
quoter Documentation
Release 1.6.5

Jonathan Eunice

September 08, 2015





Contents

1 Introduction 3

2 Discussion 5

3 We Can Do Better 7
3.1 Construction Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Cloning and Setting 9

5 Formatting and Encoding 11

6 Shortcuts 13

7 StyleSets 15
7.1 Visiting the Factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

8 HTML 17

9 XML 19

10 Named Styles 21

11 Dynamic Quoters 23

12 Markdown 25

13 Joiners 27

14 API Reference 29

15 Notes 33

16 Installation 35
16.1 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

i



ii



quoter Documentation, Release 1.6.5

quoter provides a simple, powerful, systematic way do accomplish one of the most common low-level operations
in Python programming: combing strings and data objects into other strings. It does so with remarkable intelligence,
including for complex textual langauges such as HTML and XML.

Contents 1



quoter Documentation, Release 1.6.5

2 Contents



CHAPTER 1

Introduction

quoter provides a simple, powerful, systematic way do accomplish one of the most common low-level operations in
Python programming: combing strings and data objects into other strings. For example:

from quoter import *

print single('this') # 'this'
print double('that') # "that"
print backticks('ls -l') # `ls -l`
print braces('curlycue') # {curlycue}
print braces('curlysue', padding=1)

# { curlysue }

Cute...but way too simple to be useful, right? Fair enough. Any of those could have been programmed with a simple
utility function.

Let’s try something more complicated, where the output has to be intelligently based on context. Here’s a taste of
quoting some HTML content:

print html.p("A para", ".focus")
print html.img('.large', src='file.jpg')
print html.br()
print html.comment("content ends here")

Yields:

<p class='focus'>A para</p>
<img class='large' src='file.jpg'>
<br>
<!-- content ends here -->

This goes well beyond “simply wrapping some text with other text.” The output format varies widely, correctly in-
terpreting CSS Selector-based controls, using void/self-closing elements where needed, and using specialized markup
such as the comment format when needed. The HTML quoter and its companion XML quoter are competitive in
power and simplicity with bespoke markup-generating packages.

A similar generator for Markdown is also newly included, though it’s a the “demonsration” rather than “use in pro-
duction code” stage.

Finally, quoter provides a drop-dead simple, highly functional, join function:

mylist = list("ABCD")
print join(mylist)
print join(mylist, sep=" | ", endcaps=braces)
print join(mylist, sep=" | ", endcaps=braces.but(padding=1))

3



quoter Documentation, Release 1.6.5

print and_join(mylist)
print and_join(mylist[:2])
print and_join(mylist[:3])
print and_join(mylist, quoter=double, lastsep=" and ")

Yields:

A, B, C, D
{A | B | C | D}
{ A | B | C | D }
A and B
A, B, and C
A, B, C, and D
"A", "B", "C" and "D"

Which shows a range of separators, separation styles (both Oxford and non-Oxford commas), endcaps, padding, and
individual item quoting. I daresay you will not find a more flexible or configurable join function anywhere else, in
any programming language, at any price.

And if you like any particular style of formatting, make it your own:

>>> my_join = join.but(sep=" | ", endcaps=braces.but(padding=1))
>>> print my_join(mylist)
{ A | B | C | D }

Now you have a convenient specialized formatter to your own specifications.

4 Chapter 1. Introduction



CHAPTER 2

Discussion

Programs stringify and quote values all the time. They wrap both native strings and the string representation of
other values in all manner of surrounding text. Single quotes. Double quotes. Curly quotes. Backticks. Separating
whitespace. Unicode symbols. HTML or XML markup. Et cetera.

There are a lot of ways to do this text formatting and wrapping. For example:

value = 'something'
print '{x}'.replace('x', value) # {something}
print "'{0}'".format(value) # 'value'
print "'" + value + "'" # 'value'
print "{0}{1}{2}".format('"', value, '"') # "value"
print ''.join(['"', value, '"']) # "value"

But for such a simple, common task as wrapping values in surrounding text, these look pretty ugly, low-level, and
dense. Writing them out, it’s easy to mistype a character here or there, or to forget some of the gotchas. Say you’re
formatting values, some of which are strings, but others are integers or other primitive types. Instant TypeError!
Only strings can be directly concatenated with strings in Python.

