
Quest Documentation
Release 3.1.1

Environmental Simulator Team

Apr 29, 2019

TABLE OF CONTENTS

1 Installation Instructions 3
1.1 Install Released Conda Package . 3
1.2 Install from Source . 3

2 Quickstart 5
2.1 Examples . 5

3 Core Concepts 13
3.1 Local Data Organization . 13
3.2 Data Transformations . 14
3.3 Data Repositories . 14

4 Extending Quest 17
4.1 Provider Plugins . 17
4.2 Tool Plugins . 17
4.3 I/O Plugins . 17

5 API Reference 19

6 Developer Documentation 35
6.1 Table of Contents . 35

7 Glossary 45

8 Indices and tables 47

Python Module Index 49

i

ii

Quest Documentation, Release 3.1.1

Quest is a python library designed to automate the following data management tasks:

• Discovery

• Retrieval

• Organization

• Manipulation

• Archival

Quest can search for and download data from multiple web-based data providers. It can also be configured to search
for data from local data repositories. Quest is designed to be extensible, so additional data providers can be added
to Quest through plugins. To get started using Quest please see the installation instructions and quickstart reference
below.

TABLE OF CONTENTS 1

Quest Documentation, Release 3.1.1

2 TABLE OF CONTENTS

CHAPTER

ONE

INSTALLATION INSTRUCTIONS

These instructions will walk you through installing Quest either from the released package or from the source code.

1.1 Install Released Conda Package

1. Install Miniconda [or Anaconda although Miniconda is preferred] for your OS

2. Install Quest from the ERDC Environmental Simulator conda channel using one of the following methods:

a. Install Quest into new environment:

conda create -n quest -c conda-forge quest

b. Install Quest into existing environment:

conda install -c conda-forge quest

Note: Because of incompatibilities with the dependencies between conda-forge and the defaults
channel, the environment must have been created with conda-forge.

3. Refer to Quickstart for more help getting started with Quest.

1.2 Install from Source

1. Clone the repository:

git clone https://github.com/erdc/quest.git

2. Install the dependencies using conda:

a. Install Miniconda [or Anaconda although Miniconda is preferred] for your OS.

b. Create new environment with dependenciest:

conda env create -n quest --file conda_environment.yml
conda activate quest

c. Install Quest in develop mode:

3

http://conda.io/miniconda.html
http://continuum.io/downloads
http://conda.io/miniconda.html
http://continuum.io/downloads

Quest Documentation, Release 3.1.1

python setup.py develop

1.2.1 Optional

d. Run tests:

pytest

4 Chapter 1. Installation Instructions

CHAPTER

TWO

QUICKSTART

Before using Quest you must first activate the quest environment. You can then start a IPython console and import
quest:

conda activate quest
(quest) $ ipython

In [1]: import quest

The simplest way to download some data is to use the quest.api.get_data() call.

In [2]: data = quest.api.get_data(
...: collection_name='quick-start',
...: service_uri='svc://usgs-nwis:iv',
...: search_filters={'bbox': [-91, 32.25, -90.8, 32.4]},
...: download_options={'parameter': 'streamflow'},
...:)[0]

In [3]: data.head()
Out[3]:

qualifiers streamflow
datetime
2018-04-03 16:00:00 P 1180000.0
2018-04-03 17:00:00 P 1180000.0
2018-04-03 18:00:00 P 1180000.0
2018-04-03 19:00:00 P 1180000.0
2018-04-03 20:00:00 P 1180000.0

Quest can download many different types of data from various data providers. In this example we’ve downloaded
timeseries streamflow data from the USGS National Water Information System (NWIS). This type of data is returned
as a pandas.DataFrame (see Pandas Documentation).

For other examples of how Quest can be used refer to our Jupyter Notebooks or review the examples listed below.

2.1 Examples

2.1.1 Slow Start: A step by step breakdown of the Quickstart example

The quickstart example demonstrated the fastest way to download and start working with data using Quest:

5

https://waterdata.usgs.gov/nwis
https://pandas.pydata.org/index.html
https://github.com/erdc/quest/tree/master/examples/notebooks

Quest Documentation, Release 3.1.1

In [1]: import quest

In [2]: data = quest.api.get_data(
...: collection_name='quick-start',
...: service_uri='svc://usgs-nwis:iv',
...: search_filters={'bbox': [-91, 32.25, -90.8, 32.4]},
...: download_options={'parameter': 'streamflow'},
...:)[0]

In [3]: data.head()
Out[3]:

qualifiers streamflow
datetime
2018-04-03 16:00:00 P 1180000.0
2018-04-03 17:00:00 P 1180000.0
2018-04-03 18:00:00 P 1180000.0
2018-04-03 19:00:00 P 1180000.0
2018-04-03 20:00:00 P 1180000.0

There is a lot going on in this seemingly simple example, so we’re going to break it down and explain every step.

The first thing to note is that the function quest.api.get_data(), is a workflow function, or in other words a
function that calls several other functions in succession. This provides a convenient way to get your data in one step
when you already know all of inputs you need. You can also use Quest to do the same workflow in a more interactive
way. The quest.api.get_data() call performs the following steps behind the scenes:

1. Create a Collection

2. Select a Data Service

3. Search for Datasets

4. Add Datasets to Collection

5. Download Datasets

6. Open Datasets

The following sections will explain each of these steps in detail.

Create a Collection

When Quest downloads data it needs to know where to put them. To keep data organized Quest provides a local
organization hierarchy to manage data (see Local Data Organization). At the top of the hierarchy is a project, and
all Quest calls will always apply to whatever project is active. For more details about managing projects see (Project
Management). Within projects are collections . All data that are downloaded by Quest are put in a collection . In the
quest.api.get_data() example above the collection_name argument specifies which collection to put
the data in. If there isn’t already a collection with the name specified by the collection_name argument then
get_data function will create it.

This process can also be done manually. Using the Quest API we can get a list of the collections with the quest.
api.get_collection() function:

In [4]: quest.api.get_collections()
Out[4]: ['quick-start']

As you can see there currently is only one collection called “quick-start” that was created as a result of the get_data
call made previously. To create a new collection we manually we can use the quest.api.new_collection()
function:

6 Chapter 2. Quickstart

Quest Documentation, Release 3.1.1

In [5]: quest.api.new_collection('slow-start')
Out[5]:
{'name': 'slow-start',
'display_name': 'slow-start',
'description': '',
'created_at': datetime.datetime(2019, 4, 4, 13, 43, 14, 823227),
'updated_at': None,
'metadata': {}}

This function returns the metadata that is associated with this newly created collection. For more details about working
with collection see Collection Management.

Select a Data Service

Once we have a place to store data locally we need to decide what data we want to download. Quest provides the
ability to search for data among many different data sources, or providers. Each provider will offer one or more data
services (see Data Repositories). We can list the available services by calling quest.api.get_services():

In [6]: quest.api.get_services()
Out[6]:
['svc://cuahsi-hydroshare:hs_geo',
'svc://cuahsi-hydroshare:hs_norm',
'svc://noaa-coast:coops-meteorological',
'svc://noaa-coast:coops-water',
'svc://noaa-coast:ndbc',
'svc://noaa-ncdc:ghcn-daily',
'svc://noaa-ncdc:gsod',
'svc://quest:quest',
'svc://usgs-ned:1-arc-second',
'svc://usgs-ned:13-arc-second',
'svc://usgs-ned:19-arc-second',
'svc://usgs-ned:alaska-2-arc-second',
'svc://usgs-nlcd:2001',
'svc://usgs-nlcd:2006',
'svc://usgs-nlcd:2011',
'svc://usgs-nwis:dv',
'svc://usgs-nwis:iv',
'svc://wmts:seamless_imagery']

Each service is represented by a service URI. In our quickstart example we used the penultimate service URI listed
here: ‘svc://usgs-nwis:iv’. This service URI is needed to tell Quest where to search for data.

Search for Datasets

Each service has a catalog or listing of the data it provides. To search for data we need to tell Quest which service’s or
services’ catalog to search. To limit our search we can pass in a dictionary of key-value pairs that specify filter criteria
to filter the catalog entries by. In the quickstart example we filtered the catalog using a bounding box.

