

Quick Sphinx Tutorial

[image: Travis Build]
 [https://travis-ci.org/cehbrecht/quick-sphinx-tutorial]Welcome to this short Sphinx [http://sphinx-doc.org/] tutorial. This tutorial is a concise
summary of other Sphinx tutorials and will give you a quick overview
of what Sphinx can do for you. If you want to know about the Sphinx
details then have a look at Useful Links and at one [http://gisellezeno.com/tutorials/sphinx-for-python-documentation.html] or the
other [https://sphinx-tutorial.readthedocs.org/] tutorial.

Note

Of course a tutorial about Sphinx is written in Sphinx [http://sphinx-doc.org/]. You
can clone this tutorial from GitHub [https://github.com/cehbrecht/quick-sphinx-tutorial] and it is hosted
on ReadTheDocs [http://quick-sphinx-tutorial.readthedocs.org/en/latest/].

	What is Sphinx?

	Installing Sphinx

	First Steps with Sphinx

	Using reStructuredText

	Showing Source Code

	ReadTheDocs and Sphinx

	Going Further into Sphinx

	Useful Links

	Sphinx AutoAPI Index

What is Sphinx?

From http://sphinx-doc.org:

	Sphinx is a tool that makes it easy to create intelligent and beautiful documentation.

	It was originally created for the new Python documentation, and it
has excellent facilities for the documentation of Python projects,
but C/C++ is already supported as well.

Warning

... a great tool that actually makes programmers want to write documentation!

Sphinx Philosophy

Sphinx [http://sphinx-doc.org/] is a documentation generator. This means it takes plain-text
files in reStructuredText [http://sphinx-doc.org/rest.html] format and transformes it into HTML, PDF,
and any other output format.

reST -> Sphinx -> HTML (PDF, eBook, ...)

So as a user of Sphinx, your main job will be writing these text files
with reStructuredText [http://sphinx-doc.org/rest.html] which is similar to Wiki languages like
Markdown.

Sphinx Advantages

	Documents are written as plain text files.

	Output formats will be generated by Sphinx: HTML, PDF, eBook.

	Markup language used (reST) is similar to Wiki languages (Markdown, Textile, ...).

	Layouts can be replaced, many default layouts available.

	Writer concentrates on content, layout and output comes from Sphinx.

	Autogenerating documentation from source code.

	Syntax highlighting for many formats (Python, XML, ...).

	Cross-references to parts of the documenation (sections, code, glossary, ...) and automatic indices.

	Version control (GitHub) can be used for collaborative work and keeping track of different document versions.

	The documentation is part of the source code repository.

Examples on Sphinx

	https://docs.python.org/2.7/

	http://bokeh.pydata.org/en/latest/

	https://docs.djangoproject.com/en/1.9/internals/contributing/writing-documentation/

	http://docs.geotools.org/

	http://docs.geoserver.org/latest/en/user/

	http://ryan-roemer.github.io/sphinx-bootstrap-theme/

	http://cppformat.github.io/latest/

	http://doc.mapbender3.org/index.html

Installing Sphinx

You can install Sphinx from PyPI with pip:

$ pip install sphinx

Or install it with conda:

$ conda install sphinx

First Steps with Sphinx

Prepare the tutorial demo (optional)

To see a Sphinx example you can clone this tutorial from GitHub:

$ git clone https://github.com/cehbrecht/quick-sphinx-tutorial.git

Setup the conda environment which includes the Sphinx package with some extensions:

$ cd quick-sphinx-tutorial
$ conda env create -f environment.yml
$ source activate giza

Or use pip to install the Sphinx packages:

$ pip install -r requirements.txt

Getting Started

Create docs folder:

$ mkdir docs
$ cd docs

Create the sphinx skeleton:

$ sphinx-quickstart

> Root path for the documentation [.]:
> Separate source and build directories (y/n) [n]: y
> Name prefix for templates and static dir [_]:
> Project name: Giza
> Author name(s): Mac Pingu
> Project version: 0.1
> Project release [0.1]:
> Project language [en]:
> Source file suffix [.rst]:
> Name of your master document (without suffix) [index]:
> Do you want to use the epub builder (y/n) [n]:
> autodoc: automatically insert docstrings from modules (y/n) [n]:
> doctest: automatically test code snippets in doctest blocks (y/n) [n]:
> intersphinx: link between Sphinx documentation of different projects (y/n) [n]: y
> todo: write "todo" entries that can be shown or hidden on build (y/n) [n]: y
> coverage: checks for documentation coverage (y/n) [n]:
> imgmath: include math, rendered as PNG or SVG images (y/n) [n]:
> mathjax: include math, rendered in the browser by MathJax (y/n) [n]:
> ifconfig: conditional inclusion of content based on config values (y/n) [n]:
> viewcode: include links to the source code of documented Python objects (y/n) [n]: y
> githubpages: create .nojekyll file to publish the document on GitHub pages (y/n) [n]:
> Create Makefile? (y/n) [y]:
> Create Windows command file? (y/n) [y]:

