A service is a bag to group many ventures. For example, when we create a service called Datastorage, we can include the following ventures:
datastorage_test and datastorage_production to create a “bag”
called Datastorage. The costs of datastorage_test and datastorage_production ventures are now included in the total costs of service called Datastorage. Now, we have two more ventures called webserviceA and webserviceB which use our Datastorage service (when I say “use Datastorage”, I mean they use some devices from datastorage_test and datastorage_production ventures).

[image: _images/services.png]

Usages

Usages contain basic and low-level values required by Scrooge to calculate and create a report.

Base usages

The usage give us information on how much a device costs. As you can imagine, every device in the datacenter uses power and probably internet, as well as space, and requires people to take care of it. Every device has also its purchase cost. To distribute costs, each device must contain information about the energy it consumes and space it occupies, which are its base usages defining how many units each device takes. To calculate the cost of a device, for example electricity cost, energy consumption units are counted to one value and divided by the electricity cost. Then, we have a price per one unit and when we multiply this price by the number of units for a single device we will have a price for this device.

[image: _images/base_usages.png]

	Power consumption

	
Collect: Each device model contains information about power consumption entered manually. The collect plugin collects this information every day and saves it as a simple “power consumption” abstract unit.

Cost: Accountants enter invoice costs manually.

Report: Cost of one unit is calculated by dividing total usages and total cost. The plugin sums all usages per venture and multiplies it by the cost of one unit.

	Height of device

	
Collect: This base usage is collected exactly in the same way like power consumption.

Cost: Accountants enter invoice costs manually.

Report: This base usage cost per venture is calculated exactly in the same way like power consumption.

	Network

	
Collect: : Usages are collected from nfsen servers per IP. Information about IT matching to Venture is collected from ralph. The plugin matches IP with Venture and save usages from nfsen as a venture usage. Unknown IPs are matched with the venture from settings.

Cost: Accountants enter invoice costs manually.

Report: This base usage cost per venture is calculated exactly in the same way like power consumption.

	Depreciation

	
Collect: Each asset contains information about costs (more specifically, it is a device cost). The collect plugin collects this information as a daily device imprint.

Cost: Logistics specialists enter device (asset) cost manually.

Report: The cost for one day is calculated by dividing the device total cost and depreciation days which are calculated based on depreciation rate. The plugin sums all the costs per one day from all the devices and multiplies it by the number of days for which the report is generated.

	Teamwork

	
Collect: Teams are based on collected data, so there is no any additional logic for it.

Cost: Accountants enter cost and teams number manually.

Report: There are 4 ways to calculate teamwork costs.

1. By time

2. By devices and cores count

3. By devices

4. By cost distributed to other teams proportionally to team members count

Service usages

[image: _images/service_usages.png]
This type of usage is used to distribute service costs to ventures. Every day each service has to supply information to Scrooge on how it was used by each venture. Before supplying such information, service and usages must be defined together with the link from the admin panel. You can find more about how to create services and usages in the How to use section.

In the report, services are represented in columns with count and usage cost and one additional column with the total cost of service. The most important is “to know” that the service cost is the same as the total cost of ventures included in the service. A service is a mechanism to distribute costs of few ventures to other ventures.

One of big wins of Scrooge is its automatic plugin which gives you a possibility to add your service to our system without creating any code line. This plugin uses data that was supplied, services and usages that were created and linked, and returns complete biling information. Of course, if you need to present your data in your own style, you can try to create a dedicated plugin or do it yourself, but it is not recommended.

Plugins

There are two types of plugins. One of them is used to collect data from remote applications or servers; the other one called “report” is used to present results in the report.

The main goal of plugins is to create a universal and configurable logic for each new service and handle non-standard cases where the collect or/and report plugin contains more complicated logic and cannot be handled by a universal plugin. For example, if it is not possible to send usages data to Scrooge, you can go to Scrooge administrators and try to ask them to develop the collect plugin for you. This is not recommended, but possible (it is preferred to use push API). The second situation is when your service requires pre-processing before displaying results or contains a really complicated logic – you can also go to Scrooge administrators and ask them for help to create your own plugin, and again you can try to ask them to develop a report plugin for you. It is recommended to use a universal plugin and adjust your account logic to The Scrooge logic model.