...: search_filters={'bbox': [-91, 32.25, -90.8, 32.4]},

To manually search the catalog we can call the Quest API function quest.api.search_catalog() and pass it
the service URI and the filters dictionary:

2.1. Examples 7

Quest Documentation, Release 3.1.1

In [7]: quest.api.search_catalog(uris='svc://usgs-nwis:iv', filters={'bbox': [-91, 32.
→˓25, -90.8, 32.4]})
Out[7]: ['svc://usgs-nwis:iv/07289000']

The return value from quest.api.search_catalog() is a list of catalog entry URIs. The catalog entry URI
looks just like the service URI that it came from with an appended catalog ID number. This catalog entry URI is used
to download the data associated to that catalog entry.

Add Datasets to Collection

Before we can download the data associated with a catalog entry we need to create a dataset derived from that
catalog entry. A Quest dataset represents a piece of data and stores all of the metadata associated with those data.
Every Quest dataset has an associated catalog entry that links it back to the service where the data came from, and
an associated collection that acts as a container for the data. We can create new datasets by calling quest.api.
add_datasets() and passing it both the collection and the catalog entry or entries from which to create the
datasets.

In [8]: quest.api.add_datasets('slow-start', 'svc://usgs-nwis:iv/07289000')
Out[8: ['d0b2baa58434445fb2d1fee0330d5acf']

The return value is a list of dataset IDs from the newly created datasets (in this case it’s just a list of one ID. We can
now use this dataset ID to download the data associated with it.

Download Datasets

To download data using Quest we use the quest.api.download_datasets() function. We need to pass
it the dataset IDs for the data that we want to download. We also need to pass it a dictionary of download op-
tions. Each service specifies it’s own set of download options. To figure out what the download options are for a
particular dataset we can either refer to the documentation for that dataset’s service or we can call quest.api.
get_download_options() and pass it can pass in either the service URI the catalog entry URI, or the dataset
ID.

In [9]: quest.api.get_download_options('d0b2baa58434445fb2d1fee0330d5acf')
Out[9]:
{'svc://usgs-nwis:iv/07289000': {'title': 'NWIS Instantaneous Values Service Download
→˓Options',
'properties': [{'name': 'parameter',
'type': 'ObjectSelector',
'description': 'parameter',
'default': None,
'range': [['gage_height', 'gage_height'],
['streamflow', 'streamflow'],
['water_temperature', 'water_temperature']]},

{'name': 'start',
'type': 'Date',
'description': 'start date',
'default': None,
'bounds': None},

{'name': 'end',
'type': 'Date',
'description': 'end date',
'default': None,
'bounds': None},

{'name': 'period',

(continues on next page)

8 Chapter 2. Quickstart

Quest Documentation, Release 3.1.1

(continued from previous page)

'type': 'String',
'description': 'time period (e.g. P365D = 365 days or P4W = 4 weeks)',
'default': 'P365D'}]}}

This returns a dictionary keyed by the URIs that were passed to the fucntion. For each URI key the value is a dictionary
specifying the download options or properties for that URI. In this case the download options we can specify are:

• parameter: one of ‘gage_height’, ‘streamflow’, or ‘water_temperature’

• start: the start date for the period of data want

• end: the end date for the period of data you want

• period: a string representing a period of data you want

Here either the start and end date can be specified or a period string can be specified. If neither are specified then the
default period ‘P365D’ (meaning a period of 365 days ending with today) will be used by default. In the quickstart
example we specified that we were interested in ‘streamflow’ data and we didn’t specify a period so by default we got
the past year of data. We can do the same here by calling quest.api.download_datasets():

In [10]: quest.api.download_datasets(
...: datasets='d0b2baa58434445fb2d1fee0330d5acf',
...: options={'parameter': 'streamflow'},
...:)

Out[10]: {'d0b2baa58434445fb2d1fee0330d5acf': 'downloaded'}

The return value is a dictionary keyed by the dataset IDs that were passed in where the value is the status. In this case
‘downloaded’ means that the data associated with the dataset were successfully downloaded.

Open Datasets

When the data associated with a dataset are downloaded they are by default stored on disk. Quest can be used to
transform, visualize, or publish the data and will only require the dataset ID as an argument. If you’d like to use other
Python tools to work with your data you can use Quest to open your data and read it into a Python data structure. The
data that we downloaded are a timeseries of streamflow values. The default data structure that Quest uses for this type
of data is a pandas.DataFrame. Therefore, when we call quest.api.open_dataset() we will getback our
data in a DataFrame.

In [6]: data = quest.api.open_dataset('d0b2baa58434445fb2d1fee0330d5acf')

In [7]: data.head()
Out[7]:

qualifiers streamflow
datetime
2018-04-03 16:00:00 P 1180000.0
2018-04-03 17:00:00 P 1180000.0
2018-04-03 18:00:00 P 1180000.0
2018-04-03 19:00:00 P 1180000.0
2018-04-03 20:00:00 P 1180000.0

Where to Go from Here

2.1.2 Quest Examples

2.1. Examples 9

Quest Documentation, Release 3.1.1

Project Management

In [1]: from quest import api

In [2]: api.get_active_project()
Out[2]: 'default'

In [3]: api.get_projects()
Out[3]: ['default']

In [4]: api.new_project('my_proj')
Out[4]:
{'created_at': datetime.datetime(2017, 10, 13, 15, 1, 42, 322881),
'description': '',
'display_name': 'my_proj',
'metadata': {},
'updated_at': None}

In [5]: api.get_projects()
Out[5]: ['my_proj', 'default']

In [6]: api.set_active_project('my_proj')
Out[6]: 'my_proj'

In [7]: api.get_active_project()
Out[7]: 'my_proj'

In [8]: api.delete_project('my_proj')
Out[8]: {'default': {'folder': 'default'}}

In [9]: api.get_active_project()
Out[9]: 'default'

Collection Management

In [1]: from quest import api

In [2]: api.get_collections()
Out[2]: []

In [3]: api.new_collection('demo')
Out[3]:
{'created_at': datetime.datetime(2017, 10, 13, 15, 5, 33, 385739),
'description': '',
'display_name': 'demo',
'metadata': {},
'name': 'demo',
'updated_at': None}

In [4]: api.get_collections()
Out[4]: ['demo']

In [5]: api.delete('demo')
Out[5]: True

(continues on next page)

10 Chapter 2. Quickstart

Quest Documentation, Release 3.1.1

(continued from previous page)

In [6]: api.get_collections()
Out[6]: []

Applying Tools

Continuing from previous example.

In [16]: dataset = datasets[0]

In [17]: api.get_tools(filters={'dataset': dataset})
Out[17]: ['ts-flow-duration', 'ts-resample', 'ts-unit-conversion', 'ts-remove-outliers
→˓']

In [18]: filter_name = 'ts-resample'

In [19]: api.apply_filter_options(filter_name)
Out[19]:
{'properties': {'method': {'description': 'resample method',

'type': {'default': 'mean',
'enum': ['sum', 'mean', 'std', 'max', 'min', 'median']}},

'period': {'description': 'resample frequency',
'type': {'default': 'daily',
'enum': ['daily', 'weekly', 'monthly', 'annual']}}},

'required': ['period', 'method'],
'title': 'Resample Timeseries Filter',
'type': 'object'}

In [20]: options = {'method': 'max', 'period': 'daily'}

In [21]: api.run_filter(filter_name, datasets=dataset, options=options)
Out[21]: {'datasets': ['db98e371e7a64a02a773004c6ddc90ff'], 'features': []}

In [22]: api.get_metadata('db98e371e7a64a02a773004c6ddc90ff')
Out[22]:
{'db98e371e7a64a02a773004c6ddc90ff': {'collection': 'demo',

'created_at': Timestamp('2017-10-13 16:01:20.665627'),
'datatype': 'timeseries',
'description': 'TS Filter Applied',
'display_name': 'db98e371e7a64a02a773004c6ddc90ff',
'feature': 'fa2e58257ec04d4cb0f18feec51df736',
'file_format': 'timeseries-hdf5',
'file_path': '/path/to/quest/projects/default/demo/usgs-nwis/iv/

→˓d70123cb1ad944a988f64f449a7d8e8e/db98e371e7a64a02a773004c6ddc90ff',
'message': 'TS Filter Applied',
'metadata': {},
'name': 'db98e371e7a64a02a773004c6ddc90ff',
'options': {'dataset': ['d70123cb1ad944a988f64f449a7d8e8e'],
'features': None,
'filter_applied': 'ts-resample',
'filter_options': {'method': 'max', 'period': 'daily'}},
'parameter': 'streamflow:daily:max',
'source': 'derived',
'status': 'filter applied',
'unit': 'ft3/s',
'updated_at': None,

(continues on next page)

2.1. Examples 11

Quest Documentation, Release 3.1.1

(continued from previous page)

'visualization_path': ''}}

12 Chapter 2. Quickstart

CHAPTER

THREE

CORE CONCEPTS

Quest is a python library designed to automate the following data management tasks:

• Discovery

• Retrieval

• Organization

• Transformation

• Archival

At the heart of all of these tasks are datasets. Each of the tasks listed above involves finding, getting, storing, changing,
or sharing a dataset. The underlying concepts for how Quest accomplishes these five tasks will be described below
and are grouped into the following three sections:

• Local Data Organization

• Data Transformations

• Data Repositories

– Discovery

– Retrieval

– Archival

3.1 Local Data Organization

Quest uses a hierarchical structure to organize and manage datasets, and data sources. The dataset hierarchy begins
with projects which contains collections which have datasets. A more detailed description of each level is given below.