Your file system should now look similar to this:

mypackage
├── src
└── docs
 ├── Makefile
 ├── make.bat
 ├── build
 └── sources
 ├── conf.py
 └── index.rst

Building docs

Let’s build our docs into HTML to see how it works.
Simply run:

Inside top-level docs/ directory.
$ make html

This should run Sphinx in your shell, and output HTML.
At the end, it should say something about the documents being ready in
build/html.
You can now open them in your browser by typing:

$ firefox build/html/index.html

Change the Look

You can change the look of the generated documents by setting the html_theme setting in your conf.py.
Go ahead and set it like this:

html_theme = 'sphinxdoc'

If you rebuild your documentation,
you will see the new theme:

$ make html

Note

Have a look at the Builtin themes [http://www.sphinx-doc.org/en/stable/theming.html#builtin-themes].

Check the Links

Sphinx can check if the links in your document are valid:

$ make linkcheck

Using reStructuredText

After using sphinx-quickstart you have the index.rst file which contains the content:

=====================
Quick Sphinx Tutorial
=====================

.. image:: https://travis-ci.org/cehbrecht/quick-sphinx-tutorial.svg?branch=master
 :target: https://travis-ci.org/cehbrecht/quick-sphinx-tutorial
 :alt: Travis Build

Welcome to this short `Sphinx`_ tutorial. This tutorial is a concise
summary of other Sphinx tutorials and will give you a quick overview
of what Sphinx can do for you. If you want to know about the Sphinx
details then have a look at :ref:`appendix` and at `one`_ or the
`other`_ tutorial.

.. note:: Of course a tutorial about Sphinx is written in `Sphinx`_. You
 can clone this tutorial from `GitHub`_ and it is hosted
 on `ReadTheDocs`_.

.. toctree::
 :maxdepth: 1

 intro
 install
 firststeps
 rst
 code
 rtd
 advanced
 appendix

.. _GitHub: https://github.com/cehbrecht/quick-sphinx-tutorial
.. _one: http://gisellezeno.com/tutorials/sphinx-for-python-documentation.html
.. _other: https://sphinx-tutorial.readthedocs.org/
.. _ReadTheDocs: http://quick-sphinx-tutorial.readthedocs.org/en/latest/

You can create other files here for additional documentation. Once you
have created them, then you can include them in the table of contents
in index.rst.

Play with reStructuredText (reST) Syntax

reStructuredText [http://sphinx-doc.org/rest.html] takes a bit of practice. Go over to http://rst.ninjs.org, which is a live preview.

To get started with the reST syntax, you can read the reStructuredText Primer [http://www.sphinx-doc.org/en/stable/rest.html#rst-primer] in the Sphinx docs.

Warning

reST is extended by Sphinx Markup Constructs [http://www.sphinx-doc.org/en/stable/markup/index.html#sphinxmarkup] to manage metadata, indexing, and cross-references.

Note

The cheatsheet [https://sphinx-tutorial.readthedocs.org/cheatsheet/] gives an overview of reST and the Sphinx markup extensions.

Quick reST example

An example for reStructuredText:

====================
ReST Quick Reference
====================

Underline titles with punctuation
=================================

.. _rst_example:

ReST example markup

Italic **bold** ``name`` ``function()`` ``expression = 3 + 3``
`Hyperlink <http://en.wikipedia.org/wiki/Hyperlink>`_ `Link`_

.. _Link: http://en.wikipedia.org/wiki/Link_(The_Legend_of_Zelda)
.. image:: images/python-logo.png
.. A comment block starts with two periods, can continue indented.

A paragraph is one or more lines of un-indented text, separated
from the material above and below by blank lines.

 “Block quotes look like paragraphs, but are indented with
 one or more spaces.”

| Because of the pipe characters, this will become one line,
| And this will become another line, like in poetry.

term
 Definition for the “term”, indented beneath it.
another term
 And its definition; any of these definitions can continue on for
 several lines by — you guessed it! — being similarly indented.

* Each item in a list starts with an asterisk (or “1.”, “a.”, etc).
* List items can go on for several lines as long as you remember to
 keep the rest of the list item indented.

Code blocks are introduced by a double-colon and are indented::

 $ mkdir docs

Examples using Sphinx markup

A python code block using Sphinx markup:

.. code-block:: python

 import docutils
 print help(docutils)

.. note:: This is a note using Sphinx markup.

This is a reference to :ref:`rst_example`.