The repetitive, ad hoc nature of textual quoting and wrapping is tiresome and error-prone. It’s never more so than when
constructing multi-level quoted strings, such as Unix command line arguments, SQL commands, or HTML attributes.

quoter provides a clean, consistent, higher-level alternative. It also provides a mechanism to pre-define your own
quoting styles that can then be easily reused.

5



quoter Documentation, Release 1.6.5

6 Chapter 2. Discussion



CHAPTER 3

We Can Do Better

Unlike native Python concatenation operators, quoter isn’t flustered if you give it non-string data. It knows you
want a string output, so it auto-stringifies non-string values:

assert brackets(12) == '[12]'
assert braces(4.4) == '{4.4}'
assert double(None) == '"None"'
assert single(False) == "'False'"

The module pre-defines callable Quoters for a handful of the most common quoting styles:

• braces {example}

• brackets [example]

• angles <example>

• parens (example)

• double “example”

• single ‘example’

• backticks ‘example‘

• anglequote «example»

• curlysingle ‘example’

• curlydouble “example”

But there are a huge number of ways you might want to wrap or quote text. Even considering just “quotation marks,”
there are well over a dozen. There are also numerous bracketing symbols in common use. That’s to say nothing of the
constructs seen in markup, programming, and templating languages. So quoter couldn’t possibly provide a default
option for every possible quoting style. Instead, it provides a general-purpose mechanism for defining your own:

from quoter import Quoter

bars = Quoter('|')
print bars('x') # |x|

plus = Quoter('+','')
print plus('x') # +x

para = Quoter('<p>', '</p>')
print para('this is a paragraph') # <p>this is a paragraph</p>

# NB simple text quoting - see below
# for higher-end HTML handling

7

http://en.wikipedia.org/wiki/Quotation_mark_glyphs
http://en.wikipedia.org/wiki/Bracket


quoter Documentation, Release 1.6.5

variable = Quoter('${', '}')
print variable('x') # ${x}

Note that bars is specified with just one symbol. If only one is given, the prefix and suffix are considered to be
identical. If you really only want a prefix or a suffix, and not both, then instantiate the Quoter with two, one of
which is an empty string, as in plus above.

In most cases, it’s cleaner and more efficient to define a style, but there’s nothing preventing you from an on-the-fly
usage:

print Quoter('+[ ', ' ]+')('castle') # +[ castle ]+

3.1 Construction Details

The examples above generally use a flag argument style of construction. Note, however, that Quoter is converting
these into respective prefix and suffix values. If you prefer, you can simply state the prefix and or suffix as direct
kwargs:

vars = Quoter(prefix='${', suffix='}')
print vars('y') # ${y}

And for the very common cases where quotes are paired, equal-length strings, those can be specified with the pair
kwarg:

onetwo = Quoter(pair="1221")
print onetwo('this') # 12this21

8 Chapter 3. We Can Do Better



CHAPTER 4

Cloning and Setting

Quoter parameters can be changed (set) in real time.:

bars = Quoter('|')
print bars('x') # |x|
bars.set(prefix='||', suffix='||')
print bars('x') # ||x||
bars.set(padding=1)
print bars('x') # || x ||

And Quoter instances you like can be cloned, optionally with several options changed in the clone:

bart = bars.clone(prefix=']', suffix='[')
assert bart('x') == '] x ['

The method but is a synonym for clone. It is used to suggest “I like everything there, but...change this and that.”:

bartwide = bart.but(margin=2)
assert bartwide('x') == ' ] x [ '

Note that if any of the options for bart besides margin change, those changes will be reflected in bartwide as
well. bartwide has decided what its own margins will be, but delegated all other choices to its parent object.