Plugins use queues. Before it is run, every plugin is queued and waits for its turn.

Collect plugins

[image: _images/collects_data_plugins.png]
Collects plugins are used to collect data from remote sources. More specifically, collect plugins are used to collect base usages. Collect service usages are not advisable, so create plugin for service usages is finality.

Each plugin is launched, for example, at 9 am and collects data all day. There is no base plugin etc. Each collect plugin contains a custom logic and as a result of its work, data is added/updated in the Scrooge database.

Report plugins

[image: _images/report_plugins.png]
Report plugins are used to generate columns in the report. Each plugin must return 2 pieces of information, column scheme and column value per venture. This is important because the column scheme is used to define and create additional columns in the report, but column value fill this columns for each venture. If a venture has no value for any column, 0.0 will be set as default. For default cases, we have created a universal plugin, so each service can use it when:

	service was created

	all usage types for this service were defined

	service contains usage types

	service contains percentage for each selected usage. (100 for only 1
usage)

	service contains selected base usages

	service contains assigned ventures

	usages were provided for each day.

Service and usages are configurable parts, so they can be selected from the Scrooge admin panel. For more information on how to do it, refer to the Services &
Usages section.

Report plugins used to calculate service costs require the cost of base usages. Base usages without costs are excluded from the total base service cost, so data from the report will be incorrect. More information about costs can be found in the Cost & Extra Costs section.

Costs & Extra costs

To calculate the total cost of venture/usage, we need to add two types of costs. The most important and the first of them is the base usages cost. Base costs are used to calculate the actual (real) cost of ventures or services, so when any of the base costs is not entered or any cost is not correct, the real cost of venture is distorted. The other costs are called extra costs with additional costs of e.g. a software license. The costs and extra costs should not be changed for the past period.

Costs

[image: _images/costs.png]
This type of costs is used to calculate real costs of usages and ventures. Usually, we have invoice costs, but it is not a rule. When base costs are not entered correctly, all of the calculations are distored (and this is the most important thing to remember). You should also remember about continuity of dates. For example, if you enter an invoice cost from April, you should enter the date from 2014-04-01 to 2014-04-30 and when you enter an invoice cost from May, you should start from 2014-05-01. You may see two error types for costs:

	No price

	It appears when the base usage price is not entered at all for a given time period for a report. For example: someone has forgotten to enter the invoice cost from May.

	Incomplete price

	It appears when a given price has no continuity of dates for a given time period for areport. For example: the cost for April is from 2014-04-01 to 2014-04-20 and the second one is from 2014-04-22 to 2014-04-30. There is no price for 2014-04-21.

These errors will be visible in the report in appropriate cells.

Extra costs

Extra costs were created for additional costs such as a software license. Extra costs are used to provide any unconventional costs to the report and to the total cost of services. It is important to enter the costs convention. Each extra cost entered to Scrooge is a monthly cost, but the algorithm calculates a daily cost and generates a daily print-out. Let’s analyze the following story:

In May the Internal Solutions Department ordered 10 new keyboards for
$3,000. For smooth administration, the cost of keyboards started to be calculated on 1 June, so the daily cost of this order is $100 ($3,000/30 days) and $10 per each keyboard. At the same time, The Python Department ordered 20 keyboards for $3,000 (daily cost: 3,000/30=100), but this time each keyboard costs only $5. On 15 June Python software developers made a deal with people from internal solutions to exchange 5 cheaper keyboards for 5 expensive keyboards. As a result, what is the monthly statemenet for the orders of these two departments
?