3.1.1 Projects

A Quest Project is the base organizing factor. The first time Quest is started a default project is created. Only one
project can be active at a time and currently the api does not allow copying data from one project to another.

Physically, a project maps to a folder on the computer. All data and metadata associated with a project is stored under
the project folder. The metadata is stored in a sqlite database.

13

Quest Documentation, Release 3.1.1

3.1.2 Collections

Collections are a way of organizing data within a project. Collection names are unique and the collection name maps
directly to a folder name in the project folder.

3.1.3 Datasets

These are the actual individual data files or in some cases a folder of data. Datasets have associated metadata that is
stored in the project directory.

3.2 Data Transformations

Quest facilitates transforming data through the use of tools. Some examples of the kinds of transformations that Quest
can do include merging datasets, aggregating data within a dataset, or changing the format that the data is stored in.

3.2.1 Tools

Quest tools are a way to perform some kind of operation on data. It is important to note that a tool will never
perform “in-place” changes the datasets that it operates on. This means that datasets that are passed to a tool will
remain unchanged, and the tool will create new datasets that have the transformed data. New tools can be added
to Quest through Tool Plugins.

Tools define a set of options that a user must specify when using the tool.

3.3 Data Repositories

When Quest is used to search for data it searches among all of the data repositories or data providers that are registered
with Quest. Similar to Tools Providers are added to Quest as plugins (see Provider Plugins). Providers contain one
or more services. Services provide an interface for a single data product. Each service has a Catalogs, which stores
metadata about the datasets that are available from that service and is what enables Quest to search for data.

3.3.1 Providers

Data providers are the top level source of data. Providers are composed of one or more Services, and typically represent
an organization or specific part of an organization that provides data. In Quest, providers are a way of grouping related
services.

3.3.2 Services

A data service is a specific type or channel of data that is offered from a Providers, and are the primary means of
ingesting data into Quest.

14 Chapter 3. Core Concepts

Quest Documentation, Release 3.1.1

3.3.3 Catalogs

3.3.4 Catalog Entries

Catalog Entries are a unique identifiers that indicate a group of datasets. Typically, these are geospatial locations, i.e.,
monitoring stations, counties, lakes, roads at which data exists. Features can also just be a tag or name to group data
that does not have a geospatial component (i.e. geotypical datasets). Features are always either part of a collection or
part of a web service.

3.3. Data Repositories 15

Quest Documentation, Release 3.1.1

16 Chapter 3. Core Concepts

CHAPTER

FOUR

EXTENDING QUEST

4.1 Provider Plugins

4.2 Tool Plugins

4.3 I/O Plugins

17

Quest Documentation, Release 3.1.1

18 Chapter 4. Extending Quest

CHAPTER

FIVE

API REFERENCE

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

Python API for Environmental Simulator Quest (QUEST).

This module defines the Python API for the Environmental Simulator Data Services Library.

quest.api.add_datasets(collection, catalog_entries)
Adds new datasets (created from catalog_entries) to collection

Parameters

• collection (string, Required) – name of collection

• catalog_entries (string, comma separated strings, list of strings, or pandas.
DataFrame, Required) – list of catalog entry uris from which to create new datasets to
add to the collection.

Returns uris of newly created datasets

Return type uris (list)

quest.api.add_project(name, path, activate=True)
Add a existing QUEST project to the list of available projects

Parameters

• name (string, Required) – name of project; existing name can be used or project
can be renamed

• path (string, Required) – path to existing project

• activate (bool, Optional, Default=True) – if True, the added project is set
as the currently active project

quest.api.add_user_provider(uri)
Add a custom web service created from a file or http folder.

Converts a local/network or http folder that contains a quest.yml and associated data into a service that can be
accessed through quest

Parameters uri (string, Required) – uri of new ‘user’ service

Returns status of adding service (i.e. failed/success)

Return type message (string)

quest.api.authenticate_provider(uri, **kwargs)
Authenticate the user.

Parameters uri – uri of ‘user service’

19

Quest Documentation, Release 3.1.1

quest.api.cancel_tasks(task_ids)
Cancel tasks.

Parameters task_ids (string or list of strings, Required) – id of tasks to be
cancelled

quest.api.copy(uris, destination_collection, as_dataframe=None, expand=None)

quest.api.delete(uris)
Delete metadata for resource(s)

Warning: deleting a collection deletes all associated datasets

Parameters uris (string, comma separated string or list of strings,
Required) – uri(s) of collection, and/or dataset to delete

Returns True on success

Return type status (bool)

quest.api.delete_project(name)
Delete a project.

Deletes a project and all data in the project folder.

Parameters name (string, Required) – name of a project

Returns all remaining projects and their respective folders

Return type projects (dict)

quest.api.delete_user_provider(uri)
Remove ‘user’ service.

Parameters uri – uri of ‘user service’

quest.api.download(catalog_entry, file_path, dataset=None, **kwargs)
Download dataset and save it locally.

Parameters

• catalog_entry (string, Required) – uri of catalog_entry within a service or col-
lection

• file_path (string, Required) – path location to save downloaded data

• dataset (string, Optional, Default=None) – maybe only be used by some
providers

• async – (bool, Optional, Default=False) if True, download in background

• kwargs – optional download kwargs

Returns details of downloaded data

Return type data (dict)

quest.api.download_datasets(datasets, options=None, raise_on_error=False)
Download datasets and save them in the Quest project.

Parameters

• datasets (string or list, Required) – datasets to download

20 Chapter 5. API Reference

Quest Documentation, Release 3.1.1

• options (dict, Optional, Default=None) – Dictionary of down-
load options to stage the datasets with before downloading (see quest.api.
stage_for_download())

• raise_on_error (bool, Optional, Default=False) – if True, if an error oc-
curs raise an exception

• async (bool, Optional, Default=False) – if True, download in background

Note: If options are not provided then the datasets should already download options set by calling quest.
api.stage_for_download().

Returns download status of datasets

Return type status (dict)

quest.api.get_download_options(uris, fmt=’json’)
List optional kwargs that can be specified when downloading a dataset.

Parameters

• uris (string or list, Required) – uris of catalog_entries or datasets

• fmt – format in which to return download_options. One of [‘json’, ‘param’]

quest.api.get_active_project()
Get active project name.

Returns name of currently active project

Return type name (string)

quest.api.get_api_version()
Get QUEST API version.

Returns version of QUEST API being used

Return type QUEST version (string)

quest.api.get_auth_status(uri)
Check to see if a provider has been authenticated

Parameters uri – uri of ‘user service’

quest.api.get_collections(expand=False, as_dataframe=False)
Get available collections.

Collections are folders on the local disk that contain downloaded or created data along with associated metadata.

Parameters

• expand (bool, Optional, Default=False) – include collection details and for-
mat as dict

• as_dataframe (bool, Optional, Default=False) – include collection details
and format as pandas dataframe

Returns all available collections

Return type collections (list, dict, or pandas dataframe, Default=list)

21

Quest Documentation, Release 3.1.1

quest.api.get_data(service_uri, search_filters=None, search_queries=None, down-
load_options=None, collection_name=’default’, expand=False, use_cache=True,
max_catalog_entries=10, as_open_datasets=True, raise_on_error=False)

Downloads data from source uri and adds to a quest collection.

