
RadioKit Engine Documentation
Release 1.0

RadioKit Ltd

May 24, 2017

Contents

1 Contents 3
1.1 Services . 3
1.2 Support . 10

i

ii

RadioKit Engine Documentation, Release 1.0

RadioKit Engine is a cloud computing platform for building multimedia, mainly audio-oriented applications. You can
think about it as of “Amazon Web Services for Audio”.

Instead of building complicated infrastructure from scratch, you can take existing “building blocks” and build your
app on top of them. Then RadioKit takes care about what’s hidden from the users, and you can focus on what is your
core business and brings the most value to your users.

Platform is API-oriented. That means that most of the functionality is available only through programming interfaces.
There are some user interfaces for management, but they show only part of the potential.

The API is mostly based on the REST API convention; so all communication with the system is done over HTTPS
protocol, which is the most widely adopted Internet application protocol in the world. Data is serialized as JSON.
That makes it effectively platform-independent, it does not matter what language or technology different parts of the
system use, as they talk to each other with universal protocol.

Pieces composing RadioKit Engine are built as micro services. There are several backends responsible for various
tasks. Technically speaking they are separate applications (although still speaking with the same protocol). That
allows us to keep system modular, create derivatives that fit specific clients’ needs, use different languages for different
purposes and makes system more reliable.

As most broadcasting applications have demand of high availability, we run our software only within credible, reliable
datacentres and providers such as:

• Heroku (the biggest Platform-as-a-Service platform, itself hosted at Amazon Web Services),

• OVH (the biggest European datacentre),

• Microsoft Azure (cloud computing platform from Microsoft).

It is however, possible to host it within users’ datacentre if certain technical requirements are met.

We utilize worldwide Content Delivery Network CloudFlare which provides us geocaching, speed optimization, en-
cryption and protects the whole infrastructure from DDoS attacks.

Contents 1

RadioKit Engine Documentation, Release 1.0

2 Contents

CHAPTER 1

Contents

Services

Contents:

Agenda (Schedule Manager)

Contents:

Broadcast Channel

Broadcast.Channel is a model in Agenda microservice which is a kind of superior container for broadcast streams and
contents.

Broadcast channel records are accessible using Official RadioKit REST Api. The following URL should be used to
obtain Broadcast.Channel records:

https://agenda.backend.url/api/rest/v1.0/broadcast/channel

Broadcast channel data

The following broadcast channel data fields are available for the user for index and show MVC action:

3

http://docs.radiokit.org/projects/engine/en/latest/services/restapi.html

RadioKit Engine Documentation, Release 1.0

Field Type Description
id UUID Refer to: Model Common Fields.
name string Refer to: Model Common Fields.
slug string
timezone string Timezone used for the channel
description string Channel’s description
media_routing_group_id UUID
homepage_url string Homepage’s URL
genre string Channel’s genre
references map Refer to: Model Common Fields.
extra map Refer to: Model Common Fields.
inserted_at DateTime Refer to: Model Common Fields.
updated_at DateTime Refer to: Model Common Fields.

Fields That Can/Must Be Specified During Creation

During creation of the record user can specify values for some of the fields. Some of them are required for the creation
of the record ad some of them are optional. Not specifying all the required fields for the creation of the record will
result in request being rejected.

Field Type Required
name string yes
slug string yes
timezone string yes
description string no
media_routing_group_id UUID yes
homepage_url string no
genre string no
references map no
extra map no

Fields That Can Be Updated After Creation

There are some fields for which the value can be updated after the record is created. Crucial fields can be assigned
a value only during creation and they cannot be changed later. The following fields can be updated by the user after
record creation:

Field Type
name string
timezone string
description string
homepage_url string
genre string
references map
extra map

Fields That Can Be Used in Conditions

The following broacast channel data fields can be used in conditions in index and show MVC actions:

4 Chapter 1. Contents

http://docs.radiokit.org/projects/engine/en/latest/services/rest/common_fields.html
http://docs.radiokit.org/projects/engine/en/latest/services/rest/common_fields.html
http://docs.radiokit.org/projects/engine/en/latest/services/rest/common_fields.html
http://docs.radiokit.org/projects/engine/en/latest/services/rest/common_fields.html
http://docs.radiokit.org/projects/engine/en/latest/services/rest/common_fields.html
http://docs.radiokit.org/projects/engine/en/latest/services/rest/common_fields.html

RadioKit Engine Documentation, Release 1.0

Field Type
name string
slug string

Other Records That Can Be Used for Join

The following records can be used for join operation in index and show MVC actions:

Field Model Description
schedule_content_types Agenda.Broadcast.ContentType Content types that belong to broadcast channel
broadcast_streams Agenda.Broadcast.Stream Broadcast streams that belong to broadcast channel

Auth (Authentication & Authorization provider)

Contents:

Plumber (Live Audio Mixer)

Contents:

Official RadioKit REST API

Contents:

Official RadioKit REST API

Official RadioKit REST API is query-like interface to most of the resources provided to the users by RadioKit mi-
croservices.