9



quoter Documentation, Release 1.6.5

10 Chapter 4. Cloning and Setting



CHAPTER 5

Formatting and Encoding

The Devil, as they say, is in the details. We often don’t just want quote marks wrapped around values. We also want
those values set apart from the rest of the text. quoter supports this with padding and margin settings patterned
on the CSS box model. In CSS, moving out from content one finds padding, a border, and then a margin. Padding can
be thought of as an internal margin, and the prefix and suffix strings like the border. With that in mind:

print braces('this') # '{this}'
print braces('this', padding=1) # '{ this }'
print braces('this', margin=1) # ' {this} '
print braces('this', padding=1, margin=1) # ' { this } '

If desired, the padding and margin can be given explicitly, as strings. If given as integers, they are interpreted as a
number of spaces.

One can also define the encoding used for each call, per instance, or globally. If some of your quote symbols use
Unicode characters, yet your output medium doesn’t support them directly, this is an easy fix. E.g.:

Quoter.options.encoding = 'utf-8'
print curlydouble('something something')

Now curlydouble will output UTF-8 bytes. But in general, this is not a great idea; you should work in Unicode
strings in Python, encoding or decoding only at the time of input and output, not as each piece of content is constructed.

11

http://www.w3.org/TR/CSS2/box.html


quoter Documentation, Release 1.6.5

12 Chapter 5. Formatting and Encoding



CHAPTER 6

Shortcuts

One often sees very long function calls and expressions as text parts are being assembled. In order to reduce this
problem, quoter defines aliases for single, double, and triple quoting, as well as backticks, and double
backticks:

from quoter import qs, qd, qt, qb, qdb

print qs('one'), qd('two'), qt('three'), qb('and'), qdb('four')
# 'one' "two" """three""" `and` ``four``

You can, of course, define your own aliases as well, and/or redefine existing styles. If, for example, you like braces
but wish it added a padding space by default, it’s simple to redefine:

sbraces = Quoter('{', '}', padding=1)
print sbraces('braces plus spaces!') # '{ braces plus spaces! }'

You could alternatively riff off of the existing braces:

sbraces = braces.but(padding=1)

You could still get the no-padding variation with:

print braces('no space braces', padding=0) # '{no space braces}'

13



quoter Documentation, Release 1.6.5

14 Chapter 6. Shortcuts



CHAPTER 7

StyleSets

As an organizational assist, quoters are available as named attributes of a pre-defined quote object. For those who like
strict, minimalist imports, this permits from quoter import quote without loss of generality. For example:

from quoter import quote

quote.double('test') # "test"
quote.braces('test') # {test}
# ...and so on...

quote is is a StyleSet–a group of related named quoters (i.e. “quoting styles”) conveniently packaged through
attributes of a single object.

7.1 Visiting the Factory

Each StyleSet has a factory function for creating new styles; in the case of quote the factory is the Quoter class.
You can use the _define method if you like to create new members:

colon = quote._define('colon', ':')
assert colon('this') == quote.colon('this') == ':this:'

The assignement to a standalone name colon here is optional; you could just always refer to quote.colon after
the definition if you wish.

You may even call a StyleSet in immediate mode:

print quote("super") # "'super'"

To define your own set of named styles:

cq = StyleSet(factory=Quoter,
immediate=Quoter(':'))

cq._define("two", Quoter('::'))

Now:

print cq('this') # ':this:'
print cq.two('this') # '::this::'

15



quoter Documentation, Release 1.6.5

16 Chapter 7. StyleSets



CHAPTER 8

HTML

Quoting does not need to be a simple matter of string concatenation. It can involve sophisticated on-the-fly decisions
based on content and context.

For example, there is an extended quoting mode designed for XML and HTML construction. Instead of prefix and
suffix strings, XMLQuoter and HTMLQuoter classes build valid HTML out of tag names and “CSS selector” style
specifications (similar to those used by jQuery). This is a considerable help in Python, which defines and/or reserves
some of the attribute names most used in HTML (e.g. class and id). Using the CSS selector style neatly gets
around this annoyance–and is more compact and more consistent with modern web development idioms to boot.:

from quoter import *

print html.p('this is great!', {'class':'emphatic'})
print html.p('this is great!', '.spastic')
print html.p('First para!', '#first')

Yields:

<p class=’emphatic’>this is great!</p> <p class=’spastic’>this is great!</p> <p id=’first’>First para!</p>

Note that the order in which attributes appear is not guaranteed. They’re stored in dict objects, which have different
orderings on different versions of Python. This generally isn’t a problem, in that ordering isn’t significant in HTML.
It can, however, make string-based testing more annoying.