Parameters

• service_uri (string, required) – uri for service to get data from

• search_filters (dict, optional, default=None) – dictionary of search fil-
ters to filter the catalog search. At least one of search_filters or search_queries should be
specified. (see docs for quest.api.search_catalog())

• search_queries (list, optional, default=None) – list of string arguments
to pass to pandas.DataFrame.query to filter the catalog search. At least one
of search_filters or search_queries should be specified. (see docs for quest.api.
search_catalog())

• download_options (dict or Parameterized, optional,
default=None) – dictionary or Parameterized object with download options for
service (see docs for quest.api.download_datasets)

• collection_name (string, optional, default='default') – name of
collection to add downloaded data to. If collection doesn’t exist it will be created.

• expand (bool, optional, default=False) – include dataset details and format
as dict

• use_cache (bool, optional, default=True) – if True then previously down-
loaded datasets with the same download options will be returned rather than downloading
new datasets

• max_catalog_entries (int, optional, default=10) – the maximum num-
ber of datasets to allow in the search. If exceeded a Runtime error is raised.

• as_open_datasets (bool, optional, default=False) – if True return
datasets as Python data structures rather than as dataset ids (see docs for
quest.api.open_dataset)

• raise_on_error (bool, optional, default=False) – if True then raise an
exception if no datasets are returned in the search, or if there is an error while downloading
any of the datasets.

Returns the quest dataset name, or an python data structure if open_dataset=True.

quest.api.get_datasets(expand=None, filters=None, queries=None, as_dataframe=None)
Return all available datasets in active project.

Parameters

• expand (bool, Optional, Default=None) – include dataset details and format as
dict

• filters (dict, Optional, Default=None) – filter dataset by any metadata field

• queries (list, Optional, Default=None) – list of string arguments to pass to
pandas.DataFrame.query to filter the datasets

• as_dataframe (bool or None, Optional, Default=None) – include dataset
details and format as pandas dataframe

Returns staged dataset uids

Return type uris (list, dict, pandas Dataframe, Default=list)

22 Chapter 5. API Reference

Quest Documentation, Release 3.1.1

quest.api.get_mapped_parameters()
Get list of common parameters.

Returns list of common parameters

Return type parameters (list)

quest.api.get_metadata(uris, as_dataframe=False)
Get metadata for uris.

Parameters

• uris (string, comma separated string, or list of strings,
Required) – list of uris to retrieve metadata for

• as_dataframe (bool, Optional, Default=False) – include details of newly
created dataset as a pandas Dataframe

Returns metadata at each uri keyed on uris

Return type metadata (dict or pd.DataFrame, Default=dict)

quest.api.get_parameters(service_uri, update_cache=False)
Get available parameters, even unmapped ones, for specified service.

Parameters

• service_uri (string, Required) – uri of service to get parameters for

• update_cache (bool, Optional, Default=True) – if True, update metadata
cache

Returns all available parameters for specified service

Return type parameters (list)

quest.api.get_pending_tasks(**kwargs)
Return list of pending tasks

calls get_tasks with filter -> status=pending, passes through other kwargs (filters={}, expand=None,
as_dataframe=None, with_future=None)

quest.api.get_projects(expand=False, as_dataframe=False)
Get list of available projects.

Parameters expand – include collection details and format as dict

Returns all available projects

Return type projects (list, dict, or pandas Dataframe,Default=list)

quest.api.get_providers(expand=None, update_cache=False)
Return list of Providers.

Parameters

• expand (bool, Optional, Default=None) – include providers’ details and for-
mat as dict

• update_cache (bool, Optional, Default=False) – reload the list of
providers

Returns list of all available providers

Return type providers (list or dict, Default=list)

23

Quest Documentation, Release 3.1.1

quest.api.get_publishers(expand=None, publisher_type=None)
This method returns a list of avaliable publishers.

The method first gets a dictionary filled with the available providers in Quest. Then we loop through grabbing
the keys and the objects within the dictionary. Then we loop again, accessing each service getting another
dictionary with the provider as the key and the metadata as the values. Then we create a publish uri, and get the
publisher class name for the service. We return a list of publishers.

Parameters

• expand (bool, Optional, Default=False) – include providers’ details and for-
mat as dict

• publisher_type (string, Optional, Default=None') – filter to only in-
clude specific type

Returns list of all available providers

Return type providers (list or dict,Default=list)

quest.api.get_quest_version()
Get QUEST version.

Returns version of QUEST being used

Return type QUEST version (string)

quest.api.get_seamless_data(service_uri, bbox, search_filters=None, search_queries=None,
download_options=None, collection_name=’default’, ex-
pand=False, use_cache=True, max_catalog_entries=10,
as_open_dataset=True, raise_on_error=False)

Downloads raster data from source uri and adds to a quest collection.

If multiple raster tiles are retrieved for the given bounds it calls a quest tool to merge the tiles into a single raster.

Parameters

• service_uri (string, required) – uri for service to get data from

• bbox (list, required) – list of lat/lon coordinates representing the bounds of the data
in for form [lon_min, lat_min, lon_max, lat_max].

• search_filters (dict, optional, default=None) – dictionary of search fil-
ters to filter the catalog search (see docs for quest.api.search_catalog())

• search_queries (list, optional, default=None) – list of string arguments
to pass to pandas.DataFrame.query to filter the catalog search (see docs for quest.
api.search_catalog())

• download_options (dict or Parameterized, optional,
default=None) – dictionary or Parameterized object with download options for
service (see docs for quest.api.download_datasets)

• collection_name (string, optional, default='default') – name of
collection to add downloaded data to. If collection doesn’t exist it will be created.

• expand (bool, optional, default=False) – include dataset details and format
as dict

• use_cache (bool, optional, default=True) – if True then previously down-
loaded datasets with the same download options will be returned rather than downloading
new datasets

• max_catalog_entries (int, optional, default=10) – the maximum num-
ber of datasets to allow in the search. If exceeded a Runtime error is raised.

24 Chapter 5. API Reference

Quest Documentation, Release 3.1.1

• as_open_dataset (bool, optional, default=False) – if True return dataset
as Python data structure rather than as a dataset id (see docs for quest.api.open_dataset)

• raise_on_error (bool, optional, default=False) – if True then raise an
exception if no datasets are returned in the search, or if there is an error while downloading.

Returns the quest dataset name.

quest.api.get_services(expand=None, parameter=None, service_type=None)
Return list of Services.

Parameters

• expand (bool, Optional, Default=False) – include providers’ details and for-
mat as dict

• parameter (string, Optional, Default=None) –

• service_type (string, Optional, Default=None') – filter to only include
specific type

Returns all available providers

Return type providers (list or dict, Default=dict)

quest.api.get_settings()
Get the settings currently being used by QUEST.

Returns A dictionary of the current settings.

Example

{‘BASE_DIR’: ‘/Users/dharhas/’, ‘CACHE_DIR’: ‘cache’, ‘PROJECTS_DIR’: ‘projects’,
‘USER_SERVICES’: [], }

quest.api.get_tags(service_uris, update_cache=False, filter=None, as_count=False)
Get searchable tags for a given service.

Parameters

• service_uris (string or list, Required) – uris of providers

• update_cache (bool, Optional) – if True, update metadata cache

• filter (list, Optional) – list of tags to include in return value

• as_count (bool, Optional) – if True, return dictionary with the number of values
rather than a list of possible values

Returns

dict keyed by tag name and list of possible values

Note: nested dicts are parsed out as a multi-index tag where keys for nested dicts are joined with
‘:’.

Return type tags (dict)

quest.api.get_task(task_id, with_future=None)
Get details for a task.

Parameters

• task_id (string,Required) – id of a task

25

Quest Documentation, Release 3.1.1

• with_future (bool, Optional, Default=None) – If true include the task future
objects in the returned dataframe/dictionary

quest.api.get_tasks(filters=None, expand=None, as_dataframe=None, with_future=None)
Get all available tasks.