Resources

Microservices provide resources stored as records in the database. Records of particular type are defined by models.

Resources of a given model can be obtained using HTTP methods with an URL specific for the given model.

URL

The general URL specifying both microservice and model:

https://<microservice>.backend.url/api/rest/v1.0/<model_path>

For example records for Broadcast.Channel model defined in Agenda microservice are obtainable via the following
URL:

https://agenda.backend.url/api/rest/v1.0/broadcast/channel

1.1. Services 5

RadioKit Engine Documentation, Release 1.0

Listing records

Listing records corresponds to index action in MVC design pattern and can be obtained using HTTP GET method on
general model URL.

In general HTTP request GET https://agenda.backend.url/api/rest/v1.0/broadcast/channel should return JSON contain-
ing all broadcast channels defined in agenda microservice:

{
meta: {},
data: [
// records here

]
}

The same can be obtained using JavaScript wrapper:

radiokit
.query(“agenda”, “Broadcast.Channel”)
.where(“name”, “eq”, “something”)
.order(“name”, “asc”)
.on(“fetch”, (_event, _query, data)) => {
// data is already wrapped in Immutable.js array

})
.fetch();

Please note that at least one data field of the record must be specified in the request in order to verify this request as
correct one.

Request which does not specify any data field is treated as incorrect and is rejected.

Record data

User can specify which record data should be returned in a response from server using ‘a’ parameter.

This allows to modify the server’s response to only this data that is of user’s interest.

Documentation for each model specifies which record data can be obtained by the user.

Example

GET https://agenda.backend.url/api/rest/v1.0/broadcast/channel?a[]=id

Above HTTP request will return all broadcast channels and each returned record will have only ‘id’ field specified.

Example

GET https://agenda.backend.url/api/rest/v1.0/broadcast/channel?a[]=id&a[]=name

Above HTTP request will return all broadcast channels and each returned record will have both ‘id’ and ‘name’ fields
specified.

At least one data field must be specified in the request.

6 Chapter 1. Contents

https://agenda.backend.url/api/rest/v1.0/broadcast/channel

RadioKit Engine Documentation, Release 1.0

Record Methods

Some of the records provide methods that can be applied for a given record.

Methods are applied in the same manner as record data and the result of execution for given method is applied to the
server response.

Documentation for each model specifies record methods available for given model.

Limiting number of returned records by using conditions

User can limit number of returned records to the ones that fulfill the condition specified in the request. Condition can
be defined using ‘c’ parameter.

In order to specify the condition in the request the following syntax should be used:

?c[<field_name>][]=<operator>%20<specified_value>

The following operators can be used in conditions:

Operator Description
in checks if field’s value is included in specified_value
eq checks if field’s value is equal to specified_value
neq checks if field’s value is not equal to specified_value
lt checks if field’s value is less than specified_value
gt checks if field’s value is greater than specified_value
lte checks if field’s value is less than or equal
gte checks if field’s value is greater than or equal
isnull checks if field’s value is is null
notnull checks if field’s value is is not null
any
deq
dneq

Example

GET https://agenda.backend.url/api/rest/v1.0/broadcast/channel?a[]=id&c[name][]=eq
→˓%20Jazz

Above HTTP request will return all broadcast channels for which ‘name’ field is equal to ‘Jazz’ and each returned
record will have only ‘id’ field specified.

Joining other related records

User can request adding other related records to server response by using ‘j’ parameter in the request. The following
syntax applies:

?j[]=<model_name_in_plural>

1.1. Services 7

RadioKit Engine Documentation, Release 1.0

Example

GET https://agenda.backend.url/api/rest/v1.0/broadcast/channel?a[]=id&a[]=name&
→˓j[]=broadcast_streams

Above HTTP request will return all broadcast channels and each returned record will have both ‘id’ and ‘name’
fields specified. Additionally for each of broadcast records belonging broadcast streams will be added to the server’s
response.