Internal Solutions Department:

1-15 June = $100 * 15 days = $1500 # daily cost = $100
16-30 June = $50 * 15 days + $25 * 15 days = $1125 # daily cost = $75
Total cost = $2625

Python programmers:

1-15 June = $100 * 15 days = $1500 # daily cost = $100
16-30 June = $75 * $15 days + $50 * 15 days = $1875 # daily cost = $125
Total cost = $3375

Therefore, based on the current monthly cost, the daily cost of each extra cost is calculated and printed. At the beginning (before the exchange), the daily cost was the same (each of departments bought products for $3,000) but after the exchange the daily cost was changed, because Python software developers received 5 expensive keybords and gave away 5 cheaper keyboards and vice versa for the Internal Solutions Department.

REST API

Scrooge provides public REST API described by OpenAPI [https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md]-compliant
schema, which is available for consumption by external
programs/clients at /scrooge/api/schema.json.

On top of this schema, we provide swagger-ui [https://github.com/swagger-api/swagger-ui] , which is available at
/scrooge/api or /api endpoint (the latter just redirects to
the former). It serves both as documentation and convenience tool,
that is meant to facilitate human interaction with our API and improve
its discoverability.

Notes for Scrooge developers/administrators

API schema is defined in file pointed by API_SCHEMA_FILE setting (by default
ralph_scrooge.media.api_schema.yaml). This file, in YAML format is meant for
editing and feeding swagger-ui during development. For production though,
you should generate a JSON file from it. There’s a management command scrooge
generate_json_schema, which is meant exactly for that. So basically, YAML file
is a source file, while JSON should be seen as kind of artifact, which is not
meant to be edited directly (it is minified BTW), and shouldn’t be kept in
Scrooge’s repo.

There is one important setting related to API schema - SCROOGE_HOST - which
should be filled if you want to provide Scrooge’s REST API schema to your
clients (and swagger-ui is one of them) - see the comment in
ralph_scrooge.settings.base for additional info on this.

Statements

When we start talking about financials and accounting, we may come across definitions of creative accounting, provisions, adjustments or acceptable deviation, but the one think is really stable and unchanged “History”. Scrooge provides an opportunity to create historical statements manually. You may just create a report for the past date but to be sure that the historical raport will be not changed, you may create a statement.

The logic for creating statements is as simple as possible. A report is converted to JSON and saved in the database. JSON cannot be changed by users, so you will be sure that your historical report will be saved and unchanged forever. This simple case protects us from human mistakes like changing an invoice cost for the past date or rebuilding/upgrading custom plugins. This is a really important case when the system is flexible and allows you to create a custom and dedicated logic.

Change Log

DEV

	[data-migration] changed Scrooge warehouses source to assets datacenters
(from assets warehouses)

3.0.1

Released on April 23, 2015

	Added versioning to static files.

	Added database and Virtual IP as default components.

	Change default settings for collect plugins.

	
	Fixes:

	
	Unification of menu items in angular views and old django views.

	Removed unnecessary ‘Extra costs’ and ‘Usage types’ menu items.

3.0.0

Released on April 13, 2015

	Project name changed from Ralph Pricing to Ralph Scrooge

	
	Redesigned architecure comparing to (old) ralph_pricing

	
	Calculation based on services and environments instead of ventures

	Base PricingObject model to simplify adding new types of chared objects (ex. Database, Virtual server, Tenant)

	Costs are (re)calculated and stored in database

	Many performance improvements

	
	New client GUI written in AngularJS

	
	Components: preview of historical objects (server, virtual, database etc) per service for single day

	Costs card: summary of service costs in single month

	Allocations: add service or team specific costs and manage it’s distribution to other services

	Costs: detailed costs for each pricing object

	
	New charging types:

	
	Dynamic extra costs: specify cost (like Extra cost) and a dynamic way of it’s distribution (ex. cores count)

	
	New collect plugins:

	
	Collecting Database, VIP, Tenant info from Ralph

	OpenStack SimpleUsage plugin

	OpenStack Ceilometer MongoDB plugin

	Support plugins (from Ralph Assets)

	
	New permissions:

	
	Every (active) Ralph user has access to client part (components, allocation, cost card) for services which he owns