Parameters

• filters (dict, Optional, Default=None) –

filter tasks by one or more of the available filters

available filters:

– task_ids (str or list): task id or list of task ids

– status (str or list): single status or list of statuses. Must be subset of [‘pending’,
‘cancelled’, ‘finished’, ‘lost’, ‘error’]

– fn (str): name of the function a task was assigned

– args (list): list of arguments that were passed to the task function

– kwargs (dict): dictionary of keyword arguments that were passed to the task function

– result (object): result of the task function

• expand (bool, Optional, Default=None) – include details of tasks and format
as a dict

• as_dataframe (bool, Optional, Default=None) – include details of tasks and
format as a pandas dataframe

• with_future (bool, Optional, Default=None) – If true include the task future
objects in the returned dataframe/dictionary

Returns all available tasks

Return type tasks (list, dict, or pandas dataframe, Default=list)

quest.api.get_tools(filters=None, expand=False, **kwargs)
List available tool plugins

Parameters

• filters (dict, Optional, Default=None) – filter the list of tools by one or
more of the available filters

Available Filters:

– dataset

– group

– geotype

– datatype

– parameter

Note: If a dataset filter is used, all other filters are overridden and set from the dataset’s
metadata.

• expand (bool, Optional, Default=None) – if True, return details of the fil-
ters as a dict

• kwargs – optional filter kwargs

Returns all available tools

26 Chapter 5. API Reference

Quest Documentation, Release 3.1.1

Return type tools (list or dict, Default=list)

quest.api.get_tool_options(name, fmt=’json’, **kwargs)
Retrieve kwarg options for run_tool.

Parameters

• name (string, Required) – name of filter

• fmt (string, Required, Default='json') – format in which to return op-
tions. One of [‘json’, ‘param’]

• kwargs – keyword arguments of options to set and exclude from return value.

Returns tool options that can be applied when calling quest.api.run_filter

Return type tool options (json scheme)

quest.api.move(uris, destination_collection, as_dataframe=None, expand=None)

quest.api.new_catalog_entry(geometry=None, geom_type=None, geom_coords=None, meta-
data=None)

Add a new entry to a catalog either a quest local catalog (table) or file.
Parameters

• geometry (string or Shapely.geometry.shape, optional,
Default=None) – well-known-text or Shapely shape representing the geome-
try of the catalog_entry. Alternatively geom_type and geom_coords can be passed.

• geom_type (string, Optional, Default=None) – geometry type of cata-
log_entry (i.e. point/line/polygon)

• geom_coords (string or list, Optional, Default=None) – geomet-
ric coordinates specified as valid geojson coordinates (i.e. a list of lists i.e. ‘[[-94.0,
23.2], [-94.2, 23.4] . . .]’ ——— OR ——— [[-94.0, 23.2], [-94.2, 23.4] . . .] etc)

• metadata (dict, Optional, Default=None) – optional metadata at the new
catalog_entry

Returns uri of newly created entry

Return type uri (string)

quest.api.new_collection(name, display_name=None, description=None, metadata=None, ex-
ists_ok=False)

Create a new collection.

Create a new collection by creating a new folder in project directory and adding collection metadata in project
database.

Parameters

• name (string, Required) – Name of the collection used in all quest function
calls,must be unique. Will also be the folder name of the collection

• display_name (string, Optional, Default=None) – display name for
collection

• description (string, Optional, Default=None) – description of collec-
tion

• metadata (dict, Optional, Default=None) – user defined metadata

• exists_ok (bool, Optional, Default=False) – If True then
ValueError is not raised if the collection already exits. Rather the metadata
of the existing colleciton is returned.

27

Quest Documentation, Release 3.1.1

Returns details of the newly created collection

Return type dict

Raises ValueError – If collection with name already exists.

quest.api.new_dataset(catalog_entry, collection, source=None, display_name=None, descrip-
tion=None, file_path=None, metadata=None, name=None)

Create a new dataset in a collection.
Parameters

• catalog_entry (string, Required) – catalog_entry uri

• collection (string, Required) – name of collection to create dataset in

• source (string, Optional, Default=None) – type of the dataset such as
timeseries or raster

• display_name (string, Optional, Default=None) – display name for
dataset

• description (string, Optional, Default=None) – description of
dataset

• file_path (string, Optional, Default=None) – path location to save
new dataset’s data

• metadata (dict, Optional, Default=None) – user defined metadata

• name (dict, Optional, Default=None) – optionally pass in a UUID starting
with d as name, otherwise it will be generated

Returns uid of dataset

Return type uri (string)

quest.api.new_parameter(uri, parameter_name)
Add new parameter to collection.

quest.api.new_project(name, display_name=None, description=None, metadata=None,
folder=None, activate=True)

Create a new QUEST project and add it to list of available projects.
Parameters

• name (string, Required) – name of newly created project

• display_name (string, Optional, Default=None) – display name for
project

• description (string, Optional, Default=None) – description of
project

• metadata (dict, Optional, Default=None) – user defined metadata

• folder (string, Optional, Default=None) – folder where all project data
will be saved

• activate (bool, Optional, Default=True) – if True, set newly created
project as currently active project

quest.api.open_dataset(dataset, fmt=None, **kwargs)
Open the dataset and return in format specified by fmt

Parameters

• dataset (string, Required) – uid of dataset to be opened

28 Chapter 5. API Reference

Quest Documentation, Release 3.1.1

• fmt (string, Optional, Default=None) – format in which dataset should
be returned will raise NotImplementedError if format requested is not possible

Returns contents of dataset

Return type data (pandas dataframe, json, or dict, Default=dataframe)

quest.api.publish(publisher_uri, options=None, **kwargs)

quest.api.get_publish_options(publish_uri, fmt=’json’)

quest.api.remove_project(name)
Remove a project from the list of available projects.

This does not delete the project folder or data, just removes it from the index of available projects.
Parameters name – name of project

quest.api.remove_tasks(task_ids=None, status=None)
Remove tasks.

Parameters

• task_ids (string or list, Optional, Default=None) – tasks with
specified id(s) will be removed

• status (string or list, Optional, Default=None) –

tasks with specified status(es) will be removed. Valid statuses are:

– cancelled

– finished

– lost

– error

NOTE: pending is not a valid option and will be ignored, since pending tasks must
be canceled before they can be removed.

• no status is specified, remove tasks with (If) –

• = ['cancelled', 'finished', 'lost', 'error'] from task
list (status) –

quest.api.run_tool(name, options=None, as_dataframe=None, expand=None,
as_open_datasets=None, **kwargs)

Apply Tool to dataset.
Parameters

• name (string,Required) – name of filter

• options (dict, Required) – a dictionary of arguments to pass to the filter for-
matted as specified by get_tool_options

• expand (bool, Optional, Default=False) – include details of newly cre-
ated dataset and format as a dict

• as_dataframe (bool, Optional, Default=False) – include details of
newly created dataset and format as a pandas dataframe

• as_open_datasets (bool, Optional, Default=False) – returns
datasets as Python data structures rather than Quest IDs

• async (bool,Optional) – if True, run filter in the background

• kwargs – keyword arguments that will be added to options

29

Quest Documentation, Release 3.1.1

Returns resulting datasets and/or catalog_entries

Return type dataset/catalog_entry uris (dict or pandas dataframe, Default=dict)

quest.api.save_settings(filename=None)
Save settings currently being used by QUEST to a yaml file.

Parameters filename (string) – Path to the yaml file to save the settings.

Returns A true boolean if settings were saved successfully.

quest.api.set_active_project(name)
Set active QUEST project.