Note

Life Preview: ReST Quick Reference

Showing Source Code

Using a code block

Show a Python code block with highlighted lines:

.. code-block:: python
 :linenos:
 :emphasize-lines: 3,5

 def some_function():
 interesting = False
 print 'This line is highlighted.'
 print 'This one is not...'
 print '...but this one is.'

And this is how it looks like:

	1
2
3
4
5

	def some_function():
 interesting = False
 print 'This line is highlighted.'
 print 'This one is not...'
 print '...but this one is.'

Include Source Code

Include source code from a file and show only a part of it:

.. literalinclude:: ../../giza/__init__.py
 :language: python
 :linenos:
 :lines: 11-26

And here is how it looks like:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	def calc_square(number, verbosity):
 """
 Calculate the square of a given number.

 :param number: An integer number.
 :param verbosity: An integer value for output verbosity.
 :return: The square of number.
 """
 answer = number**2
 if verbosity >= 2:
 print "the square of {} equals {}".format(number, answer)
 elif verbosity >= 1:
 print "{}^2 == {}".format(number, answer)
 else:
 print answer
 return answer

Use Sphinx autoapi

sphinx-autoapi [http://sphinx-autoapi.readthedocs.org/en/latest/] is a tool to make API docs.
It depends on parsing, instead of importing code.

First you need to install autoapi:

$ pip install sphinx-autoapi

Then add it to your Sphinx project’s conf.py:

extensions = ['autoapi.extension']

Document Python Code
autoapi_type = 'python'
autoapi_dir = '../src'

AutoAPI will automatically add itself to the last TOCTree in your top-level index.rst.

This is needed because we will be outputting rst files into the autoapi directory.
This adds it into the global TOCTree for your project,
so that it appears in the menus.

Note

Life Preview of Giza autoapi

ReadTheDocs and Sphinx

The powerful and popular Read The Docs [https://readthedocs.org] service
lets you configure your GitHub repository
so that every time you push a new version of your software,
the documentation gets automatically rebuilt
and made available at:

https://readthedocs.org/projects/<project-name>/

Last but not least,
once you’ve written your documentation you have to put it somewhere for the world to see!
Read the Docs makes this quite simple,
and is free for all open source projects.

	Register for an account at https://readthedocs.org

	Click the Import Project button

	Add the URL for a specific repository you want to build docs for

	Sit back and have a drink while Read the Docs does the rest.

It will:

	Pull down your code

	Install your requirements.txt

	Build HTML, PDF, and ePub of your docs

	Serve it up online at http://<projectname>.readthedocs.org

Note

View the project page for this tutorial on ReadTheDocs [https://readthedocs.org/projects/quick-sphinx-tutorial/]

Read the Docs Features

Read the Docs gives you a number of additional features.

	You can add Versions to your project for each tag & branch.

	You can alerts for when your doc build fails

	You can search across the full set of docs

Note

View this tutorial on ReadTheDocs [http://quick-sphinx-tutorial.readthedocs.org/en/latest/]

Going Further into Sphinx

Automatic build with travis

Travis CI [https://travis-ci.org/] is a continuous integration service used to build and test software projects hosted at GitHub (Wikipedia).

Add a .travis.yml file to the top level directory of your GitHub
repository with instructions how to build and test your software:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	language: python
branches:
 only:
 - master
python:
 - "2.7"
sudo: false
install:
 - pip install -r requirements.txt
 - pip install -r requirements-dev.txt
 - python setup.py install
script:
 - py.test -v giza
 - cd docs; make html linkcheck

Add the instruction to build your Sphinx documentation with the
linkcheck target. The travis build will be run (in a docker
container) each time you push to GitHub. When somethings fails
(install, tests, docs, linkcheck) then travis will inform the person
who made the last commit via eMail.

Warning

See the travis build status for this tutorial: [image: Travis Build] [https://travis-ci.org/cehbrecht/quick-sphinx-tutorial]

You can add an image with a link to the status of the travis build to your documenation:

.. image:: https://travis-ci.org/my-orga/my-repo.svg?branch=master
 :target: https://travis-ci.org/my-orga/my-repo
 :alt: Travis Build

Configure theme for rtd

$ pip install sphinx_rtd_theme

Or:

$ conda install sphinx_rtd_theme

on_rtd = os.environ.get('READTHEDOCS', None) == 'True'

if on_rtd:
 html_theme = 'default'
else: # only import and set the theme if we're building docs locally
 import sphinx_rtd_theme
 html_theme = 'sphinx_rtd_theme'
 html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]

on_rtd is whether we are on readthedocs.org, this line of code grabbed from docs.readthedocs.org [http://docs.readthedocs.org/en/latest/faq.html?highlight=autodoc#how-do-i-change-behavior-for-read-the-docs]

Use Sphinx for GitHub Pages

Include the extension githubpages [http://www.sphinx-doc.org/en/stable/ext/githubpages.html]:

extensions = ['sphinx.ext.githubpages']

This extension creates .nojekyll file on generated HTML directory to publish the document on GitHub Pages.