The following CSS selectors are understood:

CSS Spec Result X/HTML
tag <tag>
#ident id=”ident”
.classname class=”classname”
[key=value] key=”value”

Note that with the exception of tagnames and ids, multiple setters are possible in the same CSS spec. So
p#one.main.special[lang=en] defines <p id=’one’ class=’main special’ lang=’en’>.

HTML quoting also understands that some elements are “void” or “self-closing,” meaning they do not need closing
tags (and in some cases, not even content). So for example:

>>> print html.br()
<br>

>>> print html.img('.big', src='afile')
<img class='big' src='afile'>

17

http://jquery.com


quoter Documentation, Release 1.6.5

The html object for HTMLQuoter (or corresponding xml for XMLQuoter) is a convenient front-end that can be
immediately used to provide simple markup language construction. (It’s actually a StyleSet that knows how to
create new styles on-the-fly.)

You can also access the underlying classes directly, and/or define your own customized quoters. Your own quoters can
be called as a function would be. Or, if you give them a name, they can be called through the html front-end, just like
the pre-defined tags. For instance:

para_e = html._define('para_e', 'p.emphatic')
print para_e('this is great!')
print html.para_e('this is great?', '.question')
print html.img('.large', src='somefile')
print html.br()

Yields:

<p class='emphatic'>this is great!</p>
<p class='question emphatic'>this is great?</p>
<img class='large' src='somefile'>
<br>

HTMLQuoter quotes attributes by default with single quotes. If you prefer double quotes, you may set them when
the element is defined:

div = HTMLQuoter('div', attquote=double)

Note: Some output may show HTML and XML elements in a different order that described in the documentation.
This is because Python dict data structures in which keyword arguments are stored are expressly unordered. In
practice, their order is implementation dependent, and varies based on whether you’re running on Python 2, Python 3,
or PyPy. quoter always produces correct output, but the ordering may be subtly different from the order suggested
by the source code. If this variance bothers you, please join me in lobbying for dictionary ordering (OrderedDict)
to become the standard behavior for kwargs in future versions of Python.

18 Chapter 8. HTML



CHAPTER 9

XML

XMLQuoter with its xml front-end is a similar quoter with markup intelligence. It offers one additional attribute
beyond HTMLQuoter: ns for namespaces. Thus:

item = xml._define("item inv_item", tag='item', ns='inv')
print item('an item')
print xml.item('another')
print xml.inv_item('yet another')
print xml.thing('something')
print xml.special('else entirely', '#unique')

yields:

<inv:item>an item</inv:item>
<inv:item>another</inv:item>
<inv:item>yet another</inv:item>
<thing>something</thing>
<special id='unique'>else entirely</special>

Note: item was given two names. Multiple aliases are supported. While the item object carries its namespace
specification through its different invocations, the calls to non-item quoters nave no persistent namespace. Finally,
that the CSS specification language heavily used in HTML is present and available for XML, though its use may be
less common.

In general, xml.tagname auto-generates quoters just like html.tagname does on first use. There are also pre-
defined utility methods such as html.comment() and xml.comment() for commenting purposes.

19



quoter Documentation, Release 1.6.5

20 Chapter 9. XML



CHAPTER 10

Named Styles

Quoting via the functional API or the attribute-accessed front-ends (quote, lambdaq, html, and xml) is prob-
ably the easiest way to go. But there’s one more way. If you provide the name of a defined style via the
style attribute, that’s the style you get. So while quote(’something’) gives you single quotes by default
(’something’), if you invoke it as quote(’something’, style=’double’), you get double quoting as
though you had used quote.double(...), double(...), or qd(...). This even works through named
front.ends; quote.braces(’something’, style=’double’) still gets you "something". If you don’t
want to be confused by such double-bucky forms, don’t use them. The best use-case for named styles is probably
when you don’t know how something will be quoted (or what tag it will use, in the HTML or XML case), but that
decision is made dynamically. Then style=desired_style makes good sense.