Parameters name (string, Required) – name of a project

Returns name of project currently set as active

Return type project (string)

quest.api.search_catalog(uris=None, expand=False, as_dataframe=False, as_geojson=False, up-
date_cache=False, filters=None, queries=None)

Retrieve list of catalog entries from resources.
Parameters

• uris (string or list, Required) – uris of service_uris

• expand (bool, Optional, Default=False) – if true then return metadata
along with catalog entries

• as_dataframe (bool, Optional, Default=False) – include cata-
log_entry details and format as a pandas DataFrame indexed by catalog_entry
uris

• as_geojson (bool, Optional, Default=False) – include catalog_entry
details and format as a geojson scheme indexed by catalog_entry uris

• update_cache (bool, Optional,Default=False) – if True, update meta-
data cache

• filters (dict, Optional, Default=None) – filter catalog_entries by one
or more of the available filters

Note:

available filters:

– bbox (string, optional): filter catalog_entries by bounding box

– geom_type (string, optional): filter catalog_entries by geom_type, i.e.
point/line/polygon

– parameter (string, optional): filter catalog_entries by parameter

– display_name (string, optional): filter catalog_entries by display_name

– description (string, optional): filter catalog_entries by description

– search_terms (list, optional): filter catalog_entries by search_terms

catalog_entries can also be filtered by any other metadata fields

• queries (list, Optional, Default=None) – list of string arguments to pass
to pandas.DataFrame.query to filter the catalog_entries

Returns datasets of specified service(s), collection(s) or catalog_entry(s)

30 Chapter 5. API Reference

Quest Documentation, Release 3.1.1

Return type datasets (list, geo-json dict or pandas.DataFrame, Default=list)

quest.api.stage_for_download(uris, options=None)
Apply download options before downloading

Parameters

• uris (string or list, Required) – uris of datasets to stage for download

• options (dict or list of dicts, Optional, Default=None) – op-
tions to be passed to quest.api.download function specified for each dataset

If options is a dict, then apply same options to all datasets, else each dict in list is used
for each respective dataset

Returns staged dataset uids

Return type uris (list)

quest.api.unauthenticate_provider(uri)
Un-Authenticate the user.

Parameters uri – uri of ‘user service’

quest.api.update_metadata(uris, display_name=None, description=None, metadata=None,
quest_metadata=None)

Update metadata for resource(s)
Parameters

• uris (string, comma separated string, or list of strings,
Required) – list of uris to update metadata for.

• display_name (string or list, Optional,Default=None) – display
name for each uri

• description (string or list, Optional,Default=None) – descrip-
tion for each uri

• metadata (dict or list of dicts, Optional, Default=None) –
user defiend metadata

• quest_metadata (dict or list of dicts, Optional,
Default=None) – metadata used by QUEST

Returns metadata of each uri keyed on uris

Return type metadata (dict)

quest.api.update_project_metadata(name, display_name=None, description=None, meta-
data=None)

Updates a project’s metadata
Parameters

• name (string, required) – name of project to update

• display_name (string, optional, default=None) – new display name
for the project. If None then the display name will not be modified.

• (string, optional, default=None (description) – new description for
the project. If None then the description will not be modified.

• metadata (dict, optional, default=None) – new metadata dict with
which to update the project’s current metadata. If None then the metadata will not
be modified.

Returns dictionary of updated metadata for project

31

Quest Documentation, Release 3.1.1

Return type dict

quest.api.update_settings(config={})
Update the settings file that is being stored in the Quest settings directory.

Notes

Only key/value pairs that are provided are updated, any other existing pairs are left unchanged or defaults are
used.

Parameters config (dict) – Key/value pairs of settings that are to be updated.

Returns Updated Settings

Example

{‘BASE_DIR’: ‘/Users/dharhas/’, ‘CACHE_DIR’: ‘cache’, ‘PROJECTS_DIR’: ‘projects’,
‘USER_SERVICES’: [], }

quest.api.update_settings_from_file(filename)
Update the settings from a new yaml file.

Notes

Only key/value pairs that are provided are updated, any other existing pairs are left unchanged or defaults are
used.

Parameters filename (string) – Path to the yaml file containing the new settings.

Returns Updated settings

Example

{‘BASE_DIR’: ‘/Users/dharhas/’, ‘CACHE_DIR’: ‘cache’, ‘PROJECTS_DIR’: ‘projects’,
‘USER_SERVICES’: [], }

quest.api.visualize_dataset(dataset, update_cache=False, **kwargs)
Visualize the dataset as a matplotlib/bokeh plot.

Check for existence of dataset on disk and call appropriate file format driver.
Parameters

• dataset (string, Required) – uri of dataset to be visualized

• update_cache (bool, Optional, Default=False) – currently unused

• kwargs – optional download kwargs

Returns path to the newly visualized dataset

Return type path (string)

quest.api.get_visualization_options(dataset, fmt=’json’)
Return visualization available options for dataset.

Parameters

• dataset (string, Required) – uid of dataset

• fmt (string, Required, Default='json') – format in which to return op-
tions

32 Chapter 5. API Reference

Quest Documentation, Release 3.1.1

Returns options that can be specified when calling quest.api.visualize_dataset

Return type get_visualization_options (dict)

33

Quest Documentation, Release 3.1.1

34 Chapter 5. API Reference

CHAPTER

SIX

DEVELOPER DOCUMENTATION

This documentation is geared toward those wanting to contribute to the Quest source code.

6.1 Table of Contents

6.1.1 Quest Design

Quest has several (sometimes conflicting) design goals. The current design aims for a practical balance between these
goals.

Architectural Goals:

• Cross platform: OS X, Windows, Linux

• Needs to be easily extendable.

API Goals:

• The api should be optimized to allow ease of scripting and interactive in python

• The api should allow for use as a backend library to drive web and gui interfaces

Data Goals:

• Downloaded data should be reasonably structured, portable and usable even if you don’t use Quest later

• Should allow reasonable tracking of provenance and transformations of data

• Provide mechanisms to publish/share data that has been downloaded/transformed

• Easily publish structured data as user defined services

Core Concepts

Refer to Core Concepts.

Settings

Quest can be configured in three ways:

1. Setting Environmental Variables

2. Passing in a python dictionary to quest.api.update_settings()

3. Reading a yaml file with quest.api.update_settings_from_file()

35

Quest Documentation, Release 3.1.1

Any settings that are not set explicitly are given default values

Description of Settings:

Variable Name Description Default
QUEST_BASE_DIR Base directory to save quest data/metadata determined by appdirs

python package
QUEST_CACHE_DIR Location to save cached data/metadata QUEST_BASE_DIR/cache/
QUEST_PROJECT_FILE Name of project metadata file quest_project.yml
QUEST_PROJECTS_INDEX_FILEName of projects index file listing available

projects and their paths
quest_projects_index.yml

QUEST_CONFIG_FILE Name of quest_config file that these settings are
saved in

quest_config.yml

QUEST_USER_SERVICES list of web/file uris to user defined Quest services None

You can add any extra settings needed by a plugin here as well using the keyword:arg structure.

Projects and Collections:

• A project is a folder that has some metadata and a set of collections

• All collections in a project are saved in subdirectories of the main project folder for portability

• Only one project can be active at a time, if none is specified a project called ‘default’ will be created and
used

• Other projects can be opened as ‘local’ web services and features/data ‘downloaded’ in to the current
project

• Only one dataset (with linear progression of versions) can exist in a (collection,parameter,feature) tuple.
i.e. You cannot have two temperature datasets like 2015 Temperature and 2013 Temperature in the same
collection+feature. You will either need to copy the feature with a new feature_id or copy to a new
collection.

• Any ‘project’ can be added as a user defined Quest service (either from a local/network drive or http
folder). In that case, the ‘project’ is equivalent to a ‘provider’ and each ‘collection’ is equivalent to a
‘service’

• There will be a way to convert folders of non Quest data into a user defined service by adding a
quest_project.yml to the folder with appropriate metadata. These will be read-only projects.

Services:

• There will be three types of services available (use the service_type filter in quest.api.get_service() to return a specific list)

– geo-discrete: These are what we currently use, feature based, features have location info

– geo-seamless: This is for seamless datasets. There is no get_features function. Instead you
pass a geometric feature (bbox, line etc) to the service and the data is extracted and returned
(eg. GEBCO Global Bathymetry data)

– geo-typical: This had features, by the features do not have geometry defined. Will function
the same as geo-discrete. Will need to add a tag based search option.

Parameters:

• external_name: what it is called in the service

• external_vocabulary: what the external vocab is

• vdatum: vertical datum if relevant

36 Chapter 6. Developer Documentation

Quest Documentation, Release 3.1.1

• long_name: display name

• standard_name: quest name, i.e air_temperature:daily:max

• vocabulary: ERDC Environmental Simulator

• units: m

• concept: air_temperature

• frequency: hourly, daily, etc

• statistic: instantaneous, mean, min, max etc

Example Directory Structure:

/path_to_quest_base_dir/
cache/ # data caches go here
quest_config.yml # quest configuration settings
quest_projects_index.yml # list of active projects & their paths.