See also: http://gisellezeno.com/tutorials/sphinx-for-python-documentation.html

Useful Links

Documentation

	Sphinx Documentation [http://sphinx-doc.org]

	Python Guide - Documentation [http://docs.python-guide.org/en/latest/writing/documentation/]

	Read the Docs Documentation [https://docs.readthedocs.org/en/latest/]

Restructured Text

	Sphinx reStructuredText Primer [http://www.sphinx-doc.org/en/stable/rest.html#rst-primer]

	Sphinx Markup Constructs [http://www.sphinx-doc.org/en/stable/markup/index.html#sphinxmarkup]

	Restuctured Text and Sphinx [http://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html]

	Online reStructuredText editor [http://rst.ninjs.org]

Sphinx Tutorials

	Sphinx Guide - Tutorial [http://www.sphinx-doc.org/en/stable/tutorial.html]

	Sphinx for Python [http://gisellezeno.com/tutorials/sphinx-for-python-documentation.html]

	Sphinx Tutorial by Erich Olscher [https://sphinx-tutorial.readthedocs.org/]

	Sphinx Tutorial at PyCon [http://brandons-sphinx-tutorial.readthedocs.org/en/latest/]

Sphinx AutoAPI Index

This page is the top-level of your generated API documentation.
Below is a list of all items that are documented here.

	giza

	giza.tests

	giza.tests.test_giza

giza

Summary

This is a Python demo for the Sphinx tutorial [http://quick-sphinx-tutorial.readthedocs.org/en/latest/].

This demo has an implementation of a Python script called giza which
calculates the square of a given number.

	
giza.calc_square(number, verbosity)

	Calculate the square of a given number.

	Parameters:	
	number – An integer number.

	verbosity – An integer value for output verbosity.

	Returns:	The square of number.

	
giza.main()

	A small wrapper that is used for running as a CLI Script.

Examples:

$ giza 2
> 4

$ giza -v 3
> 3^2 == 9

$ giza -vv 4
> the square of 4 equals 16

giza.tests

giza.tests.test_giza

	
giza.tests.test_giza.test_calc_square()

	

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 giza	

 	
 	
 giza.tests	

 	
 	
 giza.tests.test_giza	

Index

 C
 | G
 | M
 | T

C

 	
 	calc_square() (in module giza)

G

 	
 	giza (module)

 	
 	giza.tests (module)

 	giza.tests.test_giza (module)

M

 	
 	main() (in module giza)

T

 	
 	test_calc_square() (in module giza.tests.test_giza)

ReST Quick Reference

Underline titles with punctuation

ReST example markup

Italic bold name function() expression = 3 + 3
Hyperlink [http://en.wikipedia.org/wiki/Hyperlink] Link [http://en.wikipedia.org/wiki/Link_(The_Legend_of_Zelda)]

[image: _images/python-logo.png]
A paragraph is one or more lines of un-indented text, separated
from the material above and below by blank lines.

“Block quotes look like paragraphs, but are indented with
one or more spaces.”

Because of the pipe characters, this will become one line,

And this will become another line, like in poetry.

	term

	Definition for the “term”, indented beneath it.

	another term

	And its definition; any of these definitions can continue on for
several lines by — you guessed it! — being similarly indented.

	Each item in a list starts with an asterisk (or “1.”, “a.”, etc).

	
	List items can go on for several lines as long as you remember to

	keep the rest of the list item indented.

Code blocks are introduced by a double-colon and are indented:

$ mkdir docs

Examples using Sphinx markup

A python code block using Sphinx markup:

import docutils
print help(docutils)

Note

This is a note using Sphinx markup.

This is a reference to ReST example markup.

 _images/python-logo.png
P python

powered

_static/up.png

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Quick Sphinx Tutorial

 		What is Sphinx?

 		Sphinx Philosophy

 		Sphinx Advantages

 		Examples on Sphinx

 		Installing Sphinx

 		First Steps with Sphinx

 		Prepare the tutorial demo (optional)

 		Getting Started

 		Building docs

 		Change the Look

 		Check the Links

 		Using reStructuredText

 		Play with reStructuredText (reST) Syntax

 		Quick reST example

 		Showing Source Code

 		Using a code block

 		Include Source Code

 		Use Sphinx autoapi

 		ReadTheDocs and Sphinx

 		Read the Docs Features

 		Going Further into Sphinx

 		Automatic build with travis

 		Configure theme for rtd

 		Use Sphinx for GitHub Pages

 		Useful Links

 		Documentation

 		Restructured Text

 		Sphinx Tutorials

 		Sphinx AutoAPI Index

 		giza

 		giza.tests

 		giza.tests.test_giza

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