Style names are stored in the class of the quoter. So all Quoter instances share the same named styles, as do
HTMLQuoter, XMLQuoter, and LambdaQuoter.

21



quoter Documentation, Release 1.6.5

22 Chapter 10. Named Styles



CHAPTER 11

Dynamic Quoters

XMLQuoter and HTMLQuoter show that it’s straightforward to define Quoters that don’t just concatenate text,
but that examine it and provide dynamic rewriting on the fly.

LambdaQuoter is a further generalization of this idea. It allows generic formatting to be done by a user-provided
function. For example, in finance, one often wants to present numbers with a special formatting:

from quoter import *

f = lambda v: ('(', abs(v), ')') if v < 0 else ('', v, '')
financial = LambdaQuoter(f)
print financial(-3) # (3)
print financial(45) # 45

password = LambdaQuoter(lambda v: ('', 'x' * len(v), ''))
print password('secret!') # xxxxxxx

wf = lambda v: ('**', v, '**') if v < 0 else ('', v, '')
warning = lambdaq._define("warning", wf)
print warning(12) # 12
print warning(-99) # **-99**

The trick is instantiating LambdaQuoter with a callable (e.g. lambda expression or even a full function) that
accepts one value and returns a tuple of three values: the quote prefix, the value (possibly rewritten), and the suffix.
The rewriting mechanism can be entirely general, doing truncation, column padding, content obscuring, hashing,
or...just anything.

LambdaQuoter named instances are accessed through the lambdaq front-end (because lambda is a reserved
word). Given the code above, lambdaq.warning is active, for example.

LambdaQuoter shows how general a formatting function can be made into a Quoter. That has the virtue of
providing a consistent mechanism for tactical output transformation with built-in margin and padding support. It’s
also able to encapsulate complex quoting / representation decisions that would otherwise muck up “business logic,”
making representation code much more unit-testable. But, one might argue that such full transformations are “a bridge
too far” for a quoting module. So use this dynamic component, or not, as you see fit.

23



quoter Documentation, Release 1.6.5

24 Chapter 11. Dynamic Quoters



CHAPTER 12

Markdown

An experimental Markdown formatter has been added. It is quite simple at present, supporting both span:

Function Markdown Span
md.i *italics*
md.b **bold**
md.a anchor, aka link

and some block functions:

Function Markdown Block
md.h heading
md.h1 heading level 1
md.h2 heading level 2
... ...
md.h6 heading level 6
md.p paragraph
md.hr horizontal rule
md.doc document

All functions are accessed through the md style set.

List, image, blockquote, and code-block formatting are next steps. At this demonstration stage, the goal is to stretch
the quoter use-case and prove/harden its extension mechanisms, which it is already doing. A much more extensive
block-oriented quoting mechanism is in the works to flesh out Markdown construction. Stay tuned for more extensive
functions and documentation.

25



quoter Documentation, Release 1.6.5

26 Chapter 12. Markdown



CHAPTER 13

Joiners

Joiner is a type of Quoter that combines sequences. The simplest invocation join(mylist) is identical to
’, ’.join(mylist). But of course it doesn’t stop there. The sep parameter determines what string is placed
between each list item. But the separator need not be uniform. For the common (and linguistically important) case
where there are two items in list, the twosep parameter provides an alternate value. The final separator can be defined
via the lastsep parameter, permitting proper Oxford commas, or if you prefer, a non-Oxford heathen style. The
standard prefix, suffix, margin and padding parameters are available. Finally, individual sequence items can
be formatted (quoter) and the entire “core” of joined material can be wrapped by an endcap quoter.