→˓projects do not need to be in this directory
myproject_1/ # example project called myproject_1

quest_project.yml # project metadata
mycollection_1/ # example collection inside myproject_1

quest.yml # collection metadata
features.h5 # master list of features inside collection,

→˓can also be csv, geojson
parameters.yml # file to keep track of available parameters,

→˓download status, versions of downloaded data etc
temperature/ # folder for all temperature data in

→˓mycollection_1
feature_1/ # folder for temperature data at feature_1

→˓(feature_1 coords & metadata are in the master features.h5)
66a4e39d # temperature datasets at feature_1
f974a0c1 # these are different versions of the

→˓same dataset, the last one is the final
203a91e3 # the versioning and applied filters

→˓metadata is tracked in quest_collection.yml
feature_2/

precipitation/
feature_1/
feature_3/
feature_4/

adh/
feature_5/ # directory containing adh model grid defined

→˓by a polygon called feature_5
feature_6/ # directory containing adh model grid defined

→˓by a polygon called feature_6
timeseries/

66a4e39d
vitd-terrain/
raster/

/some_other_location/myproject_2/ # another project listed in quest_projects_
→˓index.yml but not in the QUEST_BASE_DIR

quest_project.yml
mycollection_1/
mycollection_2/

6.1. Table of Contents 37

Quest Documentation, Release 3.1.1

6.1.2 Writing Quest Service Plugin

Quest is designed to be extensible. It has tree types of plugins: (1) Data Service plugins, (2) Filter plugins, and (3)
I/O plugins. Each of them work in a similar way, but this documentation will focus the details of the first type (Data
Service plugins). Since there is not a standard interface for accessing the many web services that provide various types
of data, the Quest service plugins are used as adapters that translate the specific interface used by each service to a
common Quest API for searching, accessing, and downloading data. If we find a new data source that we would like
to make accessible through Quest then we need to create a new service plugin for that source.

6.1.3 Data Service Plugins

Services are channels for finding and importing data into Quest. Data services are organized by provider. A provider is
composed of one or more services, and all services must be part of a provider. For example, the U.S. Geological Survey
(USGS) provides various data products. A subset of these products, say, the National Elevation Datasets (NED) haved
been grouped into a usgs_ned provider. That provider has four different services that provide the various NED data
products (i.e. 1 arc second, 1/3 arc second, 1/9 arc second, and Alaska 2 arc second). The process of creating a new
Data Service plugin involves subclassing both the ProviderBase class and the ServiceBase class. To illustrate
this process, we will provide code examples that create an example web service provider (ExampleProvider) that
contains two services (ExampleService1 and ExampleService2).

1. Provider Base Class

The ProviderBase class acts as the gateway to all of the services that are part of a provider. Most of the code resides
in the abstract base class, so subclassing it is very simple, and involves specifying a few attributes. For example:

from .base import ProviderBase

class ExampleProvider(ProviderBase):
service_base_class = None #TODO: This will be implemented in the next step
display_name = 'Example Web Provider'
description = 'Example ProviderBase subclass for Quest'
organization_name = 'Example Data Provider Organization'
organization_abbr = 'EDPO'

This is all that is required to subclass the ProviderBase. As you will notice the attribute service_base_class
was left as None. This attribute refers to a base class that is the parent of all of the services that belong to this provider.
The ProviderBase will find all of the subclasses of the class specified by service_base_class and register
them as services of the provider. Therefore the next step is to create a 2. Service Base Class.

2. Service Base Class

A data service plugin must subclass the ServiceBase class (or one of it’s subclasses, see Specialized Service Base
Subclasses) to act as the base class for all services in the plugin. This ServiceBase subclass is registered in the
provider as the service_base_class attribute. As an example we will create an ExampleServiceBase class that
subclasses the ServiceBase class:

from .base import ProviderBase, ServiceBase

class ExampleServiceBase(ServiceBase):
service_name = None
display_name = None
description = None

(continues on next page)

38 Chapter 6. Developer Documentation

Quest Documentation, Release 3.1.1

(continued from previous page)

service_type = None
unmapped_parameters_available = None
geom_type = None
datatype = None
geographical_areas = None
bounding_boxes = None
smtk_template = None
_parameter_map = None

def download(self, feature, file_path, dataset, **params):
pass #TODO: This will be implemented later

def get_features(self, **kwargs):
pass #TODO: This will be implemented later

class ExampleProvider(ProviderBase):
service_base_class = ExampleServiceBase
...

Note: The ExampleServiceBase class needed to be defined above the ExampleProvider class so we could
reference it to assign the service_base_class attribute in the ExampleProvider.

The content of ExampleServiceBase has not yet been fully implemented. The above example simply illustrates
the structure. All of the attributes and methods shown in the ExampleServiceBase will need to be implemented
either in this class directly or in the services that subclass this base class. The specifics of how this are done will be
different for each plugin, but the next step, 3. Service Classes will demonstrate one way to do it.

Specialized Service Base Subclasses

There are a couple of special cases that apply to services from various providers. To allow all of these services to use
the same codebase a couple of other base classes are available that can be used in place of the ServiceBase.

TimePeriodServiceBase

This base class simply adds two parameters, a start and end date to represent the time period for the data being
requested (see d. Specify the Download Options).

SingleFileServiceBase

This base class implements the download method for services where there is simply a download url that links to a
single zip file that contains the data.

3. Service Classes

After a ServiceBase subclass has been created (in our example this is the ExampleServiceBase) then the
next step is to create classes for each specific service. While the specifics of this step can vary significantly between
plugins, the overall structure and process are similar and will be broken down in to several sub-steps:

• a. Required Service Class Attributes

6.1. Table of Contents 39

Quest Documentation, Release 3.1.1

• b. Implement the get_features Method

• c. Implement the download Method

• d. Specify the Download Options

Continuing the example from above we will create two service classes that each subclass the
ExampleServiceBase. We’ll first focus on assigning all of the required class attributes.

a. Required Service Class Attributes

• service_name (String): A unique identifier for the service. It should contain only alpha-numeric characters
or _ or -. There should be no spaces.

• display_name (String): A displayable version of the service name (may contain spaces) for use in GUIs.

• description (String): A brief description of the service that will be available in the service’s metadata.

• service_type (String): A keyword that indicates the type of data that the service provides. Must be one of
geo-discrete, geo-seamless or geo-typical. (# TODO: provide link to description of service types in the docs)

• unmapped_parameters_available (Bool): Whether or not additional parameters are available from the
service other than those that are listed in the _parameter_map.

• geom_type (String): Describes what type of geometry represents the locations of the data (for geo-discrete
services only). Must be Point, Line, Polygon. Leave as None for service of type other than geo-discrete.

• datatype (String): Represents the type of data that is accessible from the service. Must be timeseries, raster,
or other.

• geographical_areas (List): A list of descriptive words that represent the areas where data is available
(e.g. [‘North America’, ‘Europe’]). Should be left as None for geo-typical service types.

• bounding_boxes (List): A list of bounding boxes represented as tuples in the form (x-min, y-min, x-max,
y-max). For example [(-180, -90, 180, 90)].

• smtk_template (String): The name of the SMTK template file that describes the download options for the
service.

• _parameter_map (Dict): A mapping of parameters as they are called by the service, to the controlled vocab-
ulary parameter names in Quest.

In some cases the attributes will be the same for both services, so they can be assigned in the ExampleServiceBase
class. The rest of the attributes, that are different between the two services, will be assigned in the service classes
themselves:

from .base import ProviderBase, ServiceBase

class ExampleServiceBase(ServiceBase):
service_name = None
display_name = None
description = None
service_type = 'geo-discrete'
unmapped_parameters_available = False
geom_type = 'Point'
datatype = 'timeseries'
geographical_areas = ['Worldwide']
bounding_boxes = [

[-180, -90, 180, 90],
]
smtk_template = None

(continues on next page)

40 Chapter 6. Developer Documentation

Quest Documentation, Release 3.1.1

(continued from previous page)

def get_features(self, **kwargs):
pass #TODO: This will be implemented later

def download(self, feature, file_path, dataset, **params):
pass #TODO: This will be implemented later

class ExampleService1(ExampleServiceBase):
service_name = 'example-1'
display_name = 'Example Service 1'
description = 'First example service'

_parameter_map = {}

class ExampleService2(ExampleServiceBase):
service_name = 'example-2'
display_name = 'Example Service 2'
description = 'Second example service'

_parameter_map = {}

class ExampleProvider(ProviderBase):
service_base_class = ExampleServiceBase
...

b. Implement the get_features Method

The purpose of the get_features method is to extract key metadata from the service that describes what data is
available from that service. For geo-discrete services this would include a list of locations where the service has data in
addition to other key metadata at each location. The return value for get_features should be a Pandas DataFrame
indexed by a unique id (known as the service_id) with the following columns:

• display_name: (will be set to service_id if not provided)

• description: (will be set to ‘’ if not provided)

• service_id: a unique id that is used by the web service to identify the data

For geo-discrete services the DataFrame must also include a representation of the features’ geometry. Any of the
following options are valid ways to specify the geometry:

1) geometry: a geojson string or Shapely object

2) latitude and longitude: two columns with the decimal degree coordinates of a point

3) geometry_type, latitudes, and longitudes: Point, Line, or Polygon with a list of coordinates

4) bbox: tuple with order (lon min, lat min, lon max, lat max)

All other fields that the DataFrame contains will be accumulated into a dict and placed in a column called metadata.