	Admin (ralph_scrooge group) has access to whole system

2.7.0

	Adjusted ralph_pricing to work in parallel with ralph_scrooge

2.6.0

	Added regular usages to service

	Rounding value on report

	Added yeasterday flag to pricing_sync

	Added new extracost model

2.5.4

	Fixed team average with ventures subset

2.5.3

	Added exclude ventures for base usages

	Added ventures filter and forecast price to ceilometer report plugin

	Changed profit center field length from 75 to 255

2.5.2

	Logs compatible with python 2.7.3

2.5.1

	Improved services usages api logging

	Fixed fixed header scroll in reports

	Added DirectoryTimedRotatingFileHandler

	Removed sentry workaround

	Improved default loggers and config

	Separated unknown ventures for shares groups

2.5.0

	Fixed decimal precision in tests

	Remove back collecting disk share mount

	Fixed report error log text

	Added average team billing model

	Added share multiple groups

	Added san collect plugin

	Added exclude ventures to teams

	Added required permisions to view scrooge

	Renamed package to ralph_scrooge

	Added coverals

	Fixed venture hierarchy, when venture have no parent then venture parent is None

	Added html documentation

2.4.0

	New devices report

	Devices ventures changes report

	New ceilometer report plugin logic and logging tweakups

	Fixed asset collect plugin (replacing to None)

	Ceilometer collect plugin bugfixes

	Added venture tree rebuild when venture plugin job is finished

	Fixed extra costs - add more than 5 rows (with dynamic adding)

	Fixed header in csv statement

	Improved gitignore and manifest

	When venture have no parent set venture parent as none

2.3.0

	Fixed report table header on scroll.

	Exception instan error in logging on report plugin run.

	Fixed raise exception 0/0 by team plugins.

	Added extra costs to report as separated column and service to total cost.

	Fixed saving device_id, sn and barcode

	Added monthly statement

	Added plugin to bill cloud 1.0 from ralph

	Fixed ventures daily usages header colspan

2.2.3

	nfdump get only ips from given network.

	Changed logging to logger in network plugin.

	Only usage types wtih is_manually_type flag are show in menu.

	Fixed calculating price. Massage incomplete_price was incorrect sometime.

	Fixed percent rounding for teams.

	Remove PLN from fields and add it to name of column.

	Average option for usages is now available.

	Fixed is_blade. Now it is truly boolean value.

	Added overwriting in push API.

	Added ventures daily usages report.

	Fixed usages columns width.

2.2.2

	Fixed nfdump_str, executed command on remote server.

	Added console statistics

2.2.1

	Upgrade ceilometer collect plugins.

	Added ceilometer report plugin.

	Fixed overwriting configuration by pluggableaps.

	Fixed logging from collect plugins. Now, when venture does not exist log warning.

	Upgrade inserting teams usages. Added total prcent information and button to dynamically add more rows.

	Plugins indentify usages only by symbols. Name and more options are set as defaults.

	Added multiple ventures option for single virtual server usages. settings.VIRTUAL_VENTURE_NAMES must be dict where key is name of groub and value is list of ventures.

	Network cost is by providers.

	Remove teams count table and added count to usage price table.

2.2.0

	Displayed name changed from Ralph Pricing to Scrooge.

	Added service model and plugin for billing service depending on it’s usage types, base usage types and dependent services.

	Change report plugins architecture (change from function to classes, create plugin for base usages (eg. power consumption) and dedicated plugin for depreciation).

	Added teams billing. Teams could be billed in 4 models: by time, by devices count, by devices and cores count or by cost distribution between other teams depending on other teams members count.

	Modified collects virtual plugin for getting usages for more than one virtual systems.

	Created plugin for colleting internet usages per IP address (using nfsen).

	Added height of device usage.

	Removed old AllVentures report and warehouse option from report.

	PUSH API for usages of service resources by ventures.

	New white theme.