Some examples:

mylist = list("ABCD")
print join(mylist)
print join(mylist, sep=" | ", endcaps=braces)
print join(mylist, sep=" | ", endcaps=braces.but(padding=1))
print and_join(mylist)
print and_join(mylist[:2])
print and_join(mylist[:3])
print and_join(mylist, quoter=double, lastsep=" and ")

Yields:

A, B, C, D
{A | B | C | D}
{ A | B | C | D }
A and B
A, B, and C
A, B, C, and D
"A", "B", "C" and "D"

It’s a bit of a historical accident that both the prefix/suffix pair and endcap are available, as they accomplish the
same goal. If an endcap quoter is used, note that any desired padding (spaces inside the endcaps) must be provided
by the endcapper, as it operates earlier than, and in conflict with, the application of normal padding. E.g.:

print join(mylist, sep=" | ", endcaps=braces.but(padding=1))
print join(mylist, sep=" | ", prefix="{", suffix="}", padding=1)

Do the same thing. But mixing and matching the two styles may not give you what you wanted.

Various defined Joiner objects may be of use:: and_join, or_join, joinlines, and concat.

27

https://en.wikipedia.org/wiki/Serial_comma


quoter Documentation, Release 1.6.5

28 Chapter 13. Joiners



CHAPTER 14

API Reference

A start on a more complete, method-by-method reference:

class quoter.Quoter(*args, **kwargs)
A quote style. Instantiate it with the style information. Call it with a value to quote the value.

__call__(*args, **kwargs)
Quote the value, according to the current options.

__init__(*args, **kwargs)
Create a quoting style.

but(**kwargs)
Create a new instance whose options are chained to this instance’s options (and thence to
self.__class__.options). kwargs become the cloned instance’s overlay options.

clone(**kwargs)
Create a new instance whose options are chained to this instance’s options (and thence to
self.__class__.options). kwargs become the cloned instance’s overlay options.

options = Options(suffix=None, sep=’‘, encoding=None, padding=0, prefix=None, pair=Transient, margin=0)

set(*args, **kwargs)
Change the receiver’s settings to those defined in the kwargs. An update-like function. This uplevels
calls that would look like Class.options.set(...) to the simpler Class.set(...). Works on
either class or instance receivers. Requires that one uses the instance variable options to store persistent
configuration data.

settings(**kwargs)
Open a context manager for a with statement. Temporarily change settings for the duration of the with.

class quoter.LambdaQuoter(*args, **kwargs)
A Quoter that uses code to decide what quotes to use, based on the value.

__call__(value, **kwargs)
Quote the value, based on the instance’s function.

__init__(*args, **kwargs)
Create a quoting style.

but(**kwargs)
Create a new instance whose options are chained to this instance’s options (and thence to
self.__class__.options). kwargs become the cloned instance’s overlay options.

clone(**kwargs)
Create a new instance whose options are chained to this instance’s options (and thence to
self.__class__.options). kwargs become the cloned instance’s overlay options.

29



quoter Documentation, Release 1.6.5

options = Options(suffix=Prohibited, sep=’‘, encoding=None, padding=0, prefix=Prohibited, func=None, pair=Prohibited, margin=0)

set(*args, **kwargs)
Change the receiver’s settings to those defined in the kwargs. An update-like function. This uplevels
calls that would look like Class.options.set(...) to the simpler Class.set(...). Works on
either class or instance receivers. Requires that one uses the instance variable options to store persistent
configuration data.

settings(**kwargs)
Open a context manager for a with statement. Temporarily change settings for the duration of the with.

class quoter.XMLQuoter(*args, **kwargs)
A more sophisticated quoter for XML elements that manages tags, namespaces, and the idea that some elements
may not have contents.