Model Common Fields

There is a number of fields that are common for all the models in all the RadioKit microservices. This chapter describes
those fields in details.

Field Type Description
id UUID string Unique identifier of each record.

For more information about UUID
type refer to Ecto.UUID.

name string Name of record
references map ID of the record in another microser-

vice. Used to express relation be-
tween records in different microser-
vices

extra map Container used to store all data that
do not fit to predefined fields of the
model

inserted_at DateTime Date and time of the last udpate for
the record

updated_at DateTime Date and time when the record was
created

Vault (Repository of Media Files)

Contents:

Importing

TODO

Uploading

There are several ways to upload media files into Vault. Depending on the context and desired integration with other
applications you may want to push the whole file at once, ask service to pull it or upload it in chunks. Each of them
has its benefits and drawbacks, described below.

Please note that uploading refers to action initiated by user or another application. You also may want to take a look
about importing features that can be used to automatically fetch content from existing applications without necessity
to trigger such operation.

8 Chapter 1. Contents

https://hexdocs.pm/ecto/Ecto.UUID.html

RadioKit Engine Documentation, Release 1.0

RadioKit JavaScript API

Official RadioKit JavaScript API provides methods for handling uploads. It encapsulates them in high-level wrappers
and ensures that any future changes to the underlying architecture will be reflected without necessity to modify your
code.

It encapsulates authentication procedures, provides ability to queue files, upload them in parallel (but by default it will
upload only them one after another), restart uploads and the most importantly, divide them into chunks. This is a quite
reliable way to create uploader that handles large files even on weak network connections.

This is the preferred way to do uploads through web browser. Please note that this API does not handle server-side
JavaScript as it needs access to the DOM.

Example

import { Data } from "radiokit-api";

var data = new Data();
var upload;

data.on("auth::success", () => {
upload = data.upload("80332F34-F903-11E5-A3E1-3E19FDC8A409", { autoStart: true })
upload.assignBrowse(document.getElementById("#uploadButton"));
upload.assignDrop(document.getElementById("#uploadDropzone"));
upload.on("added", (_eventName, queue) => { console.log(queue.getQueue()); });
upload.on("progress", (_eventName, queue) => { console.log(queue.getQueue()); });
upload.on("retry", (_eventName, queue) => { console.log(queue.getQueue()); });
upload.on("error", (_eventName, queue) => { console.log(queue.getQueue()); });

});

data.signIn(); // This will redirect to the authentication service

Resumable.JS

Vault also provides interface for uploading via Resumable.JS JavaScript library. This is an alternative way to import
files through web browser. It is however, quite low-level, and especially authentication may be tricky as you have to
get and refresh OAuth2 access token on your own. It is however still possible if you don’t want to use official RadioKit
API due to any reason.

Resumable.JS provides ability to queue files, upload them in parallel, restart uploads and the most importantly, divide
them into chunks. This is a quite reliable way to create uploader that handles large files even on weak network
connections.

The endpoint for uploading is https://vault.radiokitapp.org/api/upload/v1.0/resumablejs. Maximum chunk size is
4MB. Testing if chunks are already present (the testChunks option) is not supported. You must pass some additional
headers and parameters to the requests:

• Authorization header with valid OAuth2 access token (see: Authentication)

• radiokit query parameter that contains:

– record_repository_id with valid Repository ID (see: Repositories)

Please refer to Resumable.JS documentation for further information.

1.1. Services 9

http://resumablejs.com/
https://vault.radiokitapp.org/api/upload/v1.0/resumablejs

RadioKit Engine Documentation, Release 1.0

Example

var r = new Resumable({
target: "https://vault.radiokitapp.org/api/upload/v1.0/resumablejs",
query: {
radiokit: {

record_repository_id: "80332F34-F903-11E5-A3E1-3E19FDC8A409"
}

},
headers: {
Authorization: "Bearer 123"

},
testChunks: false,

});

if(!r.support) {
alert("Chunked upload is not supported, upgrade your web browser.");

}

r.assignDrop(document.getElementById("#uploadDropzone"))
r.assignBrowse(document.getElementById("#uploadButton"), false);

r.fileAdded(() => { r.upload() });

Support

If you need any support while developing services on top of the Engine and encounter any issues, our team of experts
is ready to help.

Don’t hesitate to contact us at admin@radiokit.org

10 Chapter 1. Contents

mailto:admin@radiokit.org

	Contents
	Services
	Support