2.1.1

	Added scrooge logger sentry

2.1.0

	Changes in the architecture. Generate report from plugins for each usage

	Create few plugins for each usage

	Distinguish two groups of plugins, reports and collections

	Rebuild generate reports view and add it as beta venture view

	New report contains separated columns for warehouses for one report

	Increased efficiency of report generation

	Fix splunk plugin

	Used pluggableapps for scrooge config

	Added more logs from logger

	Added separated logger for scrooge

	Openstack ceilometer plugin

	When usage is per warehouse then warehouse must be chosen

	Fix datepicker on report subpage

	Added flag to hide/show usages on report

	Remove TopVenture subpage

2.0.1

	If assets plugin cannot find device by asset_id then try get device by sn

2.0.0

	Changes in the architecture. Now devices are taken by asset plugin from assets

	Remove device and cores plugin (This this is a role of asset plugin)

	DailyUsage contains warehouse field

	Added version of usage type price based on cost

	Added price or cost per warehouse

	Now venture reports are generated per warehouse (only colums with flag by_warehouse are different between reports)

	Added forecast prices and costs and possibility to generate forecast reports

	Added cost to price converter used by ‘get_assets_count_price_cost’ method

1.2.8

Released on December 11, 2013

	F5 devices billing added.

1.2.7

Released on November 03, 2013

	Added search boxes, filters and additional columns in admin.

	Fixed corner-case bug related to calculation of bladesystems costs.

1.2.6

Released on August 08, 2013

	Added “show only active” option in the reports

	Added short descriptions to reports templates

	Fixed assets plugin - IntegrityError protection, added new tests

	Show extra costs in the extra costs types admin

1.0.0

	initial release

License

 Copyright 2013-2014 Allegro Group

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

How to use

Comming soon…

Generate reports

Comming soon…

Main report

Comming soon…

Device report

Comming soon…

Costs & Extra costs

Comming soon…

Costs

Comming soon…

Extra costs

Comming soon…

Teams

Comming soon…

Collects Data

Comming soon…

 _static/plus.png

_images/base_usages.png
Base Cost

N

Senvices Venture

_static/up-pressed.png

_static/up.png

_images/report_plugins.png
need d

Custom \
Plugin

niversal
Plugin

_images/service_usages.png
Senvice Cost

N

Venture Venture

_images/collects_data_plugins.png
Remote
resources

Q
S

—
=—=

Database

_images/costs.png
Scrooge

Usage

pes
(Cost)

_images/services.png
S %°
Serwce .
Q9 @

_images/services_and_usages.png
Base Usages

Senvice
Usages

S

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Ralph Scrooge’s documentation!

 		
 Overview

 		
 Installation

 		
 Install Scrooge

 		
 Install Scrooge from pip

 		
 Install Scrooge from sources

 		
 Upgrade existing installation

 		
 Upgrade Scrooge from pip

 		
 Upgrade Scrooge from sources

 		
 Migrate the database

 		
 Update the settings

 		
 Testing if it works

 		
 Configuration

 		
 Reports

 		
 Ventures report

 		
 Devices report

 		
 Ventures daily usages

 		
 Device ventures changes

 		
 Services & Usages

 		
 Services

 		
 Usages

 		
 Base usages

 		
 Service usages

 		
 Plugins

 		
 Collect plugins

 		
 Report plugins

 		
 Costs & Extra costs

 		
 Costs

 		
 Extra costs

 		
 REST API

 		
 Notes for Scrooge developers/administrators

 		
 Statements

 		
 Change Log

 		
 DEV

 		
 3.0.1

 		
 3.0.0

 		
 2.7.0

 		
 2.6.0

 		
 2.5.4

 		
 2.5.3

 		
 2.5.2

 		
 2.5.1

 		
 2.5.0

 		
 2.4.0

 		
 2.3.0

 		
 2.2.3

 		
 2.2.2

 		
 2.2.1

 		
 2.2.0

 		
 2.1.1

 		
 2.1.0

 		
 2.0.1

 		
 2.0.0

 		
 1.2.8

 		
 1.2.7

 		
 1.2.6

 		
 1.0.0

 		
 License

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