Similar to the attributes the get_features method may be implemented in the service classes (e.g.
ExampleService1 and ExampleService2), or in the base class (e.g. ExampleServiceBase), or some
combination of both.

6.1. Table of Contents 41

Quest Documentation, Release 3.1.1

c. Implement the download Method

The download method is responsible for retrieving the data from the data source using the specified download
options, save it to disk, and then return a dictionary of key metadata. The download method should accept several
arguments:

• feature: the service_id for the feature that is associated with the data to be downloaded

• file_path: the path to the directory on disk where Quest expects the data to be written

• dataset: the Quest dataset id associated with the data to be downloaded

• **params: key-word arguments for the dataset options

After downloading the data and saving it to disk, this method should return a dictionary ith the following keys:

• metadata: any metadata that was returned by the data source when it was downloaded in the form of a dict

• file_path: the final file path (including the filename) where the data file was writen

• file_format: the format that the file was written in (to be used to determine which I/O plugin to use to read the
file)

• datatype: a string representing the type of data. Must be timeseries, raster, or other.

• parameter: a string representing the parameter of the data

• unit: a string representing the units of the data

d. Specify the Download Options

Data sources’s APIs often allow various options to be specified to determine what data to download, what format it
should be in, etc.

The download options that are needed for each service are defined using the Python library Param. This library
enables parameters to have features like type and range checking, documentation strings, default values, etc. Refer to
the Param documentation for more information.

6.1.4 Testing

Quest has an expanding test suite the testing framework from pytest.

Running Tests

To run the tests you will need to install the pytest Python package after activating your environment:

(quest) $ conda install pytest

Once pytest is installed in your environment you can execute the tests from the command line with the following
command (assuming your working directory is the quest source code directory):

(quest) $ pytest test

The first time the tests are run quest will build a complete cache of all of the feature metadata for each service. This
can take 5 or 6 minutes. This is only done the first time the tests are run (or when a flag is passed to update the cache).
The tests will run much faster after the first time.

42 Chapter 6. Developer Documentation

https://ioam.github.io/param/
https://ioam.github.io/param/
http://doc.pytest.org/en/latest/contents.html

Quest Documentation, Release 3.1.1

The tests are configured to run through both a Python interpreter and through an RPC server. This lengthens the time
it takes to run the tests, but provides more coverage. If you are interested in only running one set of test or the other,
this can be achived by passing in Custom Test Options.

Custom Test Options

Several custom options have been configured to allow several subsets of the tests to be run.

• –skip-slow: Any tests that have been marked as slow (e.g. the get_features tests) will not be run.

• –update-cache: Triggers the feature metadata for each service to be re-downloaded (this process takes 5 or 6
minutes).

For example, to run most of the tests very quickly you can run:

(quest) $ pytest test --skip-slow

This will will give you the most bang for you buck, running the majority of the tests in just several seconds.

To get the most coverage you should run:

(quest) $ pytest test --update-cache

This will test all of the services by regenerating the cache and will run the complete set of tests. This process can take
around 10 minutes.

Adding Tests

The Quest testing framework makes extensive use of pytest fixtures. Fixtures provide a very flexible and powerful way
to provide the correct baseline configuration for each test, and for running the same test with multiple configurations.
The heart of the testing configuration is determined by the fixtures defined in conftest.py.

6.1. Table of Contents 43

http://doc.pytest.org/en/latest/proposals/parametrize_with_fixtures.html?highlight=fixtures

Quest Documentation, Release 3.1.1

44 Chapter 6. Developer Documentation

CHAPTER

SEVEN

GLOSSARY

Catalog

Catalogs see Catalogs

Catalog Entry

Catalog Entries see Catalog Entries

Collection

Collections see Collections

Dataset

Datasets see Datasets

Project

Projects see Projects

Provider

Providers see Providers

Service

Services see Services

Tool

Tools see Tools

45

Quest Documentation, Release 3.1.1

46 Chapter 7. Glossary

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

47

Quest Documentation, Release 3.1.1

48 Chapter 8. Indices and tables

PYTHON MODULE INDEX

q
quest.api, 19

49

Quest Documentation, Release 3.1.1

50 Python Module Index

INDEX

A
add_datasets() (in module quest.api), 19
add_project() (in module quest.api), 19
add_user_provider() (in module quest.api), 19
authenticate_provider() (in module quest.api),

19

C
cancel_tasks() (in module quest.api), 19
Catalog, 45
Catalog Entries, 45
Catalog Entry, 45
Catalogs, 45
Collection, 45
Collections, 45
copy() (in module quest.api), 20

D
Dataset, 45
Datasets, 45
delete() (in module quest.api), 20
delete_project() (in module quest.api), 20
delete_user_provider() (in module quest.api),

20
download() (in module quest.api), 20
download_datasets() (in module quest.api), 20

G
get_active_project() (in module quest.api), 21
get_api_version() (in module quest.api), 21
get_auth_status() (in module quest.api), 21
get_collections() (in module quest.api), 21
get_data() (in module quest.api), 21
get_datasets() (in module quest.api), 22
get_download_options() (in module quest.api),

21
get_mapped_parameters() (in module quest.api),

22
get_metadata() (in module quest.api), 23
get_parameters() (in module quest.api), 23
get_pending_tasks() (in module quest.api), 23
get_projects() (in module quest.api), 23

get_providers() (in module quest.api), 23
get_publish_options() (in module quest.api), 29
get_publishers() (in module quest.api), 23
get_quest_version() (in module quest.api), 24
get_seamless_data() (in module quest.api), 24
get_services() (in module quest.api), 25
get_settings() (in module quest.api), 25
get_tags() (in module quest.api), 25
get_task() (in module quest.api), 25
get_tasks() (in module quest.api), 26
get_tool_options() (in module quest.api), 27
get_tools() (in module quest.api), 26
get_visualization_options() (in module

quest.api), 32

M
move() (in module quest.api), 27

N
new_catalog_entry() (in module quest.api), 27
new_collection() (in module quest.api), 27
new_dataset() (in module quest.api), 28
new_parameter() (in module quest.api), 28
new_project() (in module quest.api), 28

O
open_dataset() (in module quest.api), 28

P
Project, 45
Projects, 45
Provider, 45
Providers, 45
publish() (in module quest.api), 29

Q
quest.api (module), 19

R
remove_project() (in module quest.api), 29
remove_tasks() (in module quest.api), 29

51

Quest Documentation, Release 3.1.1

run_tool() (in module quest.api), 29

S
save_settings() (in module quest.api), 30
search_catalog() (in module quest.api), 30
Service, 45
Services, 45
set_active_project() (in module quest.api), 30
stage_for_download() (in module quest.api), 31

T
Tool, 45
Tools, 45

U
unauthenticate_provider() (in module

quest.api), 31
update_metadata() (in module quest.api), 31
update_project_metadata() (in module

quest.api), 31
update_settings() (in module quest.api), 32
update_settings_from_file() (in module

quest.api), 32

V
visualize_dataset() (in module quest.api), 32

52 Index

	Installation Instructions
	Install Released Conda Package
	Install from Source

	Quickstart
	Examples

	Core Concepts
	Local Data Organization
	Data Transformations
	Data Repositories

	Extending Quest
	Provider Plugins
	Tool Plugins
	I/O Plugins

	API Reference
	Developer Documentation
	Table of Contents

	Glossary
	Indices and tables
	Python Module Index