__call__(*args, **kwargs)
Quote a value in X/HTML style, with optional attributes.

__init__(*args, **kwargs)
Create an XMLQuoter

but(**kwargs)
Create a new instance whose options are chained to this instance’s options (and thence to
self.__class__.options). kwargs become the cloned instance’s overlay options.

clone(**kwargs)
Create a new instance whose options are chained to this instance’s options (and thence to
self.__class__.options). kwargs become the cloned instance’s overlay options.

options = Options(atts={}, suffix=Prohibited, sep=’‘, void=False, encoding=None, attquote=Quoter(suffix=””’, sep=’‘, encoding=None, padding=0, prefix=””’, pair=Transient, margin=0), padding=0, prefix=Prohibited, tag=None, pair=Transient, ns=None, margin=0)

set(*args, **kwargs)
Change the receiver’s settings to those defined in the kwargs. An update-like function. This uplevels
calls that would look like Class.options.set(...) to the simpler Class.set(...). Works on
either class or instance receivers. Requires that one uses the instance variable options to store persistent
configuration data.

settings(**kwargs)
Open a context manager for a with statement. Temporarily change settings for the duration of the with.

class quoter.HTMLQuoter(*args, **kwargs)
A more sophisticated quoter that supports attributes and void elements for HTML.

__call__(*args, **kwargs)
Quote a value in X/HTML style, with optional attributes.

__init__(*args, **kwargs)

but(**kwargs)
Create a new instance whose options are chained to this instance’s options (and thence to
self.__class__.options). kwargs become the cloned instance’s overlay options.

clone(**kwargs)
Create a new instance whose options are chained to this instance’s options (and thence to
self.__class__.options). kwargs become the cloned instance’s overlay options.

options = Options(atts={}, suffix=Prohibited, sep=’‘, void=False, encoding=None, attquote=Quoter(suffix=””’, sep=’‘, encoding=None, padding=0, prefix=””’, pair=Transient, margin=0), padding=0, prefix=Prohibited, tag=None, pair=Transient, ns=Prohibited, margin=0)

set(*args, **kwargs)
Change the receiver’s settings to those defined in the kwargs. An update-like function. This uplevels
calls that would look like Class.options.set(...) to the simpler Class.set(...). Works on

30 Chapter 14. API Reference



quoter Documentation, Release 1.6.5

either class or instance receivers. Requires that one uses the instance variable options to store persistent
configuration data.

settings(**kwargs)
Open a context manager for a with statement. Temporarily change settings for the duration of the with.

quoter.quote Default ‘‘StyleSet‘‘ for ‘‘Quoter‘‘ objects
Container for named styles.

quoter.lambdaq Default ‘‘StyleSet‘‘ for ‘‘LambdaQuoter‘‘ objects
Container for named styles.

quoter.xml Default ‘‘StyleSet‘‘ for ‘‘XMLQuoter‘‘ objects
Container for named styles.

quoter.html Default ‘‘StyleSet‘‘ for ‘‘HTMLQuoter‘‘ objects
Container for named styles.

quoter.md Default ‘‘StyleSet‘‘ for ‘‘Markdown‘‘ objects
Container for named styles.

31



quoter Documentation, Release 1.6.5

32 Chapter 14. API Reference



CHAPTER 15

Notes

• quoter provides simple transformations that could be alternatively implemented as a series of small functions.
The problem is that such “little functions” tend to be constantly re-implemented, in different ways, and spread
through many programs. That need to constantly re-implement such common tasks has led me to re-think how
software should construct text on a grander scale. quoter is one facet of a project to systematize higher-level
formatting operations. See say and show for other parts of the larger effort.

• quoter is a test case for, and leading user of, options, a module that supports flexible option handling. In some
ways it is options most extensive test case, in terms of subclassing and dealing with named styles.

• In the future, additional quoting styles might appear. There is already (limited, experimental) support for Mark-
down, and other languages such as RST are straightforward. It’s not hard to subclass Quoter for new lan-
guages. Some of the things learned in the say project about text block management (indentation, wrapping,
and such) are highly applicable to the quoting mission.

• You might look at some of the modules for ANSI-coloring text such as ansicolors as being special cases of the
quoter idea. While quoter doesn’t provide this specific kind of wrapping, it’s in-line with the mission.

• Automated multi-version testing managed with the wonderful pytest, pytest-cov, coverage, and tox. Continuous
integration testing with Travis-CI. Packaging linting with pyroma.

• Successfully packaged for, and tested against, all late-model versions of Python: 2.6, 2.7, 3.2, 3.3, 3.4, and 3.5
pre-release (3.5.0b3) as well as PyPy 2.6.0 (based on 2.7.9) and PyPy3 2.4.0 (based on 3.2.5).

• The author, Jonathan Eunice or @jeunice on Twitter welcomes your comments and suggestions.

33

http://pypi.python.org/pypi/say
http://pypi.python.org/pypi/show
http://pypi.python.org/pypi/options
https://pypi.python.org/pypi/ansicolors
http://pypi.python.org/pypi/pytest
http://pypi.python.org/pypi/pytest-cov
http://pypi.python.org/pypi/coverage
http://pypi.python.org/pypi/tox
https://travis-ci.org/jonathaneunice/textdata
https://pypi.python.org/pypi/pyroma
mailto:jonathan.eunice@gmail.com
http://twitter.com/jeunice


quoter Documentation, Release 1.6.5

34 Chapter 15. Notes



CHAPTER 16

Installation

To install or upgrade to the latest version:

pip install -U quoter

To easy_install under a specific Python version (3.3 in this example):

python3.3 -m easy_install --upgrade quoter

(You may need to prefix these with sudo to authorize installation. In environments without super-user privileges, you
may want to use pip‘s --user option, to install only for a single user, rather than system-wide.)

16.1 Testing

If you wish to run the module tests locally, you’ll need to install pytest and tox. For full testing, you will also need
pytest-cov and coverage. Then run one of these commands:

tox # normal run - speed optimized
tox -e py27 # run for a specific version only (e.g. py27, py34)
tox -c toxcov.ini # run full coverage tests

The provided tox.ini and toxcov.ini config files do not define a preferred package index / repository. If you
want to use them with a specific (presumably local) index, the -i option will come in very handy:

tox -i INDEX_URL

35



quoter Documentation, Release 1.6.5

36 Chapter 16. Installation



Index

Symbols
__call__() (quoter.HTMLQuoter method), 30
__call__() (quoter.LambdaQuoter method), 29
__call__() (quoter.Quoter method), 29
__call__() (quoter.XMLQuoter method), 30
__init__() (quoter.HTMLQuoter method), 30
__init__() (quoter.LambdaQuoter method), 29
__init__() (quoter.Quoter method), 29
__init__() (quoter.XMLQuoter method), 30

B
but() (quoter.HTMLQuoter method), 30
but() (quoter.LambdaQuoter method), 29
but() (quoter.Quoter method), 29
but() (quoter.XMLQuoter method), 30

C
clone() (quoter.HTMLQuoter method), 30
clone() (quoter.LambdaQuoter method), 29
clone() (quoter.Quoter method), 29
clone() (quoter.XMLQuoter method), 30

H
html (in module quoter), 31
HTMLQuoter (class in quoter), 30

L
lambdaq (in module quoter), 31
LambdaQuoter (class in quoter), 29

M
md (in module quoter), 31

O
options (quoter.HTMLQuoter attribute), 30
options (quoter.LambdaQuoter attribute), 29
options (quoter.Quoter attribute), 29
options (quoter.XMLQuoter attribute), 30

Q
quote (in module quoter), 31
Quoter (class in quoter), 29

S
set() (quoter.HTMLQuoter method), 30
set() (quoter.LambdaQuoter method), 30
set() (quoter.Quoter method), 29
set() (quoter.XMLQuoter method), 30
settings() (quoter.HTMLQuoter method), 31
settings() (quoter.LambdaQuoter method), 30
settings() (quoter.Quoter method), 29
settings() (quoter.XMLQuoter method), 30

X
xml (in module quoter), 31
XMLQuoter (class in quoter), 30

37


	Introduction
	Discussion
	We Can Do Better
	Construction Details

	Cloning and Setting
	Formatting and Encoding
	Shortcuts
	StyleSets
	Visiting the Factory

	HTML
	XML
	Named Styles
	Dynamic Quoters
	Markdown
	Joiners
	API Reference
	Notes
	Installation
	Testing


